Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review
Abstract
:1. Introduction
2. Sample Preparation
2.1. Sample Pretreatment Based on the Dilution of the Sample
2.2. Deproteinization
2.3. Derivatization
2.4. Microdialysis
2.5. LLE
2.6. DLLME
2.7. SPE
2.8. SPME
3. Analytical Strategies of BA determinations Based on Separation Techniques
3.1. Conventional HPLC
3.2. LC-MS/MS
3.3. UPLC-MS/MS
3.4. Mobile Phase
3.5. GC-MS/MS
3.6. CE
3.6.1. Electrolyte Composition
3.6.2. Detection Modes after CE Separation
3.7. Internal Standards
4. Non-separation Approaches for the Quantification of BAs
4.1. Immunoassays
4.2. Electrochemical Sensors
5. Diagnostic Performance
6. Clinical Importance of the Determination of BAs in Human Samples as Biomarkers of Different Diseases
6.1. BAs as Biomarkers of Oncological Diseases
6.2. BAs as Potential Biomarkers of Cardiovascular Diseases
6.3. BAs as Potential Biomarkers of Neurodegenerative and Psychiatric Diseases
6.4. BAs as Potential Biomarkers of Endocrinal, Autoimmunological and Other Diseases
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
2-MHA | 2-methylhippuric acid |
2-PB | 2-picoline borane |
5-HIAA | 5-hydroxyindoleacetic acid |
5-HT | 5-hydroxytryptamine; serotonine |
5-HTrp | 5-hydroxytryptophan |
AA | ascorbic acid |
ACN | acetonitrile |
AD | Alzheimer’s Disease |
ADHD | Attention-Deficit/Hyperactivity Disorder |
AmpD | amperometric detection |
APCI | atmospheric pressure chemical ionization |
APHD | Huntington’s Disease |
APS | amino-propyl silane |
AuNPs | gold nanoparticles |
BAs | biogenic amines |
BDS | base-deactivated silica |
CAR/PDMS | carboxen/polydimethylsiloxane |
CATs | catecholamines |
CE | capillary electrophoresis |
CE-AmpD | capillary electrophoresis with amperometric detection |
CILE | carbon ionic liquid electrode |
CKD | chronic kidney disease |
CL | chemiluminescence detection |
CNS | central nervous system |
COMT | catechol-O-methyltransferase |
Cr | creatinine |
CSF | cerebrospinal fluid |
CSC | carcinoma stem cell sample |
CTAB | cetyltrimethylammonium bromide |
CZE | capillary zone electrophoresis |
DA | dopamine |
DAD | diode array detection |
DBD-PyNCS | 4-(N, N-dimethylaminosulfonyl)-7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole |
DHEAS | dehydroepiandrosterone |
DHPG | 3,4-dihydroxyphenylglycol |
DLLME | dispersive liquid-liquid extraction |
DOPAC | 3,4-dihydroxyphenylacetic acid |
DPE | diphenylethylendiamine |
DPSs | dried plasma spots |
DUSs | dried urine spots |
DVB/CAR/PDMS | divinylbenzene/carboxen/polydimethylsiloxane |
E | epinephrine |
ED | electrochemical detection |
eGFR | glomerular filtration rate |
ELISA | enzyme-linked immunosorbent assay |
EOF | electroosmotic flow |
ESI | electrospray ionization |
FA | formic acid |
FASI | field amplified sample injection |
FASS | field-amplified sample stacking |
GABA | γ-aminobutyric acid |
GC | gas chromatography |
GCE | glass carbon electrode |
GC-MS | gas chromatography coupled with mass spectrometry |
GC-MS/MS | gas chromatography coupled with tandem mass spectrometry |
GC–QqQ-MS | gas chromatography-triple quadrupole mass spectrometry |
GITS | non-neural neoplasm gastrointestinal tumor |
Glu | glutamate |
GR | graphene |
HA | hippuric acid |
HC | head-column |
HE | Hashimoto Encephalopathy |
HFBA | 4-(heptadecafluorodecyl)benzylamine |
HFBCF | 1,1,1,2,2,3,3-heptafluorobutyl chloroformate reagent |
HILIC | hydrophilic interaction liquid chromatography |
HLB | hydrophilic-lipophilic balanced copolymer sorbent |
HMDS | hexamethyldisilazane |
HMPG sulfate | 4-hydroxy-3-methoxyphenylglycol sulfate |
HPLC-(ESI)-MS | high-performance liquid chromatography/electrospray ionization mass spectrometry |
HPLC-FD | high performance liquid chromatography with fluorescence detection |
HPLC-UV | high performance liquid chromatography with ultraviolet detection |
HVA | homovanillic acid |
IAA | indole-3-acetic acid |
ITP | isotachophoresis |
LC | liquid chromatography |
LC-ESI-MS/MS | liquid chromatography/electrospray ionization tandem mass spectrometry |
LC-FL | liquid chromatography with fluorescence detection |
LC-MS/MS | liquid chromatography coupled with tandem mass spectrometry |
L-DOPA | L-dihydroxyphenylalanine |
LEDIF | light emitting diode-induced fluorescence |
LIF | laser-induced fluorescence |
L-KYN | L-kynurenine |
LLE | liquid-liquid extraction |
LLME | liquid-liquid microextraction |
LLOQ | lower limit of quantification |
LOD | limit of detection |
LOQ | limit of quantification |
L-Tryp | L-tryptophan |
L-Tyr | L-Tyrosine |
M | metanephrine |
MAO | monoamine oxidase |
MAOA | monoamineoxidase A |
MBHFBA | N-methyl-bis-heptafluorobutyramide |
MCE | microchip electrophoresis |
MCX | mixed mode cation exchange |
MEKC | micellar electrokinetic chromatography |
MEPS | microextraction by packed sorbent |
MHPG | 3-methoxy-4-hydroxyphenylglycol |
MIPs | molecularly imprinted polymers |
MNs | metanephrines |
MNTI | melanotic neuroectodermal tumor of infancy |
MRM | multiple reaction monitoring |
NA | niacinamide |
NBL | neuroblastoma |
NE | norepinephrine |
NENs | neuroendocrine neoplasms |
NETs | neuroendocrine tumors |
NM | normetanephrine |
OCT | octopamine hydrochloride |
PA | polyacrylate |
PBA | diphenylborate |
PBMC | peripheral blood mononu-clear cells |
PCR | polymerase chain reaction |
PD | Parkinson’s Disease |
PDDA | poly(diallyl dimethylammonium) chloride |
PDMS | polydimethylsiloxane |
PDMS/DVB | polydimethylsiloxane/divinylbenzene |
PEA | phenylethylamine |
PEO | polyethylene oxide |
PFHA | perfluoroheptanoic acid |
PFOEI | 2-(perfluorooctyl)ethyl isocyanate |
PFUA | perfluoroundecan-1-al |
PGC | porous graphitic carbon |
PHE | pheochromocytoma |
PITC | phenylisothiocyanate |
PTSD | post-traumatic stress disorder |
RFS | reversed-field stacking |
RP18 | reversed phase C18 column |
SCX | strong cation exchange |
SDS | sodium dodecyl sulphate |
SPE | solid phase extraction |
SPME | solid phase microextraction |
SIM | selective ion monitoring |
SRM | selective reaction monitoring |
TB | tris-borate buffer |
TCA | trichloroacetic acid |
THF | tetrahydrofuran |
THP | tris(3-hydroxypropyl)phosphine |
UA | uric acid |
UPLC | ultrafast performance liquid chromatography |
UV | ultraviolet |
UV/Vis | combined ultraviolet and visible radiation detectors, |
VMA | vanillymandelic acid |
WCX | weak cation exchange |
References
- Daws, L.C.; Owens, W.A.; Toney, G.M. Using High-Speed Chronoamperometry to Measure Biogenic Amine Release and Uptake In Vivo. In Neurotransmitter Transporters; Humana Press: New York, NY, USA, 2016; pp. 53–81. ISBN 08932336. [Google Scholar]
- Lv, C.; Li, Q.; Liu, X.; He, B.; Sui, Z.; Xu, H.; Yin, Y.; Liu, R.; Bi, K. Determination of catecholamines and their metabolites in rat urine by ultra-performance liquid chromatography-tandem mass spectrometry for the study of identifying potential markers for Alzheimer’s disease. J. Mass Spectrom. 2015, 50, 354–363. [Google Scholar] [CrossRef]
- Vermeiren, Y.; Le Bastard, N.; Van Hemelrijck, A.; Drinkenburg, W.H.; Engelborghs, S.; De Deyn, P.P. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia. Alzheimer’s Dement. 2013, 9, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Brichta, L.; Greengard, P.; Flajolet, M. Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems. Trends Neurosci. 2013, 36, 543–554. [Google Scholar] [CrossRef]
- Miękus, N.; Bączek, T. Non-invasive screening for neuroendocrine tumors—Biogenic amines as neoplasm biomarkers and the potential improvement of “gold standards”. J. Pharm. Biomed. Anal. 2016, 130, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.; Renau, N.; Valverde, O.; Aznar-Laín, G.; Gracia-Rubio, I.; Gonzalez-Sepulveda, M.; Pérez-Jurado, L.A.; Ventura, R.; Segura, J.; Pozo, O.J. Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1434, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.; Nguyen, J.; Polglaze, K.; Bertrand, P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Marcos, A.; Ambrosio, E.; Marina, M.L.; Crego, A.L. Enantioseparation of the constituents involved in the phenylalanine-tyrosine metabolic pathway by capillary electrophoresis tandem mass spectrometry. J. Chromatogr. A 2016, 1467, 372–382. [Google Scholar] [CrossRef]
- Eisenhofer, G. Catecholamine Metabolism: A Contemporary View with Implications for Physiology and Medicine. Pharmacol. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Andreou, D.; Söderman, E.; Axelsson, T.; Sedvall, G.C.; Terenius, L.; Agartz, I.; Jönsson, E.G. Polymorphisms in genes implicated in dopamine, serotonin and noradrenalin metabolism suggest association with cerebrospinal fluid monoamine metabolite concentrations in psychosis. Behav. Brain Funct. 2014, 10, 1–10. [Google Scholar] [CrossRef]
- Yu, J.; Kong, L.; Zhang, A.; Han, Y.; Liu, Z.; Sun, H.; Liu, L.; Wang, X. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer’s Disease. J. Proteome Res. 2017, 16, 3219–3228. [Google Scholar] [CrossRef] [PubMed]
- de Jong, W.H.A.; de Vries, E.G.; Kema, I.P. Current status and future developments of LC-MS/MS in clinical chemistry for quantification of biogenic amines. Clin. Biochem. 2011, 44, 95–103. [Google Scholar] [CrossRef]
- Bicker, J.; Fortuna, A.; Alves, G.; Falcão, A. Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—A review. Anal. Chim. Acta 2013, 768, 12–34. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Peitzsch, M.; McWhinney, B.C. Impact of LC-MS/MS on the laboratory diagnosis of catecholamine-producing tumors. TrAC Trends Anal. Chem. 2016, 84, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Parent, A.J.; Beaudet, N.; Daigle, K.; Sabbagh, R.; Sansoucy, Y.; Marchand, S.; Sarret, P.; Goffaux, P. Relationship Between Blood- and Cerebrospinal Fluid–Bound Neurotransmitter Concentrations and Conditioned Pain Modulation in Pain-Free and Chronic Pain Subjects. J. Pain 2015, 16, 436–444. [Google Scholar] [CrossRef]
