Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Definitions of Study Outcomes
2.3. Biochemical Analyses
Anti-Apolipoprotein A-I IgG Levels
2.4. Statistical Methods
3. Results
3.1. Baseline Demographic and Biological Characteristics
3.2. Associations with Major Adverse Cardiovascular Events (MACE) at 1-Year of Follow-Up
3.3. Anti-apoA-I IgG Associations in Acute Coronary Syndrome (ACS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Ketelhuth, D.F.; Hansson, G.K. Modulation of Autoimmunity and Atherosclerosis—Common Targets and Promising Translational Approaches Against Disease. Circ. J. 2015, 79, 924–933. [Google Scholar] [CrossRef]
- Ketelhuth, D.F.; Hansson, G.K. Adaptive Response of T and B Cells in Atherosclerosis. Circ. Res. 2016, 118, 668–678. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Tabas, I.; Fredman, G.; Fisher, E.A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 2014, 114, 1867–1879. [Google Scholar] [CrossRef]
- Tsiantoulas, D.; Diehl, C.J.; Witztum, J.L.; Binder, C.J. B Cells and Humoral Immunity in Atherosclerosis. Circ. Res. 2014, 114, 1743–1756. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Beaton, A.; Cunningham, M.W.; Guilherme, L.; Karthikeyan, G.; Mayosi, B.M.; Sable, C.; Steer, A.; Wilson, N.; Wyber, R.; et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Prim. 2016, 2, 15084. [Google Scholar] [CrossRef]
- Cunningham, M.W. Rheumatic Fever, Autoimmunity, and Molecular Mimicry: The Streptococcal Connection. Int. Rev. Immunol. 2014, 33, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F.; Boutjdir, M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat. Rev. Cardiol. 2017, 14, 521–535. [Google Scholar] [CrossRef]
- Meier, L.A.; Binstadt, B.A. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front. Immunol. 2018, 9, 911. [Google Scholar] [CrossRef]
- Satta, N.; Vuilleumier, N. Auto-Antibodies As Possible Markers and Mediators of Ischemic, Dilated, and Rhythmic Cardiopathies. Curr. Drug Targets 2015, 16, 342–360. [Google Scholar] [CrossRef]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Bastardot, F.; Hartley, O.; Montecucco, F.; Mach, F.; Waeber, G.; et al. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Thromb. Haemost. 2016, 116, 764–771. [Google Scholar] [Green Version]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Impact of CD14 Polymorphisms on Anti-Apolipoprotein A-1 IgG-Related Coronary Artery Disease Prediction in the General PopulationHighlights. Arter. Thromb. Vasc. Boil. 2017, 37, 2342–2349. [Google Scholar] [CrossRef]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Anti-Apolipoprotein A-1 IgG Predict All-Cause Mortality and Are Associated with Fc Receptor-Like 3 Polymorphisms. Front. Immunol. 2017, 8, 2234. [Google Scholar] [CrossRef]
