The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis
Abstract
:1. Introduction
2. Genetics and Therapy Development in Rheumatoid Arthritis
3. Pharmacogenomic Studies in Rheumatoid Arthritis
3.1. Genomic Predictors of Methotrexate
3.2. Genomic Predictors of Tumor Necrosis Factor (TNF) Inhibitors
3.3. Other Genomic Predictors
4. Genetic Studies and Rare Variants
5. Shared Genetics in Autoimmunity and Drug Repurposing
6. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Subramanian, G.; Adams, M.D.; Venter, J.C.; Broder, S. Implications of the human genome for understanding human biology and medicine. JAMA 2001, 286, 2296–2307. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [PubMed] [Green Version]
- 1000 Genomes Project Consortium; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [PubMed]
- Timpson, N.J.; Greenwood, C.M.T.; Soranzo, N.; Lawson, D.J.; Richards, J.B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 2018, 19, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Lauschke, V.M.; Milani, L.; Ingelman-Sundberg, M. Pharmacogenomic biomarkers for improved drug therapy-recent progress and future developments. AAPS J. 2017, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338–2348. [Google Scholar] [CrossRef]
- Nelson, M.R.; Tipney, H.; Painter, J.L.; Shen, J.; Nicoletti, P.; Shen, Y.; Floratos, A.; Sham, P.C.; Li, M.J.; Wang, J.; et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 2015, 47, 856–860. [Google Scholar] [CrossRef]
- Kathiresan, S. Lp(a) lipoprotein redux--from curious molecule to causal risk factor. N. Engl. J. Med. 2009, 361, 2573–2574. [Google Scholar] [CrossRef]
- Youngblom, E.; Pariani, M.; Knowles, J.W. Familial Hypercholesterolemia. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Lopez, D. Inhibition of PCSK9 as a novel strategy for the treatment of hypercholesterolemia. Drug News Perspect. 2008, 21, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.; Witztum, J.L. Inhibition of PCSK9: A powerful weapon for achieving ideal LDL cholesterol levels. Proc. Natl. Acad. Sci. USA 2009, 106, 9546–9547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014, 506, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Sekine, C.; Sugihara, T.; Miyake, S.; Hirai, H.; Yoshida, M.; Miyasaka, N.; Kohsaka, H. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. J. Immunol. 2008, 180, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Kurko, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of rheumatoid arthritis—A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N. Pharmacogenetics in the rheumatic diseases, from prêt-à-porter to haute couture. Nat. Clin. Pract. Rheumatol. 2006, 2, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Finckh, A.; Liang, M.H.; van Herckenrode, C.M.; de Pablo, P. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: A meta-analysis. Arthritis Rheum. 2006, 55, 864–872. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewe, R.; Breedveld, F.C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014, 73, 492–509. [Google Scholar] [CrossRef]
- Li, X.; Hu, M.; Li, W.; Gu, L.; Chen, M.; Ding, H.; Vanarsa, K.; Du, Y. The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: A meta-analysis. Int. Immunopharmacol. 2016, 38, 8–15. [Google Scholar] [CrossRef]
- Van Ede, A.E.; Laan, R.F.; Blom, H.J.; Huizinga, T.W.; Haagsma, C.J.; Giesendorf, B.A.; de Boo, T.M.; van de Putte, L. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 2001, 44, 2525–2530. [Google Scholar] [CrossRef]
- Berkun, Y.; Levartovsky, D.; Rubinow, A.; Orbach, H.; Aamar, S.; Grenader, T.; Abou Atta, I.; Mevorach, D.; Friedman, G.; Ben-Yehuda, A. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann. Rheum. Dis. 2004, 63, 1227–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.H.; Bae, S.C. Association of the ATIC 347 C/G polymorphism with responsiveness to and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Rheumatol. Int. 2016, 36, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.A.; Lunt, M.; Bowes, J.; Hider, S.L.; Bruce, I.N.; Thomson, W.; Barton, A. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharmacogenom. J. 2013, 13, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.; Singh, S.; Das, M.; Kumar, A.; Gupta, R.; Kumar, U.; Jain, S.; Juyal, R.C.; Thelma, B.K. Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharmacogenet. Genomics 2014, 24, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.C.; Bongartz, T.; Massey, J.; Mifsud, B.; Spiliopoulou, A.; Scott, I.C.; Wang, J.; Morgan, M.; Plant, D.; Colombo, M.; et al. Genome-wide association study of response to methotrexate in early rheumatoid arthritis patients. Pharmacogenom. J. 2018, 18, 528–538. [Google Scholar] [CrossRef]
