Quantitative Assessment of the Learning Curve for Robotic Thyroid Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions
2.3. Statistical Analysis
3. Results
(Case number)3 + 0.0006 × (Case number)4 − 3 × 10−6 × (Case number)5 + 5 × 10−9 ×
(Case number)6,
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, S.Y.; Kim, J.S. Bilateral axillo-breast approach robotic thyroidectomy: Review of evidences. Gland Surg. 2017, 6, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Rao, J.; Youn, Y.K. Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: Our initial experience. Surg. Laparosc. Endosc. Percutan. Tech. 2009, 19, e71–e75. [Google Scholar] [CrossRef]
- Koo, D.H.; Kim, D.M.; Choi, J.Y.; Lee, K.E.; Cho, S.H.; Youn, Y.K. In-Depth Survey of Scarring and Distress in Patients Undergoing Bilateral Axillo-Breast Approach Robotic Thyroidectomy or Conventional Open Thyroidectomy. Surg. Laparosc. Endosc. Percutan. Tech. 2015, 25, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Koo Do, H.; Im, H.J.; Park, S.K.; Choi, J.Y.; Paeng, J.C.; Chung, J.K.; Oh, S.K.; Youn, Y.K. Surgical completeness of bilateral axillo-breast approach robotic thyroidectomy: Comparison with conventional open thyroidectomy after propensity score matching. Surgery 2011, 150, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Yi, J.W.; Song, R.Y.; Chai, Y.J.; Kim, S.J.; Choi, J.Y.; Lee, K.E. Comparison of Bilateral Axillo-Breast Approach Robotic Thyroidectomy with Open Thyroidectomy for Graves’ Disease. World J. Surg. 2016, 40, 498–504. [Google Scholar] [CrossRef]
- Kassite, I.; Bejan-Angoulvant, T.; Lardy, H.; Binet, A. A systematic review of the learning curve in robotic surgery: Range and heterogeneity. Surg. Endosc. 2018, 33, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Maruthappu, M.; El-Harasis, M.A.; Nagendran, M.; Orgill, D.P.; Mcculloch, P.; Duclos, A.; Carty, M.J. Systematic review of methodological quality of individual performance measurement in surgery. Br. J. Surg. 2014, 101, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yun, J.H.; Nam, K.H.; Soh, E.Y.; Chung, W.Y. The learning curve for robotic thyroidectomy: A multicenter study. Ann. Surg. Oncol. 2011, 18, 226–232. [Google Scholar] [CrossRef]
- Kim, W.W.; Jung, J.H.; Park, H.Y. A single surgeon’s experience and surgical outcomes of 300 robotic thyroid surgeries using a bilateral axillo-breast approach. J. Surg. Oncol. 2015, 111, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Gross, N.D. Commentary: Is robotic thyroid surgery worth the learning curve? Otolaryngol. Head Neck Surg. 2012, 147, 1047–1048. [Google Scholar] [CrossRef] [PubMed]
- Pernar, L.I.M.; Robertson, F.C.; Tavakkoli, A.; Sheu, E.G.; Brooks, D.C.; Smink, D.S. An appraisal of the learning curve in robotic general surgery. Surg. Endosc. 2017, 31, 4583–4596. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Koo Do, H.; Choi, J.Y.; Kim, E.; Lee, K.E.; Youn, Y.K. Bilateral axillo-breast approach robotic thyroidectomy for Graves’ disease: An initial experience in a single institute. World J. Surg. 2013, 37, 1576–1581. [Google Scholar] [CrossRef]
- Bokhari, M.B.; Patel, C.B.; Ramos-Valadez, D.I.; Ragupathi, M.; Haas, E.M. Learning curve for robotic-assisted laparoscopic colorectal surgery. Surg. Endosc. 2011, 25, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Rao, S.; Lin, Z.; Pan, Z.; Zheng, X.; Wang, Z. The learning curve of endoscopic thyroid surgery for papillary thyroid microcarcinoma: CUSUM analysis of a single surgeon’s experience. Surg. Endosc. 2018. [Google Scholar] [CrossRef] [PubMed]