- Batuca, J.; Amaral, M.; Favas, C.; Justino, G.; Papoila, A.; Ames, P.; Alves, J. Antibodies against HDL Components in Ischaemic Stroke and Coronary Artery Disease. Thromb. Haemost. 2018, 118, 1088–1100. [Google Scholar] [CrossRef]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Paula, F.S.; Ames, P.R.J.; Papoila, A.L.; Delgado Alves, J. Extended-Release Niacin Increases Anti-Apolipoprotein a-I Antibodies That Block the Antioxidant Effect of High-Density Lipoprotein-Cholesterol: The Explore Clinical Trial. Br. J. Clin. Pharmacol. 2017, 83, 1002–1010. [Google Scholar] [CrossRef]
- Carbone, F.; Satta, N.; Montecucco, F.; Virzi, J.; Burger, F.; Roth, A.; Roversi, G.; Tamborino, C.; Casetta, I.; Seraceni, S.; et al. Anti-ApoA-1 IgG serum levels predict worse post-stroke outcomes. Eur. J. Clin. Investig. 2016, 46, 805–817. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Rasheed, E.; Kafoury, M.; Haleem, D.A.-E.; Awadallah, E.A.A.-S.; Ashmawy, I. Anti-apolipoprotein A-1 autoantibodies as risk biomarker for cardiovascular diseases in type 2 diabetes mellitus. J. Diabetes its Complicat. 2016, 30, 580–585. [Google Scholar] [CrossRef]
- Keller, P.F.; Pagano, S.; Roux-Lombard, P.; Sigaud, P.; Rutschmann, O.T.; Mach, F.; Hochstrasser, D.; Vuilleumier, N. Autoantibodies against Apolipoprotein a-1 and Phosphorylcholine for Diagnosis of Non-St-Segment Elevation Myocardial Infarction. J. Intern. Med. 2012, 271, 451–462. [Google Scholar] [CrossRef]
- Lagerstedt, J.O.; Dalla-Riva, J.; Marinkovic, G.; Del Giudice, R.; Engelbertsen, D.; Burlin, J.; Petrlova, J.; Lindahl, M.; Bernfur, K.; Melander, O.; et al. Anti-Apoa-I Igg Antibodies Are Not Associated with Carotid Artery Disease Progression and First-Time Cardiovascular Events in Middle-Aged Individuals. J. Intern. Med. 2019, 285, 49–58. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Bas, S.; Pagano, S.; Montecucco, F.; Guerne, P.-A.; Finckh, A.; Lovis, C.; Mach, F.; Hochstrasser, D.; Gabay, C.; et al. Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2010, 62, 2640–2650. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Montecucco, F.; Spinella, G.; Pagano, S.; Bertolotto, M.B.; Pane, B.; Pende, A.; Galan, K.; Roux-Lombard, P.; Combescure, C.; et al. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb. Haemost. 2013, 109, 706–715. [Google Scholar] [Green Version]