- Wessels, J.A.; van der Kooij, S.M.; le Cessie, S.; Kievit, W.; Barerra, P.; Allaart, C.F.; Huizinga, T.W.; Guchelaar, H.J.; Pharmacogenetics Collaborative Research Group. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 2007, 56, 1765–1775. [Google Scholar] [CrossRef]
- Kooloos, W.M.; Wessels, J.A.; van der Kooij, S.M.; Allaart, C.F.; Huizinga, T.W.; Guchelaar, H.J. Optimalization of the clinical pharmacogenetic model to predict methotrexate treatment response: the influence of the number of haplotypes of MTHFR 1298A-677C alleles on probability to respond. Ann. Rheum. Dis. 2009, 68, 1371. [Google Scholar] [CrossRef]
- Fransen, J.; Kooloos, W.M.; Wessels, J.A.; Huizinga, T.W.; Guchelaar, H.J.; van Riel, P.L.; Barrera, P. Clinical pharmacogenetic model to predict response of MTX monotherapy in patients with established rheumatoid arthritis after DMARD failure. Pharmacogenomics 2012, 13, 1087–1094. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, R.; Ferreiro-Iglesias, A.; Lima, A.; Bernardes, M.; Pawlik, A.; Paradowska-Gorycka, A.; Swierkot, J.; Slezak, R.; Gonzalez-Alvaro, I.; Narvaez, J.; et al. Evaluation of a clinical pharmacogenetics model to predict methotrexate response in patients with rheumatoid arthritis. Pharmacogenom. J. 2018, 18, 539–545. [Google Scholar] [CrossRef]
- Viatte, S.; Plant, D.; Han, B.; Fu, B.; Yarwood, A.; Thomson, W.; Symmons, D.P.; Worthington, J.; Young, A.; Hyrich, K.L.; et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 2015, 313, 1645–1656. [Google Scholar] [CrossRef]
- Saruhan-Direskeneli, G.; Inanc, M.; Fresko, I.; Akkoc, N.; Dalkilic, E.; Erken, E.; Karaaslan, Y.; Kinikli, G.; Oksel, F.; Pay, S.; et al. The role of HLA-DRB1 shared epitope alleles in predicting short-term response to leflunomide in rheumatoid arthritis. Rheumatology (Oxford) 2007, 46, 1842–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hider, S.L.; Silman, A.J.; Thomson, W.; Lunt, M.; Bunn, D.; Symmons, D.P. Can clinical factors at presentation be used to predict outcome of treatment with methotrexate in patients with early inflammatory polyarthritis? Ann. Rheum. Dis. 2009, 68, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Heldt, C.; Listing, J.; Sozeri, O.; Blasing, F.; Frischbutter, S.; Muller, B. Differential expression of HLA class II genes associated with disease susceptibility and progression in rheumatoid arthritis. Arthritis Rheum. 2003, 48, 2779–2787. [Google Scholar] [CrossRef]
- Stuhlmuller, B.; Mans, K.; Tandon, N.; Bonin, M.O.; Smiljanovic, B.; Sorensen, T.A.; Schendel, P.; Martus, P.; Listing, J.; Detert, J.; et al. Genomic stratification by expression of HLA-DRB4 alleles identifies differential innate and adaptive immune transcriptional patterns - A strategy to detect predictors of methotrexate response in early rheumatoid arthritis. Clin. Immunol. 2016, 171, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Hetland, M.L.; Christensen, I.J.; Tarp, U.; Dreyer, L.; Hansen, A.; Hansen, I.T.; Kollerup, G.; Linde, L.; Lindegaard, H.M.; Poulsen, U.E.; et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 2010, 62, 22–32. [Google Scholar] [PubMed]