- Biau, D.J.; Williams, S.M.; Schlup, M.M.; Nizard, R.S.; Porcher, R. Quantitative and individualized assessment of the learning curve using LC-CUSUM. Br. J. Surg. 2008, 95, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Segna, E.; Caruhel, J.B.; Corre, P.; Picard, A.; Biau, D.; Khonsari, R.H. Quantitative assessment of the learning curve for cleft lip repair using LC-CUSUM. Int. J. Oral Maxillofac. Surg. 2018, 47, 366–373. [Google Scholar] [CrossRef]
- Biau, D.J.; Porcher, R. A method for monitoring a process from an out of control to an in control state: Application to the learning curve. Stat. Med. 2010, 29, 1900–1909. [Google Scholar] [CrossRef]
- Kim, M.J.; Nam, K.H.; Lee, S.G.; Choi, J.B.; Kim, T.H.; Lee, C.R.; Lee, J.; Kang, S.W.; Jeong, J.J.; Chung, W.Y. Yonsei Experience of 5000 Gasless Transaxillary Robotic Thyroidectomies. World J. Surg. 2018, 42, 393–401. [Google Scholar] [CrossRef]
- Lee, K.E.; Kim, E.; Koo Do, H.; Choi, J.Y.; Kim, K.H.; Youn, Y.K. Robotic thyroidectomy by bilateral axillo-breast approach: Review of 1,026 cases and surgical completeness. Surg. Endosc. 2013, 27, 2955–2962. [Google Scholar] [CrossRef]
- Elliot, D.L.; Hickam, D.H. Evaluation of physical examination skills. Reliability of faculty observers and patient instructors. JAMA 1987, 258, 3405–3408. [Google Scholar] [CrossRef]
- Van Rij, A.M.; Mcdonald, J.R.; Pettigrew, R.A.; Putterill, M.J.; Reddy, C.K.; Wright, J.J. Cusum as an aid to early assessment of the surgical trainee. Br. J. Surg. 1995, 82, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Neuburger, J.; Walker, K.; Sherlaw-Johnson, C.; Van Der Meulen, J.; Cromwell, D.A. Comparison of control charts for monitoring clinical performance using binary data. BMJ Qual. Saf. 2017, 26, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Biau, D.J.; Resche-Rigon, M.; Godiris-Petit, G.; Nizard, R.S.; Porcher, R. Quality control of surgical and interventional procedures: A review of the CUSUM. Qual. Saf. Health Care 2007, 16, 203–207. [Google Scholar] [CrossRef]
- Edafe, O.; Antakia, R.; Laskar, N.; Uttley, L.; Balasubramanian, S.P. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br. J. Surg. 2014, 101, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, O.E.; Yavropoulou, M.P.; Papavramidis, T.S.; Tzouvara, C.; Triantafyllopoulou, K.; Papavramidis, S.; Yovos, J.G. Secretory capacity of the parathyroid glands after total thyroidectomy in normocalcemic subjects. J. Clin. Endocrinol. Metab. 2012, 97, 2341–2346. [Google Scholar] [CrossRef]
- Orloff, L.A.; Wiseman, S.M.; Bernet, V.J.; Fahey, T.J., 3rd; Shaha, A.R.; Shindo, M.L.; Snyder, S.K.; Stack, B.C., Jr.; Sunwoo, J.B.; Wang, M.B. American Thyroid Association Statement on Postoperative Hypoparathyroidism: Diagnosis, Prevention, and Management in Adults. Thyroid 2018, 28, 830–841. [Google Scholar] [CrossRef]
- Hauch, A.; Al-Qurayshi, Z.; Randolph, G.; Kandil, E. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann. Surg. Oncol. 2014, 21, 3844–3852. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Arghami, A.; Dy, B.M.; Mckenzie, T.J.; Thompson, G.B.; Richards, M.L. Robotic single-site adrenalectomy. Surg. Endosc. 2016, 30, 3351–3356. [Google Scholar] [CrossRef]
- Yao, A.; Iwamoto, H.; Masago, T.; Morizane, S.; Honda, M.; Sejima, T.; Takenaka, A. Anatomical dimensions using preoperative magnetic resonance imaging: Impact on the learning curve of robot-assisted laparoscopic prostatectomy. Int. J. Urol. 2015, 22, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Bareeq, R.A.; Jayaraman, S.; Kiaii, B.; Schlachta, C.; Denstedt, J.D.; Pautler, S.E. The role of surgical simulation and the learning curve in robot-assisted surgery. J. Robot. Surg. 2008, 2, 11–15. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Sex (male/female) | 19 (11.0%):153 (89.0%) |