- Vuilleumier, N.; Rossier, M.F.; Pagano, S.; Python, M.; Charbonney, E.; Nkoulou, R.; James, R.; Reber, G.; Mach, F.; Roux-Lombard, P. Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur. Hear. J. 2010, 31, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Montecucco, F.; Braunersreuther, V.; Burger, F.; Lenglet, S.; Pelli, G.; Carbone, F.; Fraga-Silva, R.; Stergiopulos, N.; Monaco, C.; Mueller, C.; et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb. Haemost. 2015, 114, 410–422. [Google Scholar]
- Pagano, S.; Carbone, F.; Burger, F.; Roth, A.; Bertolotto, M.; Pane, B.; Spinella, G.; Palombo, D.; Pende, A.; Dallegri, F.; et al. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb. Haemost. 2016, 116, 554–564. [Google Scholar] [Green Version]
- Pagano, S.; Satta, N.; Werling, D.; Offord, V.; De Moerloose, P.; Charbonney, E.; Hochstrasser, D.; Vuilleumier, N.; Roux-Lombard, P. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med. 2012, 272, 344–357. [Google Scholar] [CrossRef]
- Huang, W.; Fitzgerald, G.; Goldberg, R.J.; Gore, J.; McManus, R.H.; Awad, H.; Waring, M.E.; Allison, J.; Saczynski, J.S.; Kiefe, C.I.; et al. Performance of the GRACE Risk Score 2.0 Simplified Algorithm for Predicting 1-year Death Following Hospitalization for an Acute Coronary Syndrome in a Contemporary Multiracial Cohort. Am. J. Cardiol. 2016, 118, 1105–1110. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Hear. J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, R.; Aghlmandi, S.; Raber, L.; Gencer, B.; Nanchen, D.; Heg, D.; Carballo, S.; Rodondi, N.; Mach, F.; Windecker, S.; et al. Improved Risk Stratification of Patients with Acute Coronary Syndromes Using a Combination of Hstnt, Nt-Probnp and Hscrp with the Grace Score. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 129–138. [Google Scholar] [CrossRef]
- Li, X.S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Räber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.; Muller, O.; et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Hear. J. 2017, 38, 814–824. [Google Scholar] [CrossRef]
- Gencer, B.; Montecucco, F.; Nanchen, D.; Carbone, F.; Klingenberg, R.; Vuilleumier, N.; Aghlmandi, S.; Heg, D.; Raber, L.; Auer, R.; et al. Prognostic Value of Pcsk9 Levels in Patients with Acute Coronary Syndromes. Eur. Heart J. 2016, 37, 546–553. [Google Scholar] [CrossRef]
- Klingenberg, R.; Aghlmandi, S.; Liebetrau, C.; Räber, L.; Gencer, B.; Nanchen, D.; Carballo, D.; Akhmedov, A.; Montecucco, F.; Zoller, S.; et al. Cysteine-rich angiogenic inducer 61 (Cyr61): a novel soluble biomarker of acute myocardial injury improves risk stratification after acute coronary syndromes. Eur. Hear. J. 2017, 38, 3493–3502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eilers, P.H.C.; Marx, B.D. Flexible smoothing with B -splines and penalties. Stat. Sci. 1996, 11, 