- Bek, S.; Bojesen, A.B.; Nielsen, J.V.; Sode, J.; Bank, S.; Vogel, U.; Andersen, V. Systematic review and meta-analysis: pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharmacogenom. J. 2017, 17, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Massey, J.; Plant, D.; Hyrich, K.; Morgan, A.W.; Wilson, A.G.; Spiliopoulou, A.; Colombo, M.; McKeigue, P.; Isaacs, J.; Cordell, H.; et al. Genome-wide association study of response to tumour necrosis factor inhibitor therapy in rheumatoid arthritis. Pharmacogenom. J. 2018, 18, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Seitz, M.; Wirthmuller, U.; Moller, B.; Villiger, P.M. The −308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology (Oxford) 2007, 46, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Coulthard, L.R.; Taylor, J.C.; Eyre, S.; Biologics in Rheumatoid Arthritis Genetics and Genomics; Robinson, J.I.; Wilson, A.G.; Isaacs, J.D.; Hyrich, K.; Emery, P.; Barton, A.; et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann. Rheum. Dis. 2011, 70, 98–103. [Google Scholar] [CrossRef]
- Krintel, S.B.; Palermo, G.; Johansen, J.S.; Germer, S.; Essioux, L.; Benayed, R.; Badi, L.; Ostergaard, M.; Hetland, M.L. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFalpha inhibitors in patients with rheumatoid arthritis. Pharmacogenet. Genomics 2012, 22, 577–589. [Google Scholar] [CrossRef]
- Acosta-Colman, I.; Palau, N.; Tornero, J.; Fernandez-Nebro, A.; Blanco, F.; Gonzalez-Alvaro, I.; Canete, J.D.; Maymo, J.; Ballina, J.; Fernandez-Gutierrez, B.; et al. GWAS replication study confirms the association of PDE3A-SLCO1C1 with anti-TNF therapy response in rheumatoid arthritis. Pharmacogenomics 2013, 14, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Saevarsdottir, S.; Thomson, B.; Padyukov, L.; van der Helm-van Mil, A.H.; Nititham, J.; Hughes, L.B.; de Vries, N.; Raychaudhuri, S.; Alfredsson, L.; et al. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy. Arthritis Rheum. 2010, 62, 1849–1861. [Google Scholar] [PubMed]
- Plant, D.; Prajapati, R.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate; Barton, A. Replication of association of the PTPRC gene with response to anti-tumor necrosis factor therapy in a large UK cohort. Arthritis Rheum. 2012, 64, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Canete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Sarafidou, T.; Caliz, R.; Ferrer, M.A.; et al. Replication of PTPRC as genetic biomarker of response to TNF inhibitors in patients with rheumatoid arthritis. Pharmacogenom. J. 2016, 16, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Iotchkova, V.; Huang, J.; Morris, J.A.; Jain, D.; Barbieri, C.; Walter, K.; Min, J.L.; Chen, L.; Astle, W.; Cocca, M.; et al. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat. Genet. 2016, 48, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Canet, L.M.; Filipescu, I.; Caliz, R.; Lupianez, C.B.; Canhao, H.; Escudero, A.; Segura-Catena, J.; Soto-Pino, M.J.; Ferrer, M.A.; Garcia, A.; et al. Genetic variants within the TNFRSF1B gene and susceptibility to rheumatoid arthritis and response to anti-TNF drugs: a multicenter study. Pharmacogenet. Genom. 2015, 25, 323–333. [Google Scholar] [CrossRef]
- Criswell, L.A.; Lum, R.F.; Turner, K.N.; Woehl, B.; Zhu, Y.; Wang, J.; Tiwari, H.K.; Edberg, J.C.; Kimberly, R.P.; Moreland, L.W.; et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum. 2004, 50, 2750–2756. [Google Scholar] [CrossRef]
- Iwaszko, M.; Swierkot, J.; Kolossa, K.; Jeka, S.; Wiland, P.; Bogunia-Kubik, K. Polymorphisms within the human leucocyte antigen-E gene and their associations with susceptibility to rheumatoid arthritis as well as clinical outcome of anti-tumour necrosis factor therapy. Clin. Exp. Immunol. 2015, 182, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Canete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Caliz, R.; Ferrer, M.A.; Joven, B.; et al. Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept. PLoS ONE 2019, 14, e0213073. [Google Scholar] [CrossRef]
- Bluett, J.; Barton, A. Precision Medicine in Rheumatoid Arthritis. Rheum. Dis. Clin. North. Am. 2017, 43, 377–387. [Google Scholar] [CrossRef]