Age (years) | 37.8 ± 9.2 (range, 17–64) |
Body mass index (kg/m2) | 22.6 ± 3.1 (range, 15.9–33.4) |
Pathologic characteristics | |
Tumor size (cm) | 0.8 ± 0.6 |
Microscopic extrathyroidal extension | 98 (57%) |
Lymph node metastasis | 62 (36.0%) |
Number of retrieved lymph nodes | 5.4 ± 4.4 |
Excised thyroid weight (g) | 21.0 ± 8.5 (range, 8.2–65.8) |
Operation time (min) | 142.7 ± 32.1 (range, 69–244) |
Complications | |
Transient hypoparathyroidism | 78 (45.3%) |
Transient RLN palsy | 9 (5.2%) |
Permanent hypoparathyroidism | 2 (1.2%) |
Permanent RLN palsy | 0 (0.0%) |
Postoperative bleeding | 0 (0%) |
Postoperative suppressed thyroglobulin at 3 months | 0.18 ± 0.31 (range, 0.00–1.57) |
Remnant thyroid tissue on ultrasound at 6 months | 0 (0%) |
Characteristics | The First 50 Cases | After 51st Case | p-Value |
---|---|---|---|
Sex (male/female) | 5:45 | 14:108 | 0.779 |
Age (years) | 39.3 ± 7.1 | 37.1 ± 9.9 | 0.103 |
Body mass index (kg/m2) | 23.1 ± 2.6 | 22.4 ± 3.3 | 0.137 |
Pathologic characteristics | 1.000 | ||
Tumor size (cm) | 0.8 ± 0.4 | 0.8 ± 0.6 | 0.477 |
Microscopic ETE | 31 (62.0%) | 67 (54.9%) | 0.394 |
LN metastasis | 15 (30.0%) | 47 (38.5%) | 0.290 |
Number of retrieved LNs | 5.3 ± 4.7 | 5.4 ± 4.3 | 0.854 |
Excised thyroid weight (g) | 23.0 ± 8.6 | 20.3 ± 8.4 | 0.067 |
Operation time (min) | 166.9 ± 29.5 | 132.8 ± 27.7 | <0.001 |
Complications | |||
Transient hypoparathyroidism | 26 (52.0%) | 52 (42.6%) | 0.262 |
Transient RLN palsy | 3 (6.0%) | 3 (4.9%) | 0.772 |
Permanent hypoparathyroidism | 1 (2.0%) | 1 (0.8%) | 0.512 |
Permanent RLN palsy | 0 (0.0%) | 0 (0.0%) | NA |
Postoperative bleeding | 0 (0.0%) | 0 (0.0%) | NA |
Suppressed Tg at 3 months | 0.22 ± 0.38 | 0.16 ± 0.28 | 0.337 |
Unacceptable Failure Rate/Acceptable Failure Rate | Decision Limit | |||||
---|---|---|---|---|---|---|
1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | |
0.60/0.50 | 15 | 72 | 73 | 74 | 75 | 76 |
0.60/0.45 | 14 | 15 | 49 | 73 | 74 | 74 |
0.60/0.40 | 4 | 15 | 15 | 49 | 49 | 73 |
0.60/0.35 | 4 | 4 | 15 | 15 | 49 | 49 |
0.55/0.45 | 49 | 74 | 75 | 76 | 89 | 99 |
0.55/0.40 | 15 | 49 | 73 | 74 | 75 | 75 |
0.55/0.35 | 4 | 15 | 49 | 49 | 73 | 74 |
0.50/0.40 | 73 | 75 | 76 | 100 | 101 | 102 |
0.50/0.35 | 15 | 73 | 74 | 75 | 75 | 76 |
0.50/0.30 | 4 | 15 | 49 | 73 | 74 | 75 |
0.45/0.35 | 74 | 75 | 102 | 156 | 158 | 159 |
0.45/0.30 | 49 | 73 | 74 | 75 | 76 | 157 |
0.45/0.25 | 15 | 49 | 73 | 74 | 75 | 76 |
0.40/0.30 | 75 | 76 | 159 | 160 | 162 | 163 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kwon, H.; Lim, W.; Moon, B.-I.; Paik, N.S. Quantitative Assessment of the Learning Curve for Robotic Thyroid Surgery. J. Clin. Med. 2019, 8, 402. https://doi.org/10.3390/jcm8030402
Kim H, Kwon H, Lim W, Moon B-I, Paik NS. Quantitative Assessment of the Learning Curve for Robotic Thyroid Surgery. Journal of Clinical Medicine. 2019; 8(3):402. https://doi.org/10.3390/jcm8030402
Chicago/Turabian StyleKim, HyunGoo, Hyungju Kwon, Woosung Lim, Byung-In Moon, and Nam Sun Paik. 2019. "Quantitative Assessment of the Learning Curve for Robotic Thyroid Surgery" Journal of Clinical Medicine 8, no. 3: 402. https://doi.org/10.3390/jcm8030402
APA StyleKim, H., Kwon, H., Lim, W., Moon, B. -I., & Paik, N. S. (2019). Quantitative Assessment of the Learning Curve for Robotic Thyroid Surgery. Journal of Clinical Medicine, 8(3), 402. https://doi.org/10.3390/jcm8030402