89–121. [Google Scholar] [CrossRef]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Hear. J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Demler, O.V.; Pencina, M.J.; D’Agostino, R.B. Misuse of DeLong test to compare AUCs for nested models. Stat. Med. 2012, 31, 2577–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilden, J.; Gerds, T.A. A Note on the Evaluation of Novel Biomarkers: Do Not Rely on Integrated Discrimination Improvement and Net Reclassification Index. Stat. Med. 2014, 33, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Satta, N.; Pagano, S.; Montecucco, F.; Gencer, B.; Mach, F.; Vuilleumier, N.; Aubert, V.; Barth, J.; Battegay, M.; Bernasconi, E.; et al. Anti-apolipoprotein A-1 autoantibodies are associated with immunodeficiency and systemic inflammation in HIV patients. J. Infect. 2018, 76, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G. Coronary Hypersensitivity Disorder: The Kounis Syndrome. Clin. Ther. 2013, 35, 563–571. [Google Scholar] [CrossRef]
Patient Characteristics | All Patients (n = 1713) | MACE * (n = 144) | No MACE * (n = 1569) |
---|---|---|---|
Age, years | |||
Median (IQR) | 64 (54–74) | 76 (64–81) | 63 (53–73) |
BMI, kg/m2 | |||
Median (IQR) | 26.5 (24.2–29.4) | 26.0 (24.1–30.4) | 26.5 (24.2–29.4) |
Missing data | 23 | 9 | 14 |
Female, n (%) | 363/1713 (21.2%) | 35/144 (24.3%) | 328/1569 (20.9%) |
Current smoker, n (%) | 690/1680 (41.1%) | 44/138 (31.9%) | 646/1542 (41.9%) |
Diabetes history, n (%) | 310/1713 (18.1%) | 47/144 (32.6%) | 263/1569 (16.8%) |
MI history, n (%) | 246/1713 (14.4%) | 31/144 (21.5%) | 215/1569 (13.7%) |
Hypertension history, n (%) | 993/1713 (58.0%) | 100/144 (69.4%) | 893/1569 (56.9%) |
Dyslipidemia history, n (%) | 1031/1711 (60.3%) | 82/143 (57.3%) | 949/1568 (60.5%) |
Valvular disease history, n (%) | 33/1713 (1.9%) | 10/144 (6.9%) | 23/1569 (1.5%) |
Statin use, n (%) | 503/1702 (29.6%) | 50/141 (35.5%) | 453/1561 (29.0%) |
Beta-blocker use, n (%) | 410/1699 (24.1%) | 54/141 (59.3%) | 356/1558 (22.8%) |
GRACE score 2.0 | |||
Median (IQR) | 123 (106–142) | 144 (120–165) | 121 (104–140) |
Hs-CRP, mg/l | |||
Median (IQR) | 3.0 (1.2–8.0) | 5.8 (2.3–18.9) | 2.7 (1.1–7.6) |
Missing data | 203 | 11 | 192 |
Hs-cTnT, pg/L | |||
Median (IQR) | 0.22 (0.07–0.75) | 0.51 (0.13–1.92) | 0.21 (0.06–0.70) |
Missing data | 194 | 10 | 184 |
TMAO, µmol/L | |||
Median (IQR) | 2.93 (1.99–4.97) | 4.25 (2.12–7.35) | 2.86 (1.98–4.85) |
Missing data | 360 | 38 | 322 |
Anti-ApoA-I IgGs, OD | |||
Median (IQR) | 0.66 (0.44–0.97) | 0.76 (0.49–0.98) | 0.65 (0.44–0.97) |
HDL, mmol/L | |||
Median (IQR) | 1.13 (0.94–1.39) | 1.15 (0.94–1.46) | 1.12 (0.94–1.38) |