- Taj, A.; Jamil, N. Cerebrospinal Fluid Concentrations of Biogenic Amines: Potential Biomarkers for Diagnosis of Bacterial and Viral Meningitis. Pathogens 2018, 7, 39. [Google Scholar] [CrossRef]
- Grace, A.A.; Gerfen, C.R.; Aston-Jones, G. Catecholamines in the Central Nervous System. Adv. Pharmacol. 1997, 42, 655–670. [Google Scholar]
- Plonka, J. Methods of biological fluids sample preparation-biogenic amines, methylxanthines, water-soluble vitamins. Biomed. Chromatogr. 2015, 29, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.C.Y.; Wee, P.Y.; Ho, P.C. Evaluation of degradation of urinary catecholamines and metanephrines and deconjugation of their sulfoconjugates using stability-indicating reversed-phase ion-pair HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 2000, 22, 515–526. [Google Scholar] [CrossRef]
- Cudjoe, E.; Pawliszyn, J. Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J. Chromatogr. A 2014, 1003, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Remane, D.; Grunwald, S.; Hoeke, H.; Mueller, A.; Roeder, S.; von Bergen, M.; Wissenbach, D.K. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine. J. Chromatogr. B 2015, 998–999, 40–44. [Google Scholar] [CrossRef]
- Clark, Z.D.; Cutler, J.M.; Frank, E.L. Practical LC-MS/MS Method for 5-Hydroxyindoleacetic Acid in Urine. J. Appl. Lab. Med. 2017, 1, 387–399. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Ni, P.; Xu, B.; Luo, X.; Zhan, Y.; Gao, P.; Zhu, D. Simultaneous determination of urinary tryptophan, tryptophan-related metabolites and creatinine by high performance liquid chromatography with ultraviolet and fluorimetric detection. J. Chromatogr. B 2011, 879, 2720–2725. [Google Scholar] [CrossRef]
- Konieczna, L.; Roszkowska, A.; Stachowicz-Stencel, T.; Synakiewicz, A.; Bączek, T. Bioanalysis of a panel of neurotransmitters and their metabolites in plasma samples obtained from pediatric patients with neuroblastoma and Wilms’ tumor. J. Chromatogr. B 2018, 1074–1075, 99–110. [Google Scholar] [CrossRef]
- Miller, A.G.; Brown, H.; Degg, T.; Allen, K.; Keevil, B.G. Measurement of plasma 5-hydroxyindole acetic acid by liquid chromatography tandem mass spectrometry—Comparison with HPLC methodology. J. Chromatogr. B 2010, 878, 695–699. [Google Scholar] [CrossRef]
- Cai, H.-L.; Zhu, R.-H.; Li, H.-D. Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography–electrospray ionization tandem mass spectrometry. Anal. Biochem. 2010, 396, 103–111. [Google Scholar] [CrossRef]
- Ji, C.; Walton, J.; Su, Y.; Tella, M. Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC–MS/MS. Anal. Chim. Acta 2010, 670, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Lv, Y.; Sheng, X.; Yao, S. Sensitive, Rapid and Easy Analysis of Three Catecholamine Metabolites in Human Urine and Serum by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. Sci. 2012, 50, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Boulet, L.; Faure, P.; Flore, P.; Montérémal, J.; Ducros, V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 2017, 1054, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Stevens, A.P.; Dettmer, K.; Gottfried, E.; Hoves, S.; Kreutz, M.; Holler, E.; Canelas, A.B.; Kema, I.; Oefner, P.J. Quantitative profiling of tryptophan metabolites in serum, urine and cell culture supernatants by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 401, 3249–3261. [Google Scholar] [CrossRef]
- Zhao, J. Simultaneous determination of plasma creatinine, uric acid, kynurenine and tryptophan by high-performance liquid chromatography: Method validation and in application to the assessment of renal function. Biomed. Chromatogr. 2015, 29, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Ferchaud-Roucher, V.; Nael, C.; Aguesse, A.; Poupeau, G.; Castellano, B.; Darmaun, D. Simultaneous detection of stable isotope-labeled and unlabeled l-tryptophan and of its main metabolites, l-kynurenine, serotonin and quinolinic acid, by gas chromatography/negative ion chemical ionization mass spectrometry. J. Mass Spectrom. 2014, 49, 128–135. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, J.; Tang, Q.; Guan, Q.; Sun, Z.; Li, H.; Cheng, L. Rapid, easy analysis of urinary vanillylmandelic acid for diagnostic testing of pheochromocytoma by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2015, 1002, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Mandal, R.; Wishart, D.S. A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum. Anal. Chim. Acta 2018, 1037, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, A.; Meinitzer, A.; Rothenhäusler, H.-B.; Amouzadeh-Ghadikolai, O.; Lewinski, D.V.; Breitenecker, R.J.; Herrmann, M. Metabolomics approach in the investigation of depression biomarkers in pharmacologically induced immune-related depression. PLoS ONE 2018, 13, e0208238. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Yoshida, H.; Hayama, T.; Itoyama, M.; Todoroki, K.; Yamaguchi, M.; Nohta, H. Selective liquid-chromatographic determination of native fluorescent biogenic amines in human urine based on fluorous derivatization. J. Chromatogr. A 2011, 1218, 5581–5586. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, Y.; Ikenaga, J.; Yoshida, H.; Hayama, T.; Itoyama, M.; Todoroki, K.; Imakyure, O.; Yamaguchi, M.; Nohta, H. Selective and sensitive liquid chromatographic determination method of 5-hydroxyindoles with fluorous and fluorogenic derivatization. J. Pharm. Biomed. Anal. 2015, 114, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, H.; Iizuka, H.; Yoshihara, S.; Otani, H.; Kume, M.; Sadamoto, K.; Ichiba, H.; Fukushima, T. Determination of L-tryptophan and L-kynurenine in Human Serum by using LC-MS after Derivatization with (R)-DBD-PyNCS. Int. J. Tryptophan Res. 2013, 6 (Suppl. 1), 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sa, M.; Ying, L.; Tang, A.-G.; Xiao, L.-D.; Ren, Y.-P. Simultaneous determination of tyrosine, tryptophan and 5-hydroxytryptamine in serum of MDD patients by high performance liquid chromatography with fluorescence detection. Clin. Chim. Acta 2012, 413, 973–977. [Google Scholar] [CrossRef]
- Ellis, A.G.; Zeglinski, P.T.; Coleman, K.E.; Whiting, M.J. Dilute, derivatise and shoot: Measurement of urinary free metanephrines and catecholamines as ethyl derivatives by LC-MSMS. Clin. Mass Spectrom. 2017, 4–5, 34–41. [Google Scholar] [CrossRef]
- Tang, Y.-B.; Sun, F.; Teng, L.; Li, W.-B.; An, S.-M.; Zhang, C.; Yang, X.-J.; Lv, H.-Y.; Ding, X.-P.; Zhu, L.; et al. Simultaneous determination of the repertoire of classical neurotransmitters released from embryonal carcinoma stem cells using online microdialysis coupled with hydrophilic interaction chromatography–tandem mass spectrometry. Anal. Chim. Acta 2014, 849, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Sadilkova, K.; Dugaw, K.; Benjamin, D.; Jack, R.M. Analysis of vanillylmandelic acid and homovanillic acid by UPLC–MS/MS in serum for diagnostic testing for neuroblastoma. Clin. Chim. Acta 2013, 424, 253–257. [Google Scholar] [CrossRef]
- Diniz, M.E.R.; Vilhena, L.S.; Paulo, B.P.; Barbosa, T.C.C.; Mateo, E.C. Simultaneous Determination of Catecholamines and Metanephrines in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry: Successful Clinical Application. J. Braz. Chem. Soc. 2015, 26, 1684–1691. [Google Scholar] [CrossRef]
- Tran, M.T.C.; Baglin, J.; Tran, T.T.T.; Hoang, K.T.; Phung, L.T.; Read, A.; Greaves, R.F. Development of a new biochemical test to diagnose and monitor neuroblastoma in Vietnam: Homovanillic and vanillylmandelic acid by gas chromatography–mass spectrometry. Clin. Biochem. 2014, 47, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Gosetti, F.; Mazzucco, E.; Gennaro, M.C.; Marengo, E. Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS. Anal. Bioanal. Chem. 2013, 405, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Hušek, P.; Švagera, Z.; Hanzlíková, D.; Řimnáčová, L.; Zahradníčková, H.; Opekarová, I.; Šimek, P. Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography–mass spectrometry. J. Chromatogr. A 2016, 1443, 211–232. [Google Scholar] [CrossRef]
- Konieczna, L.; Roszkowska, A.; Niedźwiecki, M.; Bączek, T. Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A 2016, 1431, 111–121. [Google Scholar] [CrossRef]
- Hayama, T.; Yabuuchi, Y.; Iwamatsu, T.; Tamashima, E.; Kawami, Y.; Itoyama, M.; Yoshida, H.; Yamaguchi, M.; Nohta, H. Concerted derivatization and concentration method with dispersive liquid–liquid microextraction for liquid chromatographic analysis of 5-hydroxyindoles in human serum. Talanta 2013, 117, 27–31. [Google Scholar] [CrossRef]
- Woo, H.I.; Yang, J.S.; Oh, H.J.; Cho, Y.Y.; Kim, J.H.; Park, H.-D.; Lee, S.-Y. A simple and rapid analytical method based on solid-phase extraction and liquid chromatography–tandem mass spectrometry for the simultaneous determination of free catecholamines and metanephrines in urine and its application to routine clinical analysis. Clin. Biochem. 2016, 49, 573–579. [Google Scholar] [CrossRef]
- Johnsen, E.; Leknes, S.; Wilson, S.R.; Lundanes, E. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction. Sci. Rep. 2015, 5, 9308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Y.; Ji, C.; McDonald, T.; Walton, J.; Groeber, E.A.; Steenwyk, R.C.; Lin, Z. Ultra sensitive measurement of endogenous epinephrine and norepinephrine in human plasma by semi-automated SPE-LC–MS/MS. J. Chromatogr. B 2012, 895–896, 186–190. [Google Scholar] [CrossRef]
- Peaston, R.T.; Graham, K.S.; Chambers, E.; van der Molen, J.C.; Ball, S. Performance of plasma free metanephrines measured by liquid chromatography–tandem mass spectrometry in the diagnosis of pheochromocytoma. Clin. Chim. Acta 2010, 411, 546–552. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, L.; Chow, D.S.L.; Tam, V.H.; Rios, D.R. Quantitative determination of dopamine in human plasma by a highly sensitive LC-MS/MS assay: Application in preterm neonates. J. Pharm. Biomed. Anal. 2016, 117, 227–231. [Google Scholar] [CrossRef]