- Sieberts, S.K.; Zhu, F.; Garcia-Garcia, J.; Stahl, E.; Pratap, A.; Pandey, G.; Pappas, D.; Aguilar, D.; Anton, B.; Bonet, J.; et al. Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nat. Commun. 2016, 7, 12460. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Wrzesniewska, J.; Fiedorowicz-Fabrycy, I.; Gawronska-Szklarz, B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int. J. Clin. Pharmacol. Ther. 2004, 42, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Drozdzik, M.; Rudas, T.; Pawlik, A.; Kurzawski, M.; Czerny, B.; Gornik, W.; Herczynska, M. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur. J. Clin. Pharmacol. 2006, 62, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Cuppen, B.V.; Pardali, K.; Kraan, M.C.; Marijnissen, A.C.; Yrlid, L.; Olsson, M.; Bijlsma, J.W.; Lafeber, F.P.; Fritsch-Stork, R.D. Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol. Int. 2017, 37, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohanec Grabar, P.; Rozman, B.; Tomsic, M.; Suput, D.; Logar, D.; Dolzan, V. Genetic polymorphism of CYP1A2 and the toxicity of leflunomide treatment in rheumatoid arthritis patients. Eur. J. Clin. Pharmacol. 2008, 64, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Herczynska, M.; Kurzawski, M.; Safranow, K.; Dziedziejko, V.; Drozdzik, M. The effect of exon (19C>A) dihydroorotate dehydrogenase gene polymorphism on rheumatoid arthritis treatment with leflunomide. Pharmacogenomics 2009, 10, 303–309. [Google Scholar] [CrossRef]
- Dziedziejko, V.; Kurzawski, M.; Safranow, K.; Chlubek, D.; Pawlik, A. The effect of ESR1 and ESR2 gene polymorphisms on the outcome of rheumatoid arthritis treatment with leflunomide. Pharmacogenomics 2011, 12, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Araki, Y.; Mimura, T. The Histone Modification Code in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm. 2017, 2017, 2608605. [Google Scholar] [CrossRef]
- Stahl, E.A.; Raychaudhuri, S.; Remmers, E.F.; Xie, G.; Eyre, S.; Thomson, B.P.; Li, Y.; Kurreeman, F.A.; Zhernakova, A.; Hinks, A.; et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 2010, 42, 508–514. [Google Scholar] [CrossRef]
- Diogo, D.; Kurreeman, F.; Stahl, E.A.; Liao, K.P.; Gupta, N.; Greenberg, J.D.; Rivas, M.A.; Hickey, B.; Flannick, J.; Thomson, B.; et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 2013, 92, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Eyre, S.; Ke, X.; Lawrence, R.; Bowes, J.; Panoutsopoulou, K.; Barton, A.; Thomson, W.; Worthington, J.; Zeggini, E. Examining the overlap between genome-wide rare variant association signals and linkage peaks in rheumatoid arthritis. Arthritis Rheum. 2011, 63, 1522–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, S.Y.; Na, Y.J.; Kim, K.; Joo, Y.B.; Park, Y.; Lee, J.; Lee, S.Y.; Ansari, A.A.; Jung, J.; Rhee, H.; et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 2014, 16, 447. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Diogo, D.; Stahl, E.A.; Canhao, H.; Mariette, X.; Greenberg, J.D.; Okada, Y.; Pappas, D.A. The role of rare protein-coding variants in anti–tumor necrosis factor treatment response in rheumatoid arthritis. Arthritis Rheum. 2017, 69, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, A.; van Diemen, C.C.; Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 2009, 10, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, A.; Withoff, S.; Wijmenga, C. Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat. Rev. Endocrinol. 2013, 9, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Shen, N.; Vyse, T.J.; Anand, V.; Gunnarson, I.; Sturfelt, G.; Rantapaa-Dahlqvist, S.; Elvin, K.; Truedsson, L.; Andersson, B.A.; et al. Selective IgA deficiency in autoimmune diseases. Mol. Med. 2011, 17, 1383–1396. [Google Scholar] [CrossRef]
- Gonzalez-Serna, D.; Ortiz-Fernandez, L.; Vargas, S.; Garcia, A.; Raya, E.; Fernandez-Gutierrez, B.; Lopez-Longo, F.J.; Balsa, A.; Gonzalez-Alvaro, I.; Narvaez, J.; et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci. Rep. 2018, 8, 8195. [Google Scholar] [CrossRef]
- Woodland, R.T.; Schmidt, M.R.; Thompson, C.B. BLyS and B cell homeostasis. Semin. Immunol. 2006, 18, 318–326. [Google Scholar] [CrossRef]
- Steri, M.; Orru, V.; Idda, M.L.; Pitzalis, M.; Pala, M.; Zara, I.; Sidore, C.; Faa, V.; Floris, M.; Deiana, M.; et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk. N. Engl. J. Med. 2017, 376, 1615–1626. [Google Scholar] [CrossRef]