missing data | 65 | 8 | 57 |
LDL, mmol/L | |||
Ledian (IQR) | 3.08 (2.34–3.84) | 2.72 (2.04–3.45) | 3.11 (2.39–3.86) |
Missing data | 68 | 8 | 60 |
Total cholesterol, mmol/L | |||
Median (IQR) | 4.86 (4.10–5.70) | 4.5 (3.7–5.2) | 4.9 (4.1–5.8) |
Missing data | 49 | 7 | 42 |
Triglyceride, mmol/L | |||
Median (IQR) | 1.02 (0.69–1.60) | 0.95 (0.65–1.33) | 1.04 (0.70–1.60) |
Missing data | 58 | 7 | 51 |
Creatinine | |||
Median (IQR) | 76.0 (65.0–91.0) | 89.0 (71.8–114.3) | 75.0 (65.0–90.0) |
eGFR | |||
Median (IQR) | 90.9 (73.5–108.8) | 74.6 (55.8–92.3) | 92.1 (75.4–109.6) |
Missing data | 5 | 0 | 5 |
Systolic blood pressure | |||
Median (IQR) | 129 (114–145) | 129 (110–142) | 129 (115–145) |
Diastolic blood pressure | |||
Median (IQR) | 75.0 (65.0–84.0) | 72.0 (61.0–80.3) | 75.0 (65.0–84.0) |
Missing data | 17 | 0 | 17 |
Renal failure (eGFR < 60), n (%) | 214/1708 (12.5%) | 43/144 (29.8%) | 171/1564 (9.0%) |
Predictors | Levels | N MACE/N Total | One-Year Cumulative Incidence of MACE (95% CI) | p-Value * |
---|---|---|---|---|
Age | 26–54 y | 17/450 | 3.8 (2.0–5.6) | <0.0001 |
55–64 y | 22/443 | 5.0 (3.0–7.0) | ||
65–74 y | 32/418 | 7.7 (5.1–10.3) | ||
≥75 y | 73/402 | 18.4 (14.5–22.1) | ||
BMI, kg/m2 | 20–24.9 | 49/554 | 9.0 (6.5–11.3) | 0.1569 |
25–29.9 | 50/767 | 6.6 (4.8–8.4) | ||
30–34.9 | 26/283 | 9.3 (5.8–12.6) | ||
≥35 | 10/86 | 12.0 (4.7–18.8) | ||
GRACE score | ≤99 | 9/318 | 2.9 (1.0–4.7) | <0.0001 |
100–119 | 25/453 | 5.6 (3.4–7.7) | ||
120–139 | 29/456 | 6.4 (4.1–8.7) | ||
140–159 | 37/303 | 12.3 (8.5–16.0) | ||
≥160 | 44/183 | 24.3 (17.8–30.3) | ||
Gender | female | 35/363 | 9.8 (6.6–12.8) | 0.3095 |
male | 109/1350 | 8.2 (6.7–9.6) | ||
Diabetes history | no | 97/1403 | 7.0 (5.6–8.3) | <0.0001 |
yes | 47/310 | 15.5 (11.3–19.4) | ||
MI history | No | 113/1467 | 7.8 (6.4–9.2) | 0.0124 |
yes | 31/246 | 12.9 (8.5–17.0) | ||
Hypertension history | no | 44/720 | 6.2 (4.4–7.9) | 0.0041 |
yes | 100/993 | 10.2 (8.3–12.1) | ||
Dyslipidemia history | no | 61/680 | 9.1 (6.9–7.9) | 0.4057 |
yes | 82/1031 | 8.0 (6.4–12.1) | ||
Valvular history | no | 134/1680 | 8.1 (6.8–9.4) | <0.0001 |
yes | 10/33 | 30.3 (12.7–44.3) | ||
Current smoker | no | 96/990 | 9.6 (7.7–11.4) | 0.0251 |
yes | 44/690 | 6.5 (4.6–8.3) | ||
Hs-CRP, mg/L | 0–0.99 | 12/299 | 4.1 (1.8–6.3) | <0.0001 |
1–1.99 | 18/280 | 6.5 (3.5–9.3) | ||
2–9.99 | 55/614 | 9.1 (6.8–11.4) | ||
≥10 | 48/317 | 15.4 (11.3–19.4) | ||
Hs-cTnT, ng/L | 0–0.14 | 40/647 | 6.3 (4.4–8.1) | 0.0001 |
0.15–0.52 | 29/379 | 7.8 (5.0–10.5) | ||
>0.52 | 65/493 | 13.3 (10.3–16.3) | ||
TMAO, µmol/L | <2 | 25/340 | 7.4 (4.6–10.2) | 0.0001 |
2–2.99 | 12/350 | 3.5 (1.5–5.4) | ||
3–3.99 | 13/206 | 6.4 (3.0–9.7) | ||