- Petteys, B.J.; Graham, K.S.; Parnás, M.L.; Holt, C.; Frank, E.L. Performance characteristics of an LC–MS/MS method for the determination of plasma metanephrines. Clin. Chim. Acta 2012, 413, 1459–1465. [Google Scholar] [CrossRef]
- Tamashima, E.; Hayama, T.; Yoshida, H.; Imakyure, O.; Yamaguchi, M.; Nohta, H. Direct tandem mass spectrometric analysis of amino acids in plasma using fluorous derivatization and monolithic solid-phase purification. J. Pharm. Biomed. Anal. 2015, 115, 201–207. [Google Scholar] [CrossRef]
- He, X.; Gabler, J.; Yuan, C.; Wang, S.; Shi, Y.; Kozak, M. Quantitative measurement of plasma free metanephrines by ion-pairing solid phase extraction and liquid chromatography–tandem mass spectrometry with porous graphitic carbon column. J. Chromatogr. B 2011, 879, 2355–2359. [Google Scholar] [CrossRef] [PubMed]
- Tohmola, N.; Itkonen, O.; Turpeinen, U.; Joenväärä, S.; Renkonen, R.; Hämäläinen, E. Preanalytical validation and reference values for a mass spectrometric assay of serum vanillylmandelic acid for screening of catecholamine secreting neuroendocrine tumors. Clin. Chim. Acta 2015, 446, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Li, S.; Kellermann, G. An integrated liquid chromatography-tandem mass spectrometry approach for the ultra-sensitive determination of catecholamines in human peripheral blood mononuclear cells to assess neural-immune communication. J. Chromatogr. A 2016, 1449, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.L.; Sadjadi, S.; Schmedes, A. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography. J. Chromatogr. B 2017, 1057, 118–123. [Google Scholar] [CrossRef]
- Tohmola, N.; Itkonen, O.; Sane, T.; Markkanen, H.; Joenväärä, S.; Renkonen, R.; Hämäläinen, E. Analytical and preanalytical validation of a new mass spectrometric serum 5-hydroxyindoleacetic acid assay as neuroendocrine tumor marker. Clin. Chim. Acta 2014, 428, 38–43. [Google Scholar] [CrossRef]
- Moriarty, M.; Lee, A.; O’Connell, B.; Kelleher, A.; Keeley, H.; Furey, A. Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder. Anal. Bioanal. Chem. 2011, 401, 2481–2493. [Google Scholar] [CrossRef] [Green Version]
- Li, X.S.; Li, S.; Kellermann, G. Pre-analytical and analytical validations and clinical applications of a miniaturized, simple and cost-effective solid phase extraction combined with LC-MS/MS for the simultaneous determination of catecholamines and metanephrines in spot urine samples. Talanta 2016, 159, 238–247. [Google Scholar] [CrossRef]
- Peitzsch, M.; Prejbisz, A.; Kroiss, M.; Beuschlein, F.; Arlt, W.; Januszewicz, A.; Siegert, G.; Eisenhofer, G. Analysis of plasma 3-methoxytyramine, normetanephrine and metanephrine by ultraperformance liquid chromatography-tandem mass spectrometry: Utility for diagnosis of dopamine-producing metastatic phaeochromocytoma. Ann. Clin. Biochem. 2013, 50, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, S.; Wynveen, P.; Mork, K.; Kellermann, G. Development and validation of a specific and sensitive LC-MS/MS method for quantification of urinary catecholamines and application in biological variation studies. Anal. Bioanal. Chem. 2014, 406, 7287–7297. [Google Scholar] [CrossRef]
- Park, N.-H.; Hong, J.Y.; Shin, H.J.; Hong, J. Comprehensive profiling analysis of bioamines and their acidic metabolites in human urine by gas chromatography/mass spectrometry combined with selective derivatization. J. Chromatogr. A 2013, 1305, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Park, N.H.; Lee, W.; Choi, M.H.; Chung, B.C.; Hong, J. Metabolic profiling of tyrosine, tryptophan and glutamate in human urine using gas chromatography–tandem mass spectrometry combined with single SPE cleanup. J. Chromatogr. B 2017, 1051, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Peitzsch, M.; Pelzel, D.; Glöckner, S.; Prejbisz, A.; Fassnacht, M.; Beuschlein, F.; Januszewicz, A.; Siegert, G.; Eisenhofer, G. Simultaneous liquid chromatography tandem mass spectrometric determination of urinary free metanephrines and catecholamines, with comparisons of free and deconjugated metabolites. Clin. Chim. Acta 2013, 418, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, L.; Roszkowska, A.; Synakiewicz, A.; Stachowicz-Stencel, T.; Adamkiewicz-Drożyńska, E.; Bączek, T. Analytical approach to determining human biogenic amines and their metabolites using eVol microextraction in packed syringe coupled to liquid chromatography mass spectrometry method with hydrophilic interaction chromatography column. Talanta 2016, 150, 331–339. [Google Scholar] [CrossRef]
- Oppolzer, D.; Moreno, I.; da Fonseca, B.; Passarinha, L.; Barroso, M.; Costa, S.; Queiroz, J.A.; Gallardo, E. Analytical approach to determine biogenic amines in urine using microextraction in packed syringe and liquid chromatography coupled to electrochemical detection. Biomed. Chromatogr. 2013, 27, 608–614. [Google Scholar] [CrossRef]
- Saracino, M.A.; Santarcangelo, L.; Raggi, M.A.; Mercolini, L. Microextraction by packed sorbent (MEPS) to analyze catecholamines in innovative biological samples. J. Pharm. Biomed. Anal. 2015, 104, 122–129. [Google Scholar] [CrossRef]
- Lindström, M.; Tohmola, N.; Renkonen, R.; Hämäläinen, E.; Schalin-Jäntti, C.; Itkonen, O. Comparison of serum serotonin and serum 5-HIAA LC-MS/MS assays in the diagnosis of serotonin producing neuroendocrine neoplasms: A pilot study. Clin. Chim. Acta 2018, 482, 78–83. [Google Scholar] [CrossRef]
- Monteleone, M.; Naccarato, A.; Sindona, G.; Tagarelli, A. A reliable and simple method for the assay of neuroendocrine tumor markers in human urine by solid-phase microextraction–gas chromatography-triple quadrupole mass spectrometry. Anal. Chim. Acta 2013, 759, 66–73. [Google Scholar] [CrossRef]
- Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A. Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal. Chim. Acta 2014, 810, 17–24. [Google Scholar] [CrossRef]
- Trifunovic-Macedoljan, J.; Pantelic, N.; Damjanovic, A.; Raskovic, S.; Nikolic-Djurovic, M.; Pudar, G.; Jadranin, M.; Juranic, I.; Juranic, Z. LC/DAD determination of biogenic amines in serum of patients with diabetes mellitus, chronic urticaria or Hashimoto’s thyroiditis. J. Serbian Chem. Soc. 2016, 81, 487–498. [Google Scholar] [CrossRef]
- Konieczna, L.; Pyszka, M.; Okońska, M.; Niedźwiecki, M.; Bączek, T. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2018, 1542, 72–81. [Google Scholar] [CrossRef]
- Clark, Z.D.; Cutler, J.M.; Pavlov, I.Y.; Strathmann, F.G.; Frank, E.L. Simple dilute-and-shoot method for urinary vanillylmandelic acid and homovanillic acid by liquid chromatography tandem mass spectrometry. Clin. Chim. Acta 2017, 468, 201–208. [Google Scholar] [CrossRef]
- Wright, M.J.; Thomas, R.L.; Stanford, P.E.; Horvath, A.R. Multiple Reaction Monitoring with Multistage Fragmentation (MRM3) Detection Enhances Selectivity for LC-MS/MS Analysis of Plasma Free Metanephrines. Clin. Chem. 2015, 61, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Dunand, M.; Donzelli, M.; Rickli, A.; Hysek, C.M.; Liechti, M.E.; Grouzmann, E. Analytical interference of 4-hydroxy-3-methoxymethamphetamine with the measurement of plasma free normetanephrine by ultra-high pressure liquid chromatography–tandem mass spectrometry. Clin. Biochem. 2014, 47, 1121–1123. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Caban, M.; Migowska, N.; Stepnowski, P.; Kwiatkowski, M.; Kumirska, J. Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. J. Chromatogr. A 2012, 1258, 117–127. [Google Scholar] [CrossRef]
- Pussard, E.; Neveux, M.; Guigueno, N. Reference intervals for urinary catecholamines and metabolites from birth to adulthood. Clin. Biochem. 2009, 42, 536–539. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Lattke, P.; Herberg, M.; Siegert, G.; Qin, N.; Darr, R.; Hoyer, J.; Villringer, A.; Prejbisz, A.; Januszewicz, A.; et al. Reference intervals for plasma free metanephrines with an age adjustment for normetanephrine for optimized laboratory testing of phaeochromocytoma. Ann. Clin. Biochem. 2013, 50, 62–69. [Google Scholar] [CrossRef]
- Kelly, A.U.; Srivastava, R.; Dow, E.; Davidson, D.F. L-DOPA therapy interferes with urine catecholamine analysis in children with suspected neuroblastoma: A case series. Ann. Clin. Biochem. 2017, 54, 000456321668699. [Google Scholar] [CrossRef]
- Davidson, D.F.; Hammond, P.J.; Murphy, D.; Carachi, R. Age-related medical decision limits for urinary free (unconjugated) metadrenalines, catecholamines and metabolites in random urine specimens from children. Ann. Clin. Biochem. 2011, 48, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Weise, M.; Merke, D.P.; Pacak, K.; Walther, M.M.; Eisenhofer, G. Utility of Plasma Free Metanephrines for Detecting Childhood Pheochromocytoma. J. Clin. Endocrinol. MeTable 2002, 87, 1955–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacak, K.; Eisenhofer, G.; Ahlman, H.; Bornstein, S.R.; Gimenez-Roqueplo, A.-P.; Grossman, A.B.; Kimura, N.; Mannelli, M.; McNicol, A.M.; Tischler, A.S. Pheochromocytoma: Recommendations for clinical practice from the First International Symposium. Nat. Clin. Pract. Endocrinol. MeTable 2007, 3, 92–102. [Google Scholar] [CrossRef]
- Fitzgibbon, M.C.; Tormey, W.P. Paediatric Reference Ranges for Urinary Catecholamines/Metabolites and Their Relevance in Neuroblastoma Diagnosis. Ann. Clin. Biochem. 1994, 31, 1–11. [Google Scholar] [CrossRef]
- Claude, B.; Nehmé, R.; Morin, P. Analysis of urinary neurotransmitters by capillary electrophoresis: Sensitivity enhancement using field-amplified sample injection and molecular imprinted polymer solid phase extraction. Anal. Chim. Acta 2011, 699, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kolobova, E.; Kartsova, L.; Kravchenko, A.; Bessonova, E. Imidazolium ionic liquids as dynamic and covalent modifiers of electrophoretic systems for determination of catecholamines. Talanta 2018, 188, 183–191. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Xie, H.; Fu, Z.; He, L.; Ren, J.; Shi, Z.; Xu, Z.; Zhao, Y.; Zhao, S.; et al. Separation of Key Biogenic Amines by Capillary Electrophoresis and Determination of Possible Indicators of Sport Fatigue in Athlete’s Urine. J. Chromatogr. Sci. 2016, 54, 1428–1434. [Google Scholar]