- Vincent, F.B.; Morand, E.F.; Schneider, P.; Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 2014, 10, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Petri, M.; Zamani, O.; Cervera, R.; Wallace, D.J.; Tegzova, D.; Sanchez-Guerrero, J.; Schwarting, A.; Merrill, J.T.; Chatham, W.W.; et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 3918–3930. [Google Scholar] [CrossRef] [PubMed]
- Navarra, S.V.; Guzman, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.; Thomas, M.; Kim, H.Y.; Leon, M.G.; et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 721–731. [Google Scholar] [CrossRef]
- Lopez-Isac, E.; Martin, J.E.; Assassi, S.; Simeon, C.P.; Carreira, P.; Ortego-Centeno, N.; Freire, M.; Beltran, E.; Narvaez, J.; Alegre-Sancho, J.J.; et al. Cross-disease meta-analysis of genome-wide association studies for systemic sclerosis and rheumatoid arthritis reveals irf4 as a new common susceptibility locus. Arthritis Rheumatol. 2016, 68, 2338–2344. [Google Scholar] [CrossRef] [PubMed]
- Marquez, A.; Vidal-Bralo, L.; Rodriguez-Rodriguez, L.; Gonzalez-Gay, M.A.; Balsa, A.; Gonzalez-Alvaro, I.; Carreira, P.; Ortego-Centeno, N.; Ayala-Gutierrez, M.M.; Garcia-Hernandez, F.J.; et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 2017, 76, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Coenen, M.J.; Trynka, G.; Heskamp, S.; Franke, B.; van Diemen, C.C.; Smolonska, J.; van Leeuwen, M.; Brouwer, E.; Boezen, M.H.; Postma, D.S.; et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 2009, 18, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Li, J.; Zhao, S.D.; Bradfield, J.P.; Mentch, F.D.; Maggadottir, S.M.; Hou, C.; Abrams, D.J.; Chang, D.; Gao, F.; et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 2015, 21, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, D.; Jostins, L.; Spain, S.L.; Cortes, A.; Bethune, J.; Han, B.; Park, Y.R.; Raychaudhuri, S.; Pouget, J.G.; Hubenthal, M.; et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 2016, 48, 510–518. [Google Scholar] [CrossRef]
- Marquez, A.; Kerick, M.; Zhernakova, A.; Gutierrez-Achury, J.; Chen, W.M.; Onengut-Gumuscu, S.; Gonzalez-Alvaro, I.; Rodriguez-Rodriguez, L.; Rios-Fernandez, R.; Gonzalez-Gay, M.A.; et al. Meta-analysis of Immunochip data of four autoimmune diseases reveals novel single-disease and cross-phenotype associations. Genome Med. 2018, 10, 97. [Google Scholar] [CrossRef]
- Acosta-Herrera, M.; Kerick, M.; Gonzalez-Serna, D.; Myositis Genetics, C.; Scleroderma Genetics, C.; Wijmenga, C.; Franke, A.; Gregersen, P.K.; Padyukov, L.; Worthington, J.; et al. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann. Rheum. Dis. 2019, 78, 311–319. [Google Scholar] [CrossRef]
- Plant, D.; Webster, A.; Nair, N.; Oliver, J.; Smith, S.L.; Eyre, S.; Hyrich, K.L.; Wilson, A.G.; Morgan, A.W.; Isaacs, J.D.; et al. Differential methylation as a biomarker of response to etanercept in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016, 68, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, A.; Colombo, M.; Plant, D.; Nair, N.; Cui, J.; Coenen, M.J.; Ikari, K.; Yamanaka, H.; Saevarsdottir, S.; Padyukov, L.; et al. Association of response to TNF inhibitors in rheumatoid arthritis with quantitative trait loci for CD40 and CD39. Ann. Rheum. Dis. 2019. (E-pub ahead of print). [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Herrera, M.; González-Serna, D.; Martín, J. The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis. J. Clin. Med. 2019, 8, 826. https://doi.org/10.3390/jcm8060826
Acosta-Herrera M, González-Serna D, Martín J. The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis. Journal of Clinical Medicine. 2019; 8(6):826. https://doi.org/10.3390/jcm8060826
Chicago/Turabian StyleAcosta-Herrera, Marialbert, David González-Serna, and Javier Martín. 2019. "The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis" Journal of Clinical Medicine 8, no. 6: 826. https://doi.org/10.3390/jcm8060826
APA StyleAcosta-Herrera, M., González-Serna, D., & Martín, J. (2019). The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis. Journal of Clinical Medicine, 8(6), 826. https://doi.org/10.3390/jcm8060826