4–6.99 | 27/257 | 10.6 (6.7–14.3) | ||
≥7 | 29/200 | 14.7 (9.6–19.4) |
Predictors | Levels | N MACE/N Total | One-Year Cumulative Incidence of MACE (95% CI) | p-Value * |
---|---|---|---|---|
Anti-ApoA-I IgGs, OD | ≤0.45 | 31/442 | 7.1 (4.7–9.5) | 0.0323 |
0.46–0.65 | 24/396 | 6.1 (3.7–8.5) | ||
0.66–0.95 | 48/425 | 11.5 (8.4–14.5) | ||
>0.95 | 41/450 | 9.2 (6.5–11.9) | ||
HDL, mmol/L | <1 | 41/511 | 8.2 (5.7–10.5) | 0.6210 |
1–1.3 | 48/626 | 7.8 (5.6–9.8) | ||
>1.3 | 47/511 | 9.3 (6.7–11.8) | ||
LDL, mmol/L | <2.5 | 59/492 | 12.3 (9.3–15.1) | 0.0005 |
2.5–3.5 | 46/580 | 8.0 (5.8–10.2) | ||
>3.5 | 31/573 | 5.5 (3.6–7.3) | ||
Total cholesterol, mmol/L | <4.5 | 98/606 | 11.4 (8.8–13.9) | 0.0027 |
4.5–5.5 | 41/573 | 7.2 (5.1–9.3) | ||
>5.5 | 28/485 | 5.9 (3.7–7.9) | ||
Triglyceride, mmol/L | <0.80 | 46/527 | 8.8 (6.3–11.2) | 0.0653 |
0.80–1.30 | 56/564 | 10.1 (7.6–12.6) | ||
>1.30 | 35/564 | 6.3 (4.2–8.3) | ||
Creatinine, µmol/L | <70 | 31/606 | 5.2 (3.4–7.0) | <0.0001 |
70–85 | 35/550 | 6.5 (4.4–8.5) | ||
>85 | 78/557 | 14.2 (11.2–17.1) | ||
NT-proBNP, ng/L | <200 | 18/511 | 3.6 (1.9–5.2) | <0.0001 |
200–1000 | 36/514 | 7.1 (4.8–9.3) | ||
>1000 | 80/493 | 16.5 (13.1–19.7) | ||
SBP, mmHg | <120 | 47/561 | 8.4 (6.1–10.7) | 0.5490 |
120–140 | 60/649 | 9.4 (7.1–11.6) | ||
>140 | 37/503 | 7.5 (5.2–9.8) | ||
DBP, mmHg | <70 | 59/602 | 9.9 (7.5–12.3) | 0.2120 |
70–80 | 49/565 | 8.8 (6.4–11.1) | ||
>80 | 36/529 | 6.9 (4.7–9.0) | ||
eGFR <60 mL/min | no | 101/1595 | 6.9 (5.6–8.1) | <0.0001 |
yes | 43/257 | 20.3 (14.7–25.6) |
Predictors | Unadjusted HR (95% CI) | p-Value | Adjusted HR (95% CI) ** | p-Value |
---|---|---|---|---|
Anti-ApoA-I IgGs OD | ||||
≤0.45, Q1 | Reference group | 0.0338 * | Reference group | 0.0496 * |
0.46–0.65, Q2 | 0.85 (0.50–1.46) | 0.5625 | 0.82 (0.48–1.40) | 0.4682 |
0.66–0.95, Q3 | 1.64 (1.04–2.57) | 0.0322 | 1.56 (0.99–2.44) | 0.0558 |
>0.95, Q4 | 1.30 (0.82–2.08) | 0.2657 | 1.23 (0.77–1.97) | 0.3808 |
GRACE score 2.0 | ||||
≤99 | Reference group | <0.0001 * | Reference group | <0.0001 * |
100–119 | 1.96 (0.92–4.20) | 0.0931 | 1.99 (0.93–4.26) | 0.0772 |
120–139 | 2.27 (1.07–4.79) | 0.0321 | 2.25 (1.07–4.76) | 0.0332 |
140–159 | 4.44 (2.14–9.19) | <0.0001 | 4.44 (2.14–9.20) | <0.0001 |
≥160 | 9.44 (4.61–19.35) | <0.0001 | 9.36 (4.57–19.18) | <0.0001 |
Anti-apoA-I IgG Levels | ||||||
---|---|---|---|---|---|---|
All Patients | ≤0.45 Q1 | >0.45 and ≤0.65 Q2 | >0.65 and ≤0.95 Q3 | >0.95 Q4 | P * | |
Age, years | ||||||
median (IQR) | 64 (54–74) | 63 (53–74) | 63 (54–74) | 64 (54–72) | 65 (55–75) | 0.1787 |
26–54 y | 450 (26.3%) | 122 (27.6%) | 111 (28.0%) | 109 (25.6%) | 108 (24.0%) | |