- Zhao, Y.; Zhao, S.; Huang, J.; Ye, F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 2011, 85, 2650–2654. [Google Scholar] [CrossRef]
- Bacaloni, A.; Insogna, S.; Sancini, A.; Ciarrocca, M.; Sinibaldi, F. Sensitive profiling of biogenic amines in human urine by capillary electrophoresis with field amplified sample injection. Biomed. Chromatogr. 2013, 27, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Z.; Xie, H.; Fu, Z. Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis detection of epinephrine in the urine of smoker. J. Chromatogr. B 2012, 911, 1–5. [Google Scholar] [CrossRef]
- Miekus, N.; Kowalski, P.; Oledzka, I.; Plenis, A.; Bień, E.; Miekus, A.; Krawczyk, M.; Adamkiewicz-Drozyńska, E.; Baczek, T. Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1003, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Miękus, N.; Olędzka, I.; Plenis, A.; Kowalski, P.; Bień, E.; Miękus, A.; Krawczyk, M.A.; Adamkiewicz-Drożyńska, E.; Bączek, T. Determination of urinary biogenic amines’ biomarker profile in neuroblastoma and pheochromocytoma patients by MEKC method with preceding dispersive liquid–liquid microextraction. J. Chromatogr. B 2016, 1036–1037, 114–123. [Google Scholar] [CrossRef]
- Miękus, N.; Olędzka, I.; Kossakowska, N.; Plenis, A.; Kowalski, P.; Prahl, A.; Bączek, T. Ionic liquids as signal amplifiers for the simultaneous extraction of several neurotransmitters determined by micellar electrokinetic chromatography. Talanta 2018, 186, 119–123. [Google Scholar] [CrossRef]
- Hsieh, M.-M.; Lin, E.-P.; Huang, S.-W. On-line concentration and separation of cationic and anionic neurochemicals by capillary electrophoresis with UV absorption detection. Talanta 2012, 88, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Wang, G.; Chen, W.; Li, Y.; Zhang, Y.; He, P.; Wang, Q. Sensitive determination of neurotransmitters in urine by microchip electrophoresis with multiple-concentration approaches combining field-amplified and reversed-field stacking. J. Chromatogr. B 2016, 1025, 33–39. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Shi, H.; Ma, C.; Cong, B.; Kang, W. Determination of three major catecholamines in human urine by capillary zone electrophoresis with chemiluminescence detection. Anal. Biochem. 2012, 427, 10–17. [Google Scholar] [CrossRef]
- Kao, Y.-Y.; Liu, K.-T.; Huang, M.-F.; Chiu, T.-C.; Chang, H.-T. Analysis of amino acids and biogenic amines in breast cancer cells by capillary electrophoresis using polymer solutions containing sodium dodecyl sulfate. J. Chromatogr. A 2010, 1217, 582–587. [Google Scholar] [CrossRef]
- Tang, W.; Ge, S.; Gao, F.; Wang, G.; Wang, Q.; He, P.; Fang, Y. On-line sample preconcentration technique based on a dynamic pH junction in CE-amperometric detection for the analysis of biogenic amines in urine. Electrophoresis 2013, 34, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Q.; Yang, H.; Tu, Y. Electrophoretic separation of neurotransmitters on a polystyrene nano-sphere/polystyrene sulphonate coated poly(dimethylsiloxane) microchannel. Biomicrofluidics 2011, 5, 034104. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Xie, H.; Fu, Z. Trivalent copper chelate-luminol chemiluminescence system for highly sensitive CE detection of dopamine in biological sample after clean-up using SPE. Electrophoresis 2012, 33, 1589–1594. [Google Scholar] [CrossRef]
- Zhou, L.; Glennon, J.D.; Luong, J.H.T. Electrophoretic Analysis of Biomarkers using Capillary Modification with Gold Nanoparticles Embedded in a Polycation and Boron Doped Diamond Electrode. Anal. Chem. 2010, 82, 6895–6903. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jia, Z.; Shu, Y.; Liu, L. Dynamic pH junction–sweeping technique for on-line concentration of acidic amino acids in human serum by capillary electrophoresis with indirect UV detection. J. Chromatogr. B 2015, 980, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Piešťanský, J.; Maráková, K.; Mikuš, P. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules 2017, 22, 1668. [Google Scholar] [CrossRef] [PubMed]
- Lepage, R.; Albert, C. Fifty years of development in the endocrinology laboratory. Clin. Biochem. 2006, 39, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Unger, N.; Hinrichs, J.; Deutschbein, T.; Schmidt, H.; Walz, M.; Mann, K.; Petersenn, S. Plasma and Urinary Metanephrines Determined by an Enzyme Immunoassay but not Serum Chromogranin A for the Diagnosis of Pheochromocytoma in Patients with Adrenal Mass. Exp. Clin. Endocrinol. Diabetes 2012, 120, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Sarathi, V.; Pandit, R.; Patil, V.; Lia, A.; Bandgar, T.; Shah, N. Performance of Plasma Fractionated Free Metanephrines by Enzyme Immunoassay in the Diagnosis of Pheochromocytoma and Paraganglioma in Children. Endocr. Pract. 2012, 18, 694–699. [Google Scholar] [CrossRef]
- Wijaya, C.; Lee, J.; Husain, S.; Ho, C.; McIntyre, R.; Tam, W.; Ho, R. Differentiating Medicated Patients Suffering from Major Depressive Disorder from Healthy Controls by Spot Urine Measurement of Monoamines and Steroid Hormones. Int. J. Environ. Res. Public Health 2018, 15, 865. [Google Scholar] [CrossRef]
- Palus, M.; Formanová, P.; Salát, J.; Žampachová, E.; Elsterová, J.; Růžek, D. Analysis of serum levels of cytokines, chemokines, growth factors and monoamine neurotransmitters in patients with tick-borne encephalitis: Identification of novel inflammatory markers with implications for pathogenesis. J. Med. Virol. 2015, 87, 885–892. [Google Scholar] [CrossRef]
- Abu-Samak, M.S. Correlation of Elevated Serum Serotonin Levels with Regular Aerobic Exercise is Associated with Alterations in Monocyte Count and Hemoglobin Levels during Winter Season. J. Appl. Sci. 2015, 15, 1026–1031. [Google Scholar] [CrossRef]
- Taieb, J.; Benattar, C.; Birr, A.S.; Lindenbaum, A. Limitations of steroid determination by direct immunoassay. Clin. Chem. 2002, 48, 583–585. [Google Scholar]
- Weismann, D.; Peitzsch, M.; Raida, A.; Prejbisz, A.; Gosk, M.; Riester, A.; Willenberg, H.S.; Klemm, R.; Manz, G.; Deutschbein, T.; et al. Measurements of plasma metanephrines by immunoassay versus liquid chromatography with tandem mass spectrometry for diagnosis of pheochromocytoma. Eur. J. Endocrinol. 2015, 172, 251–260. [Google Scholar] [CrossRef]
- Wood, W.G. Immunoassays & Co.: Past, present, future?—A review and outlook from personal experience and involvement over the past 35 years. Clin. Lab. 2008, 54, 423–438. [Google Scholar] [PubMed]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef]
- del Pozo, M.; Mejías, J.; Hernández, P.; Quintana, C. Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sens. Actuators B Chem. 2014, 193, 62–69. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Lu, K.; Ye, B. A simple but highly sensitive and selective calixarene-based voltammetric sensor for serotonin. Electrochim. Acta 2013, 87, 756–762. [Google Scholar] [CrossRef]
- Shi, P.; Miao, X.; Yao, H.; Lin, S.; Wei, B.; Chen, J.; Lin, X.; Tang, Y. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines. Electrochim. Acta 2013, 92, 341–348. [Google Scholar] [CrossRef]
- Xu, X.; Lin, Q.; Liu, A.; Chen, W.; Weng, X.; Wang, C.; Lin, X. Simultaneous Voltammetric Determination of Ascorbic Acid, Dopamine and Uric Acid Using Polybromothymol Blue Film-Modified Glassy Carbon Electrode. Chem. Pharm. Bull. 2010, 58, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lei, W.; Xu, Y.; Xia, X.; Hao, Q. Simultaneous Detection of Dopamine and Uric Acid Using a Poly(l-lysine)/Graphene Oxide Modified Electrode. Nanomaterials 2016, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakani, M.; Khoshroo, A. High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J. Electroanal. Chem. 2014, 717–718, 17–23. [Google Scholar] [CrossRef]
- Raj, M.; Gupta, P.; Goyal, R.N.; Shim, Y.-B. Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuators B Chem. 2017, 239, 993–1002. [Google Scholar] [CrossRef]
- Goyal, R.N.; Bishnoi, S. Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. Talanta 2011, 84, 78–83. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, Y.; Weng, B.; Zhang, W.; Harris, A.T.; Minett, A.I.; Yue, Z.; Huang, X.-F.; Chen, J. Sensitive and selective dopamine determination in human serum with inkjet printed Nafion/MWCNT chips. Electrochem. Commun. 2013, 37, 32–35. [Google Scholar] [CrossRef]
- Thomas, T.; Mascarenhas, R.J.; Swamy, B.E.K.; Martis, P.; Mekhalif, Z.; Sherigara, B.S. Multi-walled carbon nanotube/poly(glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Colloids Surf. B Biointerfaces 2013, 110, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Yu, C.; Zhou, X.; Ma, P.; Wu, S.; Xu, L.; Shen, J. Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens. Bioelectron. 2014, 58, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Lavanya, N.; Sekar, C. Electrochemical sensor for simultaneous determination of epinephrine and norepinephrine based on cetyltrimethylammonium bromide assisted SnO2 nanoparticles. J. Electroanal. Chem. 2017, 801, 503–510. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens. Bio-Sens. Res. 2017, 13, 17–27. [Google Scholar] [CrossRef]
- Si, B.; Song, E. Molecularly imprinted polymers for the selective detection of multi-analyte neurotransmitters. Microelectron. Eng. 2018, 187–188, 58–65. [Google Scholar] [CrossRef]
- Wang, X.; You, Z.; Sha, H.; Cheng, Y.; Zhu, H.; Sun, W. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta 2014, 128, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Peaston, R.T.; Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 2004, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Franscini, L.C.; Vazquez-Montes, M.; Buclin, T.; Perera, R.; Dunand, M.; Grouzmann, E.; Beck-Popovic, M. Pediatric reference intervals for plasma free and total metanephrines established with a parametric approach: Relevance to the diagnosis of neuroblastoma. Pediatr. Blood Cancer 2015, 62, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Goldstein, D.S.; Walther, M.M.; Friberg, P.; Lenders, J.W.M.; Keiser, H.R.; Pacak, K. Biochemical Diagnosis of Pheochromocytoma: How to Distinguish True- from False-Positive Test Results. J. Clin. Endocrinol. MeTable 2003, 88, 2656–2666. [Google Scholar] [CrossRef] [Green Version]
- Bai, T.R. Adrenergic Agonists and Antagonists. In Allergy and Allergic Diseases; Wiley-Blackwell: Oxford, UK, 2009; pp. 668–682. ISBN 9781405157209. [Google Scholar]
- de Jong, W.H.A.; Post, W.J.; Kerstens, M.N.; de Vries, E.G.; Kema, I.P. Elevated Urinary Free and Deconjugated Catecholamines after Consumption of a Catecholamine-Rich Diet. J. Clin. Endocrinol. MeTable 2010, 95, 2851–2855. [Google Scholar] [CrossRef] [Green Version]
- Devlin, R.J.; Henry, J.A. Clinical review: Major consequences of illicit drug consumption. Crit. Care 2008, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Bannan, L.T.; Potter, J.F.; Beevers, D.G.; Saunders, J.B.; Walters, J.R.F.; Ingram, M.C. Effect of alcohol withdrawal on blood pressure, plasma renin activity, aldosterone, cortisol and dopamine β-hydroxylase. Clin. Sci. 1984, 66, 659–663. [Google Scholar] [CrossRef]
- Haass, M.; Kübler, W. Nicotine and sympathetic neurotransmission. Cardiovasc. Drugs Ther. 1997, 10, 657–665. [Google Scholar] [CrossRef]
- Davidson, D.F. Phaeochromocytoma with normal urinary catecholamines: The potential value of urinary free metadrenalines. Ann. Clin. Biochem. 2002, 39, 557–566. [Google Scholar] [CrossRef]
- Heron, E. The Urinary Metanephrine-to-Creatinine Ratio for the Diagnosis of Pheochromocytoma. Ann. Intern. Med. 1996, 125, 300–303. [Google Scholar] [CrossRef]
- Woltering, E.A.; Tellez, M.R.; Mamikunian, G.; Vinik, A.I.; O’Dorisio, T.M. A Single Fasting Plasma 5-HIAA Value Correlates With 24-Hour Urinary 5-HIAA Values and Other Biomarkers in Midgut Neuroendocrine Tumors (NETs). Pancreas 2012, 42, 405–410. [Google Scholar]
- Adaway, J.E.; Dobson, R.; Walsh, J.; Cuthbertson, D.J.; Monaghan, P.J.; Trainer, P.J.; Valle, J.W.; Keevil, B.G. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann. Clin. Biochem. 2016, 53, 554–560. [Google Scholar] [CrossRef]
- Tohmola, N.; Johansson, A.; Sane, T.; Renkonen, R.; Hamalainen, E.; Itkonen, O. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-HIAA in serum protein fractions. Ann. Clin. Biochem. 2015, 52, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Burgess, M.I.; Banks, M.; Pritchard, D.M.; Vora, J.; Valle, J.W.; Wong, C.; Chadwick, C.; George, K.; Keevil, B.; et al. The Association of a Panel of Biomarkers with the Presence and Severity of Carcinoid Heart Disease: A Cross-Sectional Study. PLoS ONE 2013, 8, e73679. [Google Scholar] [CrossRef]
- Zhong, X.; Ye, L.; Su, T.W.; Xie, J.; Zhou, W.; Jiang, Y.; Jiang, L.; Ning, G.; Wang, W. Establishment and evaluation of a novel biomarker-based nomogram for malignant phaeochromocytomas and paragangliomas. Clin. Endocrinol. 2017, 87, 127–135. [Google Scholar] [CrossRef]
- Rifai, N.; Horvath, A.R.; Andrea, R.; Wittwer, C.; Tietz, N.W. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; ISBN 9780323530446. [Google Scholar]
- Barco, S.; Gennai, I.; Reggiardo, G.; Galleni, B.; Barbagallo, L.; Maffia, A.; Viscardi, E.; De Leonardis, F.; Cecinati, V.; Sorrentino, S.; et al. Urinary homovanillic and vanillylmandelic acid in the diagnosis of neuroblastoma: Report from the Italian Cooperative Group for Neuroblastoma. Clin. Biochem. 2014, 47, 848–852. [Google Scholar] [CrossRef]
- Verly, I.R.N.; van Kuilenburg, A.B.P.; Abeling, N.G.G.M.; Goorden, S.M.I.; Fiocco, M.; Vaz, F.M.; van Noesel, M.M.; Zwaan, C.M.; Kaspers, G.L.; Merks, J.H.M.; et al. Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur. J. Cancer 2017, 72, 235–243. [Google Scholar] [CrossRef]
- Sandoval, J.A.; Malkas, L.H.; Hickey, R.J. Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors. Int. J. Mol. Sci. 2012, 13, 1126–1153. [Google Scholar] [CrossRef] [Green Version]
- Nagatsu, T.; Nakashima, A.; Ichinose, H.; Kobayashi, K. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J. Neural Transm. 2019, 126, 397–409. [Google Scholar] [CrossRef]
- Owens, C.; Irwin, M. Neuroblastoma: The impact of biology and cooperation leading to personalized treatments. Crit. Rev. Clin. Lab. Sci. 2012, 49, 85–115. [Google Scholar] [CrossRef] [PubMed]
- Gaetan, G.; Ouimet, A.; Lapierre, C.; Teira, P.; Sartelet, H. Neuroblastoma presenting like a Wilms’ tumor with thrombus in inferior vena cava and pulmonary metastases: A case series. Springerplus 2014, 3, 351. [Google Scholar] [CrossRef] [PubMed]
- Dickson, P.V.; Sims, T.L.; Streck, C.J.; McCarville, M.B.; Santana, V.M.; McGregor, L.M.; Furman, W.L.; Davidoff, A.M. Avoiding misdiagnosing neuroblastoma as Wilms tumor. J. Pediatr. Surg. 2008, 43, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Makrlíková, A.; Ktena, E.; Economou, A.; Fischer, J.; Navrátil, T.; Barek, J.; Vyskočil, V. Voltammetric Determination of Tumor Biomarkers for Neuroblastoma (Homovanillic Acid, Vanillylmandelic Acid and 5-Hydroxyindole-3-acetic Acid) at Screen-printed Carbon Electrodes. Electroanalysis 2017, 29, 146–153. [Google Scholar] [CrossRef]
- Shen, Y.; Li, H.; Lu, J.; Luo, X.; Guan, Q.; Cheng, L. Analytical validation and clinical application of urinary vanillylmandelic acid and homovanillic acid by LC-MS/MS for diagnosis of neuroblastoma. Biomed. Chromatogr. 2019, 11, e4484. [Google Scholar] [CrossRef] [PubMed]
- Hervet, T.; Grouzmann, E.; Grabherr, S.; Mangin, P.; Palmiere, C. Determination of urinary catecholamines and metanephrines in cardiac deaths. Int. J. Legal Med. 2016, 130, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Pakanen, L.; Kortelainen, M.-L.; Särkioja, T.; Porvari, K. Increased Adrenaline to Noradrenaline Ratio Is a Superior Indicator of Antemortem Hypothermia Compared with Separate Catecholamine Concentrations. J. Forensic Sci. 2011, 56, 1213–1218. [Google Scholar] [CrossRef]
- Bessonova, E.; Kartsova, L.; Gallyamova, V. Ionic liquids based on imidazole for online concentration of catecholamines in capillary electrophoresis. J. Sep. Sci. 2017, 40, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.A. Chapter 11. Adrenal Medulla and Paraganglia. In Greenspan’s Basic & Clinical Endocrinology; McGraw-Hill Medical: New York, NY, USA, 2011. [Google Scholar]
- Espay, A.J.; LeWitt, P.A.; Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: The case for noradrenergic enhancement. Mov. Disord. 2014, 29, 1710–1719. [Google Scholar] [CrossRef]
- Claußen, M.; Suter, B. BicD-dependent localization processes: From Drosophilia development to human cell biology. Ann. Anat. 2005, 187, 539–553. [Google Scholar] [CrossRef]
- Arias-Carrión, Ó.; Pöppel, E. Dopamine, learning and reward-seeking behavior. Acta Neurobiol. Exp. 2007, 67, 481–488. [Google Scholar]
- Wiśniewski, K.; Car, H. (S)-3,5-DHPG: A review. CNS Drug Rev. 2002, 8, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Pickar, D.; De Jong, J.; Karoum, F.; Linnoila, M. Norepinephrine and its metabolites in cerebrospinal fluid, plasma and urine. Relationship to hypothalamic-pituitary-adrenal axis function in depression. Arch. Gen. Psychiatry 1988, 45, 849–857. [Google Scholar] [CrossRef]
- Foti, A.; Adachi, M.; Dequattro, V. The Relationships of Free to Conjugated Normetanephrine in Plasma and Spinal Fluid of Hypertensive Patients*. J. Clin. Endocrinol. MeTable 1982, 55, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Keiser, H.; Friberg, P.; Mezey, E.; Huynh, T.-T.; Hiremagalur, B.; Ellingson, T.; Duddempudi, S.; Eijsbouts, A.; Lenders, J.W.M. Plasma Metanephrines Are Markers of Pheochromocytoma Produced by Catechol- O -Methyltransferase Within Tumors. J. Clin. Endocrinol. MeTable 1998, 83, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Menon, J.M.L.; Nolten, C.; Achterberg, E.J.M.; Joosten, R.N.J.M.A.; Dematteis, M.; Feenstra, M.G.P.; Drinkenburg, W.H.; Leenaars, C.H.C. Brain Microdialysate Monoamines in Relation to Circadian Rhythms, Sleep and Sleep Deprivation—A Systematic Review, Network Meta-analysis and New Primary Data. J. Circadian Rhythms 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.; Li, Q.; Kennedy, R.T. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, S.; Tomiello, S.; Schneebeli, M.; Stephan, K.E. Models of neuromodulation for computational psychiatry. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1420. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.H.; Stein, M.A.; Krasowski, M.D.; Cox, N.J.; Olkon, D.M.; Kieffer, J.E.; Leventhal, B.L. Association of attention-deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet. 1995, 56, 993–998. [Google Scholar] [PubMed]
- Spivak, B.; Vered, Y.; Yoran-Hegesh, R.; Averbuch, E.; Mester, R.; Graf, E.; Weizman, A. Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity diiorder. Acta Psychiatr. Scand. 1999, 99, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Fahn, S. The Biochemical Basis of Neuropharmacology. Neurology 1979, 29, 532. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; McNamara, J.O.; White, L.E. Neuroscience, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2008; ISBN 978-0-87893-697-7. [Google Scholar]
- Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018, 10, 16962–16983. [Google Scholar] [CrossRef]
- Guimarães, J.; Vieira-Coelho, M.A.; Moura, E.; Afonso, J.; Rosas, M.J.; Vaz, R.; Garrett, C. Urinary profile of catecholamines and metabolites in Parkinson patients with deep brain stimulation. Eur. J. Neurol. 2014, 21, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Klimek, V.; Stockmeier, C.; Overholser, J.; Meltzer, H.Y.; Kalka, S.; Dilley, G.; Ordway, G.A. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J. Neurosci. 1997, 17, 8451–8458. [Google Scholar] [CrossRef] [PubMed]
- Corcuff, J.-B.; Chardon, L.; El Hajji Ridah, I.; Brossaud, J. Urinary sampling for 5HIAA and metanephrines determination: Revisiting the recommendations. Endocr. Connect. 2017, 6, R87–R98. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Miura, I.; Kunii, Y.; Asano, S.; Kanno-Nozaki, K.; Mashiko, H.; Yabe, H. Hashimoto encephalopathy with high plasma monoamine metabolite levels: A case report. Neuropsychiatr. Dis. Treat. 2017, 13, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Blau, N.; Leks, E.; Schulte, C.; Deuschl, C.; Zipser, C.; Piel, D.; Freisinger, P.; Gramer, G.; Kölker, S.; et al. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J. Inherit. Metab. Dis. 2019. [Google Scholar] [CrossRef]
- Basnet, B.; Bhushan, A.; Khan, R.; Kumar, G.; Sharma, V.; Sharma, A.; Gupta, S. Plasma & urinary catecholamines & urinary vanillylmandelic acid levels in patients with generalized vitiligo. Indian J. Med. Res. 2018, 147, 384. [Google Scholar]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef]
- Zhao, Y.-Y. Metabolomics in chronic kidney disease. Clin. Chim. Acta 2013, 422, 59–69. [Google Scholar] [CrossRef]
- Zhao, J. Plasma Kynurenic Acid/Tryptophan Ratio: A Sensitive and Reliable Biomarker for the Assessment of Renal Function. Ren. Fail. 2013, 35, 648–653. [Google Scholar] [CrossRef] [Green Version]
Analyte | Chemical Structure | pKa Values | Log P (Experimental) | Water Solubility | |
---|---|---|---|---|---|
Experimental | Predicted | ||||
BAs of an alkaline nature | |||||
DA | 9.27 10.01 | −0.98 E | 535 ng/mL | 7.43 g/L | |
E | 8.91 9.69 | −1.37 | 0.18 mg/mL | 18.6 g/L | |
NE | 8.85 9.5 | −1.24 E −1.4 | 849 mg/mL | 12.5 g/L | |
L-Tryp | 2.54 9.4 | −1.06 | 13.4 mg/mL | 1.36 g/L | |
L-Tyr | 2 9.19 | −2.26 | 0.48 mg/mL | 7.67 g/L | |
Zwitterion BAs | |||||
5-HT | 9.31 10 | 0.21 | 25.5 mg/mL | 2.5 g/L | |
L-DOPA | 1.65 9.06 | −2.39 | 5 mg/mL | 3.3 g/L | |
DHPG | −3 9.21 | −1.01 | --- | 16.7 g/L | |
MHPG | −3 9.91 | −0.13 | --- | 8.99 g/L | |
NM | 9.06 9.99 | −1.05 | --- | 8.44 g/L | |
M | 9.25 10.05 | 0.4 | --- | 13 g/L | |
BAs with the acidic nature | |||||
VMA | −4.1 3.11 | 0.43 0.94 | --- | 5.16 g/L | |
HVA | −2.2 −4.9 | −0.75 0.67 | --- | 1.34 g/L sulphate | |
DOPAC | −6.3 3.61 | 0.98 | 4 mg/mL | 7.23 g/L |
Analytes | Human Sample/Volume | Sample Preparation | LC Conditions | Validation | Internal Standard (IS); Analysis Time /Time with Equilibration | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Solid Phase | Elution Mode; Mobile Phase | Detector | LOD/LOQ | Linearity Range | Absolute Recovery (%) | |||||
NE, 5-HT, 5-HIAA, DA, DOPAC, HVA | CSF | Derivatization with benzylamine and DPE, except of HVA | For HVA: Atlantis C18 column (2.1 × 50 mm, 3 µm) Other analytes: Acquity UPLC BEH Shield C18 column (2.1 × 100 mm, 1.7 µm) | Isocratic elution: For HVA: 75 mmol/L NaAc buffer, pH 5.0 Other analytes: 15 mmol/L acetate buffer (pH 4.5) in ACN with 1 mmol/L octanesulfonic acid sodium salt | HPLC-FD (λex/em) For HVA: 275/345 nm, Others: 345/480 nm | LOD: 50 pmol/L LOQ: n.d. | n.d. | n.d. | n.d. HVA–10 min, other analytes: 8 min | [3] |
L-Tryp and 8 of its metabolites, DA, HVA and others | Urine 100 μL Plasma 150 μL | Urine: Dilution with water Plasma: Deproteinization with ACN | Acquity BEHC18 column (2.1 × 100 mm, 1.7 µm) | Gradient elution: A: 0.01% FA in wate B: 0.01% FA/1 mM AF in water B: 0.01% FA/1 mM AF in MeOH | LC-MS/MS | Urine: LOD: 1–100 ng/mL LOQ: 5–1000 ng/mL Plasma: LOD: 1–100 ng/mL LOQ: 2–1000 ng/mL | Urine: From 10 to 25000 ng/mL Plasma: From 2 to 30000 ng/mL | n.d. | The deuterated ISs; 9.5/12.0 min | [7] |
5-HT, NE, E, 5-HIAA, M, NM | CSF 800 μL plasma 400 μL | SPE-STRATA CW Derivatization by reductive diethylation | Synergi-Fusion-RP C18 column (5.0 × 150 mm, 4 µm) | Gradient elution: A: 0.2% FA in 10 mM AF, pH 3.5 B: 0.1% FA in ACN | LC-MS/MS | In CSF: LOD: n.d LOQ: 0.012 ng/mL In plasma: LOD: n.d. LOQ: 0.018 ng/mL for all analytes except of 5-HT–12 ng/mL | In CSF and plasma: From 0.012 to 140 ng/mL | n.d. | The deuterated ISs; 3.6/4.0 min | [16] |
7 Analytes including HVA | Urine 50 μL | Dilution with solvent A of the mobile phase | ZORBAX Eclipse Plus C18 Rapid Resolution column (4.6 × 100 mm, n.d.) | Gradient elution: A: 50 mM AF and 5 mM octanesulfonic acid in 99% water and 1% MeOH, pH 6.55 B: 50 mM AF and 5 mM octanesulfonic acid in 100% MeOH, pH 6.55 | HPLC-DAD 233 nm | LOD: n.d. LOQ: 45 mg/mL for HVA | 45–1000 mg/L | n.d | External method; 16.5/25 min | [22] |
5-HIAA | Urine 50 μL | Automated procedure: centrifugation and injection into LC | Kinetex XB-C18 column (2.1 × 50 mm, 1.7 μm) | Gradient elution: A: 0.05% FA in water B: 0.05% FA in MeOH | LC-MS/MS | LOD: n.d. LOQ: 0.5 mg/L | 0.5-100 mg/L | n.d. | The deuterated ISs; 2.5/3.0 min | [23] |
L-Tryp and 3 of its metabolites, Cr | Urine 200 μL | Centrifugation and dilution with water | Agilent HC-C18 (2) column (4.6 × 250 mm, 5 µm) | Gradient elution: A: 20 mmol/L NaAc, 30 mmol/L HAc and 3% MeOH B: 20 mmol/L NaAc/HAc, 10% MOH and 10% ACN | HPLC-FD (λex/em) 295/340 nm | LOD: 0.02 µmol/L for L-Tryp, 0.01 µmol/L for 5-HIAA LOQ: 10 µmol/L for L-Tryp, 5 µmol/L for 5-HIAA | 10-100 µmol/L for L-Tryp 5-50 µmol/L for 5-HIAA | 96.1–105.2 | External method; 25/30 min | [24] |
DA, NE, E, 5-HT, L-Tyr, L-Tryp, DOPAC, HVA | Plasma 250 μL | DLLME with dichloromethane/ethanol as extraction/disperser solvent | XBridge Amide™ BEH column (3.0 × 100 mm, 3.5 µm) | Gradient elution: A: 10 mM AF in water, pH 3.0 B: 10 mM AF in ACN | LC-MS/MS | LOD: 3 and 10 ng/mL LOQ: 10 and 30 ng/mL | 10–500 and 30–500 ng/mL | 76.4–99.3 | Norvaline; 12.0/20.0 min | [25] |
5-HIAA | Plasma 50 μL | Deproteinization with ACN | SIELC Primesep B mixed-mode column (3.2 × 50 mm, 5 µm) | Gradient elution: A: 0.1% FA/10 mmol/L AA in water B: 0.1% FA/2 mmol/L AA in MeOH | LC-MS/MS | LOD: 5 nmol/L LOQ: 15 nmol/L | 15–10000 nmol/L | 97–113 | The deuterated IS; 3.0/7.9 min | [26] |
DA, DOPAC, HVA, NE, VMA MHPG, 5-HT, 5-HIAA and others | Plasma 0.3 mL | Deproteinization with ice-cold ACN; Derivatization with dansyl chloride | Phenomenex Gemini C18 column (2 × 150 mm, 3 µm) | Gradient elution: A: 20 mM AA and 0.1% FA in water B: ACN | LC-MS/MS | LOD: n.d. LOQ: 0.27–1.62 pmol/mL | From 0.8 to up 326 pmol/mL | n.d. | L-aspartic acid-15N (L-Asp-15N); 23/27 min | [27] |
E, NE | Plasma 25 μL | Fully automated deproteinization with ACN and reductive ethylation using 96-well plate | ACQUITY UPLCTM BEH phenyl column (2.1 × 100 mm, 1.7 µm) | Gradient elution: A: 0.2% FA/20 mM AA in water B: MeOH | UPLC-MS/MS | LOD: 0.02 ng/mL LOQ: 0.05 ng/mL | 0.05–25.0 ng/mL for E and NE | n.d. | The deuterated ISs; 3.0/3.5 min | [28] |
VMA, HVA, HMPG sulphate | Urine and serum 500 μL | Urine: Dilution with water Serum: Dilution with water and deproteinization with ACN | Waters Xbridge C18 column (2.1 × 150 mm, n.d.) | Isocratic elution: 2 mM AF in ACN: 0.05% FA in water (15:85, v/v) | LC-MS/MS | LOD: 0.2 ng/mL for VMA, 0.7 ng/mL for HVA LOQ: 1 ng/mL for both analytes | 1–1000 ng/mL | 90.6–101.6 | The external method; 5.5 min | [29] |
L-Tryp and 8 of its metabolites | Plasma 190 μL | Deproteinization with MeOH containing zinc sulphate and 0.05% TCA | Kinetex C18 column (2.1 × 100 mm, 5 µm) | Gradient elution: A: 0.1% FA in water B: 0.1% FA in ACN | LC-MS/MS | LOD: 2 nmol/L for 5-HT, 83 nmol/L for L-Tryp LOQ: 4 nmol/L for 5-HT, 139 nmol/L for L-Tryp | 4-600 nmol/L for 5HT, 139–400 μmol/L for L-Tryp | 37–104 | The deuterated ISs; 10.0/15.0 min | [30] |
L-Tryp and 18 of its metabolites, including 5-HT and 5-HIAA | Serum and cell culture supernatants 50 μL Urine 10 μL | Serum and CCS: Dilution with 0.1% FA and deproteinization with MeOH Urine: Dilution with 0.1% FA and centrifugation | An Atlantis T3 RP column (2.1 × 150 mm, 3 μm) | Gradient elution: A: 0.1% FA in water B: 0.1% FA in ACN | LC-MS/MS | LOD: 0.1–50 nM LOQ: 0.5–100 nM | 1–20 μM for the majority of analytes and up to 200 μM for L-Tryp | 60–130 | The deuterated ISs; 12.0/15.0 min | [31] |
L-Tryp and others | Plasma 100 μL | Deproteinization with 0.6 M perchloric acid | Agilent HC-C18 (2) column (4.6 × 250 mm, 5 μm) | Gradient elution: A: 20 mmol/L NaAc, 30 mmol/L HAc and 30 mL/L ACN B: 20 mmol/L NaAc, 30 mmol/L HAc, 100 mL/L ACN | HPLC-UV 280 nm for Tryp | LOD: 1 μmol/ L for L-Tryp LOQ: 3.3 μmol/L for L-Tryp | 10–140 μmol/L for L-Tryp | 92.6 for L-Tryp | External method 15.0/25.0 min | [32] |
VMA | Urine 1 mL/50 μL for further analysis | Centrifugation | Luna PFP column (2.0 × 100 mm, 3 µm) | Gradient elution: A: water B: MeOH | LC-MS/MS | LOD: 0.025 µmol/L LOQ: 0.125 µmol/L | 1.0–250.0 µmol/L | 85–101 | d3-VMA; 2.0/4.0 min | [34] |
DA, E, NE, M and MN, L-Tyr | Serum 25 µL | Evaporation and derivatization with PITC | Zorbax Eclipse XDB C18 column (3.0 × 100 mm, 3.5 µm) | Gradient elution: A: 0.2% FA in water B: 0.2% FA in ACN | LC-MS/MS | LOD: 0.00444–0.118 nM LOQ: 0.0148–0.393 nM | From 0.025 to up 100 nM | 93.2–113 | The deuterated ISs;7.0/9.5 min | [35] |
L-DOPA, DA, NE, E, M, L-Tryp, 5-HTryp, 5-HT | Urine 10 μL | Configuration, filtration and derivatization with PFOEI | Fluofix-II 120E column (4.6 × 250 mm, 5 µm) XBridge TM C18 column (4.6 × 150 mm, 5 µm) | Gradient elution: MeOH:water:TFA (60:40:0.05, v/v/v) and MeOH:water:TFA (2.5:97.5:0.05, v/v/v) | LC-FL λex/em = 280/ 320 nm | LOD: 0.21–4.2 nmol/mL LOQ: 1–10 nmol/mL dependent to the analyte | 10–1000 nmol/mL for DOPA; 5–250 nmol/mL for DA, NE, M; 1–100 nmol/mL for E, Trp, 5-HTrp, 5-HT | 96.9–103.3 | External method; 16.0/20.0 min | [37] |
5-HT, 5-HIAA and 3 others | Plasma 70 μL | Deproteinization with THF and derivatization with HFBA | Fluorousphase Fluofix-II 120E column (4.6 × 150 mm, 5 µm) | Isocratic elution: MeOH:water:ACN:TFA (80:13:7:0.1, v/v/v) | LC-FD λex/em = 340/ 452 nm | LOD: n.d. LOQ: 4.3 pmol/mL for 5-HT 1.5 pmol/mL for 5-HIAA | 4.3–300 pmol/mL for 5-HT; 1.5–300 pmol/mL for 5-HIAA | 72.2–84.2 | External method; 30.0 min | [38] |
L-Tryp, KYN | Serum 10 μL | Deproteinization with ACN and derivatization with DBD-PyNCS | TSKgel ODS-100 V column (2.0 × 250 mm, 5 μm) | Gradient elution: A: H2O/ACN (80:20) with 0.1% HAc B: ACN/H2O (80:20) with 0.1% HAc | LC-MS | LOD: 150 nM LOQ: 0.5 μM | 10-200 μM for L-Tryp; 0.5–5.0 μM for KYN | n.d. | 7-Amino-heptanoic acid; 40 min | [39] |
NE, E, DA, NM, M, 3-MT | Urine 50 μL | Dilution with 1.0% FA in water and derivatization with acetaldehyde | Atlantis T3 column (2.1 × 150 mm, 3 µm) | Gradient elution: A: 2% FA in water B: ACN | LC-MS/MS | LOD: n.d LOQ n.d. | n.d. | 67–78 | The deuterated ISs; 4.3/6.2 min | [41] |
5-HT, DA, NE and others | Carcinoma stem cell | On-line MD system | Merck ZIC-HILIC column (2.1 × 100 mm, 3 µm) | Isocratic elution: MeOH: 20 mM AF in water, pH 3.0 (55:45, v/v) | LC-MS/MS | LOD: 2 pg for 5-HT, 10 pg for other analytes LOQ: 5 pg for 5-HT, 20 pg for other analytes | 5–500 ng/mL for 5-HT 20–2000 ng/mL for others | n.d | The deuterated ISs; n.d. | [42] |
VMA, HVA | Serum 0.5 mL | LLE with ethyl acetate | Waters Acquity UPLC HSS T3 column, (2.1 × 150 mm, 1.8 μm) | Gradient elution: A: 0.1% FA in water B: 0.1% FA in ACN | UPLC-MS/MS | LOD: n.d. LOQ: 0.02 ng/ml for VMA, 0.18 ng/mL for HVA | 2–1000 ng/mL | 110.5 for VMA, 108.0 for HVA | d3-VMA and 3C6,18O-HVA; 3.3/8.0 min | [43] |
E, NE, DA, M, NM | Urine 1 mL | LLE with ethyl acetate | BDS Hypersil C18 column (3.0 × 125 mm, 3 μm) | Isocratic elution: Water:MeOH (98:2) with 0.25 % FA | LC-MS/MS | LOD: 0.3–3.6 µg/L LOQ: 1.0–11.1 µg/L | From 3 to 2130 µg/L | 92.1–108.8 | The deuterated ISs; 10 min | [44] |
E, DA, 3-MT, NE, 5-HT, L-Tryp, L-Tyr and others | Urine 50 μL | LLE with TCA | Acclaim Mixed Mode WCX column (2.1 × 150 mm, 3 μm) | Gradient elution: A: 0.1 % HAc in MeOH/H2O (20/80, v/v) B: 2.0% HAc in MeOH/H2O 20/80 (v/v) | LC-MS/MS | LOD: 0.3–6.6 μg/L LOQ: 1.0–21.9 μg/L | From 1 to 2000 μg/L | 72.9–100.0 | External method; 10.0/20.0 min | [46] |
L-Tyr, L-Tryp, 5-HT, DA, E, NE, 3-MT, 5-HIAA, VMA, HVA, L-DOPA, DOPAC | Urine 980 μL | DLLME with dichloromethane/ethanol as extraction/disperser solvent | XBridge Amide TMBEH column (3.0 × 100 mm, 3.5 µm) | Gradient elution: A: 10 mM AF in water, pH 3.0 B: 10 mM AF in ACN | LC-MS/MS | LOD: 5 and 10 ng/mL LOQ: 10 and 20 ng/mL | 10–2000 and 20–2000 ng/mL | 99.0 | Norvaline; 12.0/20.0 min | [48] |
5-HT, 5-HIAA and others | Serum 500 µL | DLLME and derivatization with benzylamine/potassium hexacyanoferrate(III) | A reversed-phase XBridge™ Shield RP18 column (4.6 × 150 mm, 5 µm) | Gradient elution: A: 250 mM acetate buffer (pH 4.3):water:ACN (50:40:10, v/v) B: 250 mM acetate buffer (pH 4.3):ACN (50:50, v/v) | HPLC-FD (λex/em) 345/452 nm | LOD: 0.08–0.33 nM LOQ: 05 nM | 0.5–100 nM | 66–98 | The deuterated ISs; 2.5/5.5 min | [49] |
Free E, NE, DA, M, NM | Urine 0.1 mL | SPE with Strata-X-CW | Unison UK-C18 column (2.0 × 100 mm, 3 µm) | Gradient elution: A: water with FA (99.9:0.1, v/v) B: ACN with FA (99.9:0.1, v/v) | LC-MS/MS | LOD: n.d. LOQ: 3.5–7.4 µg/L | From 3.5 to 2569 pmol/mL | 61–107 | The deuterated ISs; 2.6/n.d. | [50] |
DA, E, 5-HT, L-Tryp and 2 others | Whole blood 100 μL | Deproteinization with 0.1% FA in cold ACN, automated filtration and on-line SPE-HILIC | HILIC column n.d. | Isocratic elution: ACN:100 mM AF at pH 70:30, v/v) | LC-MS | LOD: 1 nM for DA and 5-HT, 0.2 nM for E, 30 nM for L-Tryp; LOQ: 0.05 nM for DA and E; 5 nM for 5-HT; 250 nM for L-Tryp | 0.05-50 nM for DA and E; 5–5000 nM for 5-HT; 250–250000 nM for L-Tryp | 33–91 | External method; 10/12 min | [51] |
E, NE | Plasma 0.5 mL | Alumina B 96-well SPE; Derivatization with d4-acetaldehyde | Onyx Monolith C18 column (3.0 × 100 mm, n.d.) | Gradient elution: A: 10 mM AF in water B: MeOH | LC-MS/MS | LOD: 0.5 pg/mL for E and NE; LOQ: 5 pg/mL for E, 20.0 pg/mL for NE | 5.0-500 pg/mL for E; 20.0–2000 pg/mL for NE | >66 | The deuterated ISs; 5.4 /6.2 min | [52] |
Free NM, MN and 3-MT | Plasma 100 μL | SPE on Oasis WCX μElution 96-well plates | Atlantis HILIC Silica column (2.1 × 30 mm, 3 μm) | Gradient elution: A: 100 mmol/L AF, pH 3 B: ACN | LC-MS/MS | LOD: 0.01–.03 nmol/L LOQ: 0.04–0.06 nmol/L | 0.1–23.0 nmol/L | 88–98 | The deuterated ISs; 2.0/3.5 min | [53] |
DA | Neonate plasma 200 μL | SPE-SCX and derivatization with propionic anhydride/pyridine | Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) | Gradient elution: A: 0.2% FA in water B: MeOH/ACN (30:70, v/v) | LC-MS/MS | LOD: n.d. LOQ: 10 pg/mL | 10–1000 pg/mL | n.d. | Dopamine-d4; 8.0/8.5 min | [54] |
M, NM | Plasma 200 μL | SPE on Oasis WCX μElution 96-well plate | Waters Atlantis HILIC silica column (2.1 × 50 mm, 3.0 µm) | Gradient elution: A: 100 mmol/L AF, pH 3.0 B: ACN | UPLC-MS/MS | LOD: 0.05 nmol/L LOQ: 0.1 nmol/L | 1.0–100 nmol/L | n.d. | The deuterated ISs; 15.0/20.0 min | [55] |
M, NM | Plasma 0.5 mL | SPE-HyperSep and derivatization with PFHA | Hypercarb PGC column (2.1 × 50 mm, 5 µm) | Gradient elution: Three mobile phase (MP) were used. MP1: 50 mM AA and 1% FA in water; MP2: 0.1% FA in ACN; MP3: 9:9:2 (v/v/v) mix of ACN/isopropanol/ acetone (v/v/v) | LC-MS/MS | LOD: n.d. LOQ: 7.2 pg/mL for M, 18.0 pg/mL for NM | 7.2–486.8 pg/mL for M 18.0–989.1 pg/mL for NM | 90.5–97.5 | The deuterated ISs; 5.5/10.0 min | [57] |
VMA, NM, M, 3-MT | Serum 200 μL | SPE on MAX μElution 96 plate | Atlantis HILIC column (2.10 × 50 mm, 2.6 μm) | Gradient elution: A: 100 mmol/L AF, pH 2.2 B: ACN | LC-MS/MS | LOD: 0.7 nmol/L LOQ: 1.25 nmol/L | 1.25–10000 nmol/L | 97–99 | The deuterated ISs; 3.2/10.0 min | [58] |
NE, E and DA | PBMC 250 μL | SPE on Oasis HLB 96-well µElution plate | Luna PFP (2) column (2.1 × 150 mm, 3 µm) | Gradient elution: A: 0.01% FA in water B: 0.01% FA in MeOH | UPLC-MS/MS | LOD: 0.5 pg/mL for E, 2.0 pg/mL for NE and DA; LOQ: 1.0 pg/mL for E, 5.0 pg/mL for NE and DA | 1.0–2500 pg/mL for E 5.0–2500 pg/mL for NE and DA | 81.0–100.5 | The deuterated ISs; 4.5/7.0 min | [59] |
E, NE | Urine 350 μL | Alumina B 96-well SPE | Phenomenex Kinetex Piphenyl column (2.1 × 100 mm, 2.6 µm) | Gradient elution: A: 0.1% FA in water B: 0.1% FA in MeOH | LC-MS/MS | LOD: n.d. LOQ: 0.005 μmol/L | 0.1–2 μmol/L | n.d. | The deuterated ISs; 4.5/6.0 min | [60] |
5-HIAA | Serum 100 μL | SPE on WAX μElution plates | Atlantis HILIC Silica column (2.10 × 50 mm, 3 μm) | Gradient elution: A: 90 mmol/L AF, pH 3 B: ACN | LC-MS/MS | LOD: 0.2 nmol/L LOQ: 5 nmol/L | 5–10,000 nmol/L | 98 | 5-HIAA-D2; 3.2 /7.0 min | [61] |
5-HT, 5-HIAA, DA | Urine 200 μL | SPE-Isolute C18 | RP Hypersil Gold aQ column, (2.1 × 150 mm, 3 μm) | Gradient elution: A: 0.1% FA in water B: 0.1% FA in MeOH | LC-MS/MS | LOD: 8.8–18.2 nmol/L LOQ: 29.4–55.7 nmol/L | 0.11–3.27 μmol/L | 91–107 | The deuterated ISs; 5.0/20.0 min | [62] |
NE, E, DA, M, NM, | Urine 10 μL | SPE on Oasis HLB 96-well μElution plate | Luna PFP (2) column (2.1 × 150 mm, 3 µm) | Gradient elution: A: 0.01% FA water B: 0.01% FA in MeOH | LC-MS/MS | LOD: 1.0 ng/mL for NE, DA and NM; 0.25 ng/mL for E, M LOQ: 2.5 ng/mL for NE, DA and NM; 0.50 ng/mL for E, M | From 0.5 to 1250 ng/mL dependent to the analyte | 74.1–96.3 | The deuterated ISs; 4.0/5.5 min | [63] |
NM, M, 3-MT | Plasma 900 µL | SPE on OASIS®WCX-96 μElution plates | Acquity UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm) | Gradient elution: A: 0.2% FA in water B: 0.2% FA in ACN | UPLC-MS/MS | LOD: 0.02 nmol/L LOQ: 0.022-0.024 nmol/L | 2.5-50.0 nmol/L | 66–93 | The deuterated ISs; 2.5/5.5 min | [64] |
NE, E, DA | Urine 0.6 mL | SPE on Oasis HLB 96-well extraction plate | Restek ultra PFPP column (2.1 × 150 mm, 3 μm) | Gradient elution: A: 2% FA in water B: MeOH | LC-MS/MS | LOD: 0.1–1 ng/mL LOQ: 0.25–2.5 ng/mL | 2.5-500 ng/mL for NE; 0.25–250 ng/mL for E; 2.5–1000 ng/mL for DA | n.d. | The deuterated ISs; 5.5/7.0 min | [65] |
NM, M, 3-MT, NE, E, DA | Urine 100 μL for free forms 500 μL for deconjugated M, NM and 3-MT | Free BAs and their metabolites: SPE on OASIS WCX-96 μElution plates Deconjugated BAs: Hydrolyse with HCl and SPE | Acquity UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm) from Waters (Eschborn, Germany) | Gradient elution: A: 0.2% FA in water B: 0.2% FA in ACN | UPLC-MS/MS | LOD: n.d. LOQ: 1.3–2.3 nmol/L | 506–3264 nmol/L | 60–96 | The deuterated ISs; 2/n.d min | [68] |
DA, E, NE, 5-HT, VMA, HVA, 3- MT, L-Tyr, L-DOPA, L-Tryp, 5-HTryp, DHBA, DOPAC, 5-HIAA | Urine 50 μL plasma 100 μL | MEPS with APS sorbent | XBridge Amide™ BEH column (3.0 × 100 mm, 3.5 µm) from Waters (Millford, Massachusetts, USA) | Gradient elution: A: 10 mM AF in water, pH 3.0 B: 10 mM AF in ACN, pH 3.0 | LC-MS/MS | LOD: 2 and 10 ng/mL LOQ: 5 and 20 ng/mL dependent to the analyte | 10–2000 and 20–2000 ng/mL dependent to the analyte | 87.6–104.3 for plasma 84.2–98.6 for urine | DHBA; 12.0/20.0 min | [69] |
5-HT, DA, NE | Urine 500 μL | MEPS C18 | Zorbax 300SB C18 RP column (4.6 × 250 mm, 5 µm) | Isocratic elution: 75 mM NaH2PO4, 1.7 mM OSA, 0.01% TEA (v/v), 25 mM EDTA and 10% ACN (v/v), pH 3.5 | HPLC-ED 300/150 mV in oxidation/reduction channel | LOD: 2 ng/mL for DA and NE, 20 ng/mL for 5-HT LOQ: 5 ng/mL for DA and NE, 50 ng/mL for 5-HT | 5-1000 ng/mL for DA and NE, 50–1000 ng/mL for 5-HT | 91.97–10.06 | DHBA; 26 min | [70] |
NE, E, DA | Plasma 150 μL Urine 10 μL, DPSs, DUSs (one) | MEPS C18 | Hypersil Gold RP C18 column (4.6 × 150 mm, 5 µm) | Isocratic elution: MeOH: 30.0 mM CA with 0.5 mM OSA, (2.5:97.5, v/v), adjusted to pH 2.92 with 2 N NaOH | HPLC-CD E1/E2: −0.350/+0.400 V | LOD: 0.03 ng/mL LOQ: 0.1 ng/mL | 0.1–5.0 ng/mL | 86.0–95.2 | Catechol; 25.0 min | [71] |
5-HT | Serum 100 μL | 96-well Oasis WCX μElution plates | Atlantis HILIC Silica column (2.1 × 50 mm, 3 µm) | Gradient elution: A: 90 mmol/L AF, pH 4 B: ACN | LC-MS/MS | LOD: 2.5 nmol/L LOQ: 10 nmol/L | 10–10000 nmol/L | 95–115 | The deuterated ISs; 1.6/6.4 min | [72] |
E, NE and others | Serum 0.5 mL | Deproteinization with perchloric acid; re-extraction with NaOH; derivatization with dansyl chloride | Zorbax Eclipse Plus C18 column (4.6 × 150 mm, 5 μm) | Gradient elution: A: 5 mM AF in water B: ACN | HPLC-DAD 254 nm | LOD: 90 ng/L for E, 596 ng/L for NE LOQ: 300 ng/L for E, 980 ng/L for NE | 80–5 × 10 4 ng/L | 85.7–106.7 | External method; 20 min | [75] |
23 Amino acids, including L-Tryp and L-Tyr | Exhaled breath conden-sate 2 mL | Evaporation | XBridge Amide column (3.0 × 100 mm, 3.5 µm) | Gradient elution: A: 10 mM of ammonium buffer in water, pH 3 B: 10 mM ammonium buffer in ACN | LC-MS/MS | LOD: 0.25ng/mL for L-Tryp, 0.05 ng/mL for L-Tyr LOQ: 0.75 ng/mL for L-Tryp, 0.15 ng/mL for L-Tyr | 0.75-400 ng/mL for L-Tryp, 0.15–400 ng/mL for L-Tyr | 52.2–108.2 | Leucine-D3; 12.0/18.0 min | [76] |
VMA, HVA | Urine n.d. | Dilution and deproteinization with FA | Kinetex XB-C18 column (2.1 × 50 mm, 1.7 μm) | Gradient elution: A: 0.05% (v/v) FA in water B: 0.05% (v/v) FA in MeOH | LC-MS/MS | LOD: n.d. LOQ: 0.5 mg/L | 0.5–100 mg/L | n.d. | d3-VMA and ring-13C6, 4-hydroxy-18O] (HVA-13C6 18O); 2.3/4.0 min | [77] |
Analytes | Human Sample Volume | Sample Preparation | GC Conditions | Validation Data | Internal Standard (IS); Analysis Time | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Solid Phase | Detector | LOD/LOQ | Linearity Range | Absolute Recovery (%) | |||||
L-Tryp, 5-HT and others | Plasma 100 μL | Deproteinization with TCA, centrifugation and SPE-Empore TM C18 cartridge, Derivatization with PFPOH:PFPA (2:1, v/v) | HP-1MS® capillary column (30.0 m × 0.25 mm, 0.25 μm film thick-ness) | GC/MS | LOD: n.d LOQ: 5 pmol/L for L-Tryp 2.5 pmol/L for 5-HT | 5–60 pmol/L for L-Tryp 2.5–40 pmol/L for 5-HT | 83.6–87.2 | The deuterated ISs; 10 min | [33] |
HVA, VMA | Urine 1 mL | LLE with ethyl acetate and derivatization with BSTFA | HP-5MS fused-silica capillary column (30 m × 0.25 mm, 0.25 μm film thickness) | GC-MS | LOD: n.d. LOQ: 0.9 μmol/L | 0.9–193 and 0.9–221 μmol/L for HVA and VMA | 92–96 | 3-Phenyl butyric acid; 16 min | [45] |
56 amino acids and their conjugates, 84 organic acids, 9 BAs amines, 4 other analytes | Urine 25 µL | LLME with the THP and re-extraction to acidic isooctane; Derivatization with HFBCF | ZB-XLB silica capillary column (30 m x 0.25 mm, 0.25 µm film thickness) | GC-MS | for BAs LOD: 0.013–0.05 µmol/L LOQ: 2–4 µmol/L for BAs | For BAs 2–400 µmol/L dependent to the analyte | 99–116 | External method; 38.0 min | [47] |
DA, HVA, L-DOPA, NM, E, NE, DOPAC, VMA, 5-HT, 5-HIAA | Urine 2 mL | Hydrolysis with HCl, SPE-MCX and derivatization with HMDS/MBHFBA | DB-5MS capillary column (15 m × 0.25 mm, 0.25 μm film thickness) | GC/MS | LOD: 0.12– 6.24 ng/mL LOQ: 0.17–17.84 ng/mL | From 1 to 2500 ng/mL dependent to the analyte | n.d. | The deuterated ISs; 13.5 min | [66] |
20 Analytes | Urine 2 mL | Hydrolysis with HCl, next, SPE-MCX and derivatization with HMDS/MBHFBA | DB-5MS capillary column (20 m × 0.25 mm, 0.25 μm film thick-ness) | GC-MS/MS | LOD:0.47–1.72 ng/mL LOQ: 1.0–25.0 ng/mL | From 1 to 1000 ng/mL dependent to the analyte | n.d. | The deuterated ISs; 15 min | [67] |
HVA, VMA, 5-HIAA | Urine 50 μL | Derivatization with ethyl chloroformate/ethanol and SPME with PA fibre in immersion mode | Thermo TR-5MS (30 m × 0.25 mm, 0.25 µm film thickness) | GC–QqQ-MS | LOD: 1.3, 0.046 and 24.3 ug/L for HVA, VMA and 5-HIAA LOQ: 2.7, 0.063 and 49.6 μg/L for HVA, VMA and 5-HIAA | 0.5–100 μg/L | n.d. | The deuterated ISs; 25 min | [73] |
DA, 5-HT and NE | Urine 600 µL | Derivatization with propyl chloroformate, Next, SPME with PA fibre in immersion mode | Thermo TR-5MS (30 m × 0.25 mm, 0.25 μm film thickness) | GC-QqQ-MS | LOD: 0.38–13.5 µg/L LOQ: 0.81, 0.74 and 21.3 µg/L for DA, 5-HT and NE | 10–1000 µg/L for DA and 5-HT 30–1000 µg/L for NE | n.d. | The deuterated ISs; 20 min | [74] |
Separation Technique | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Analytes | Matrix Sample/Volume | Sample Preparation | CE Parameters | Validation Data | Analysis Time (min)/IS | Ref. | ||||
Technique (and Preconcentration) Mode | BGE | Detection Mode | LOD/LOQ | Linearity Range | Absolute Recovery (%) | |||||
DA, 3-MT, 5-HT | Artificial urine/n.d. | Molecularly imprinted polymer (MIP)-SPE | Field-amplified sample injection (FASI)-CE | 80 mM H3PO4–LiOH (pH 4) Sample buffer: 100 μM phosphate in methanol–water 90/10 (v/v) | UV 214 nm | LOQ: 46 nM for DA,11 nM for 3-MT, 6 nM for 5-HT LOQ: 50 nM | 50–300 nM | 40–100 | 10/3,4-DHBA | [89] |
E, NE, DA, NM | Urine/ 4 mL | SPE alumina | HC FASS–CZE, sweeping, electro-stacking | 50 mM acetate buffer pH 4.0, 0.5 mM ionic liquid C16MimCl | UV 220 nm | LOD: 0.3–1.3 ng/mL LOQ: - | - | 85–90 | 10/n.d. | [90] |
HA, L-Try, TA, 5-HT, DA, NE, E | Urine/n.d. | Centrifugation | CZE | 150.0 mM phosphate (Na2HPO4–NaH2PO4) and 1.0 mM borax, pH 6.1 | DAD 200 nm | LOD: 0.2–1.2 μM LOQ: 0.7–4 μM | 0.7–50 μM | - | 15/n.d. | [91] |
DA, E | Urine/0.5 mL | Centrifugation, dilution and filtration | Laboratory- built CE–CL | 25 mM borate solution (pH 9.8) containing 0.6 mM CdTe quantum dot (QD)s and 0.3 mM luminol | CL | LOD: 23 nM for DA, 9.3 μM for E LOQ: 0.08 µM for DA, 0.04 μM for E | 0.08–5 μM for DA 0.04–5 μM for E | 97–104 | 10/n.d. | [92] |
DA, TA, T, 5-HT, E | Urine/ 1 mL | Filtered and LLE | FASI-CE | 20 mM of 2-(morpholino)-ethanesulfonic acid and 30 mM phosphate buffer, 0.05% hydroxypropylcellulose and 10% v/v methanol, pH 6.5 | UV 210 nm | LOD: 0.01–0.15 μM LOQ: n.d. | 0–10 μM | 89–108 | 25/PPA | [93] |
E | Urine 0.2 mL | Deproteinization and filtration | CE-CL | 2.5 mM phosphate buffer (pH 6.0) and 100 μM luminol | CL | LOD: 0.82 ng/mL LOQ: 2.0 ng/mL | 2.0–400 ng/mL | 86.5–112 | 7/n.d. | [94] |
VMA, HVA, DOPAC | Urine/ 1 mL | LLE diethyl ether 1 mL | MEKC UV/VIS | 10 mM sodium tetraborate decahydrate. 30 mM SDS. 15% (v/v) MeOH.25 mM α-CD. adjusted to pH 9.36 with 1 N NaOH | DAD 200 nm | LOD: 0.1–0.25 μg/mL LOQ: 0.5 μg/mL | 0.5–50 μg/mL for VMA and DOPAC, 0.5–100 μg/mL for HVA | >96.1 | 16/3,4-DHBA | [95] |
DA, E, NE, L-Tryp, L-Tyr, 5-HT, L-DOPA | Urine/ 1 mL | DLLME | MEKC | 10 mM sodium tetraborate decahydrate, 30 mM SDS, 15% (v/v) MeOH,25 mM α-CD, adjusted to pH 9.36 with 1 N NaOH | DAD 200 nm | LOD: 0.15μg/mL LOQ: 0.5 μg/mL for all analytes | 0.5–300 μg/mL | 92.5–108.3 | 10–15/4-MT | [96] |
DA, A, NA, L-Tryp, L-Tyr | Artificial urine/ 1 mL | SPME C18 with ionic liquid | MEKC | 10 mM sodium tetraborate decahydrate. 30 mM SDS. 15% (v/v) MeOH.25 mM α-CD. adjusted to pH 9.36 with 1 N NaOH | DAD 200 nm | - - | - | - | 8–10/n.d. | [97] |
L-Tyr, 5-HT, 3-MT, L-Tryp, 5-HIAA, VMA, NM, DA, L-DOPA | Urine/ 0.5 mL | Deproteinization and centrifugation | FASS CE -stacking | 500 mM Tris–borate (TB) and 10% (v/v) glycerol pH 9; The ends of the capillary were immersed in the cathodic and anodic vials that both contain 500 mM TB (pH 9.0) and 0–1% PEO | UV 220 nm | LOD: 17.3-313.4 nM LOQ: 1 µM for L-Tyr, 5-HT, 3-MT 10 µM for L-Tryp 5-HIAA, VMA | 1–10 μM for L-Tyr, 5-HT, 3_MT; 10–75 μM for L-Tryp, 5-HIAA, VMA | 93–109 | 35/n.d. | [98] |
5-HT, DA, NE | Urine/n.d. | SPE alumina B column | FASS-RFS-MCE | 10 mM borate solution (pH 9.4) | LIF | LOD: 1.69– 2.73 nM LOQ: 2.0–4.05 nM | 2–99 nM for 5-HT; 4–120 nM for DA; 4–110 nM for NE | 101.8– 106.4 | 3/n.d. | [99] |
E, NE, DA | Urine/ 5 mL | Centrifugation | laboratory-built CE–CL | 1.0 mM luminol in 10 mM sodium borate (pH 9.3) | CL | LOD: 79 nM for E, 100 nM for NE, 69 nM for DA LOQ: - | 0.079–3 μM for E; 0.1–5 μM for NE; 0.1–5 μM for DA | 96–110 94.7–103.5 92.4–99.4 | 8/n.d. | [100] |
L-Tyr, L-Tryp, NE, DA, 5-HT | breast cancer cells /n.d. | Centrifugation and filtration | CE-LEDIF | 0.5 M Tris –borate (pH 10.2) and 30 mM SDS | LIF | LOD: 2.06–19.17 nM LOQ: 15 nM | 15–1000 nM | - | 16/n.d. | [101] |
L-Tryp, 5-HT, L-Tyr, DA, E, NE | Urine/n.d. | SPE-alumina B column | CE-dynamic pH junction | 150 mM boric acid. 1 mM ascorbic acid. pH 10.33; sample matrix: 150 mM acetic acid–sodium acetate. pH 3.60. | AmpD | LOD: 6.15–68.3 nM LOQ: 0.04–0.23 μM | 0.15–148 μM | 83.6–138.3 | 20/n.d. | [102] |
DA, E, 5-HT | CSF/ n.d. | Deproteinization and centrifugation | PDMS -MCE | 20 mM PBS | AmpD | LOD: 2–6 μM LOQ: 10 μM | 10–600 μM for DA; 10–500 μM for E; 10–600 μM for 5-HT | 91.7–106.5 | 1.5/n.d. | [103] |
DA | Urine/ 3 mL | SPE Oasis HLB | CE | 0.2 mM PBS (pH 11.5) containing 0.1 mM luminol | CL | LOD: 6 ng/mL LOQ: 10 ng/mL | 0.01–50 µg/mL | 71.2–83.0 | 12/n.d. | [104] |
VMA, HVA, L-Tryp, NM, E, 5-HT | Urine/ n.d. | Filtration and dilution in BGE | CZE stacking | 50 mM H3PO4-Tris. pH 4 | ED | LOD: 0.4–17 μM LOQ: 1.25–5 μM | 1.25–50 μM for VMA, HVA and L-Tryp; 5–200 μM for NM and E; 2.5–100 μM for 5-HT | - | 13/n.d. | [105] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plenis, A.; Olędzka, I.; Kowalski, P.; Miękus, N.; Bączek, T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J. Clin. Med. 2019, 8, 640. https://doi.org/10.3390/jcm8050640
Plenis A, Olędzka I, Kowalski P, Miękus N, Bączek T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. Journal of Clinical Medicine. 2019; 8(5):640. https://doi.org/10.3390/jcm8050640
Chicago/Turabian StylePlenis, Alina, Ilona Olędzka, Piotr Kowalski, Natalia Miękus, and Tomasz Bączek. 2019. "Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review" Journal of Clinical Medicine 8, no. 5: 640. https://doi.org/10.3390/jcm8050640
APA StylePlenis, A., Olędzka, I., Kowalski, P., Miękus, N., & Bączek, T. (2019). Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. Journal of Clinical Medicine, 8(5), 640. https://doi.org/10.3390/jcm8050640