55–64 y | 443 (25.9%) | 121 (27.4%) | 102 (25.8%) | 114 (26.8%) | 106 (23.6%) | |
65–74 y | 418 (24.4%) | 99 (22.4%) | 92 (23.2%) | 110 (25.9%) | 117 (26.0%) | |
≥75 y | 402 (23.5%) | 100 (22.6%) | 91 (23.0%) | 92 (21.6%) | 119 (26.4%) | |
BMI, kg/m2 | ||||||
median (IQR) | 26.5 (24.2–29.4) | 26.2 (24.2–29.3) | 26.4 (24.2–29.3) | 26.8 (24.3–29.7) | 26.6 (24.2–29.4) | 0.6434 |
20–24.9 | 554 (32.8%) | 154 (35.2%) | 128 (32.4%) | 134 (32.2%) | 138 (31.3%) | |
25–29.9 | 767 (45.4%) | 189 (43.2%) | 187 (47.3%) | 182 (43.8%) | 209 (47.4%) | |
30–34.9 | 283 (16.7%) | 75 (17.1%) | 62 (15.7%) | 73 (17.5%) | 73 (16.6%) | |
≥35 | 86 (5.1%) | 20 (4.6%) | 18 (4.6%) | 27 (6.5%) | 21 (4.8%) | |
missing data | 23 | 4 | 1 | 9 | 9 | |
Female, n (%) | 363/1713 (21.2%) | 102/442 (23.1%) | 87/396 (22.0%) | 93/425 (21.9%) | 81/450 (18.0%) | 0.2669 |
Current smoker, n (%) | 690/1680 (41.1%) | 174/436 (39.9%) | 147/390 (37.7%) | 183/419 (43.7%) | 186/435 (42.8%) | 0.2875 |
Diabetes history, n (%) | 310/1713 (18.1%) | 97/442 (21.9%) | 66/396 (16.7%) | 83/425 (19.5%) | 64/450 (14.2%) | 0.0177 |
Hypertension history, n (%) | 720/1713 (42.0%) | 248/442 (56.1%) | 234/396 (59.1%) | 247/425 (58.1%) | 264/450 (58.7%) | 0.8191 |
MI history, n (%) | 246/1713 (14.4) | 53/442 (12.0%) | 52/396 (13.1%) | 73/425 (17.2%) | 68/450 (15.1%) | 0.1416 |
Cholesterolemia history, n (%) | 1031/1711 (60.3%) | 276/441 (62.6%) | 247/395 (62.5%) | 257/425 (60.5%) | 251/450 (55.8%) | 0.1311 |
Valvular history, n (%) | 33/1713 (1.9%) | 4/442 (0.9%) | 6/396 (1.5%) | 8/425 (1.9%) | 15/450 (3.3%) | 0.0572 |
GRACE score | ||||||
median (IQR) | 123 (106–142) | 123 (106–142) | 123 (106–140) | 123 (104–144) | 123 (106–143) | 0.7916 |
≤99 | 318 (18.6%) | 83 (18.8%) | 74 (18.7%) | 84 (19.8%) | 77 (17.1%) | |
100–119 | 453 (26.4%) | 121 (27.4%) | 110 (27.8%) | 100 (23.5%) | 122 (27.1%) | |
120–139 | 456 (26.6%) | 115 (26.0%) | 103 (26.0%) | 115 (27.1%) | 123 (27.3%) | |
140–159 | 303 (17.7%) | 84 (19.0%) | 65 (16.4%) | 76 (17.9%) | 78 (17.3%) | |
≥160 | 183 (10.7%) | 39 (8.8%) | 44 (11.1%) | 50 (11.8%) | 50 (11.1%) | |
CRP, mg/L | ||||||
median (IQR) | 3.0 (1.2–8.0) | 2.60 (1.10–7.70) | 2.70 (1.00–6.40) | 3.30 (1.40–8.25) | 3.10 (1.30–9.20) | 0.1704 |
0–0.99 | 299 (19.8%) | 77 (20.2%) | 80 (22.7%) | 63 (16.6%) | 79 (19.9%) | |
1–1.99 | 280 (18.5%) | 76 (19.9%) | 67 (19.0%) | 71 (18.7%) | 66 (16.6%) | |
2–9.99 | 614 (40.7%) | 149 (39.1%) | 141 (39.9%) | 166 (43.8%) | 158 (39.8%) | |
≥10 | 317 (21.0%) | 79 (20.7%) | 65 (18.4%) | 79 (20.8%) | 94 (23.7%) | |
missing data | 203 | 61 | 43 | 46 | 53 | |
Hs-cTnT, ng/L | ||||||
median (IQR) | 0.22 (0.07–0.75) | 0.20 (0.06–0.67) | 0.21 (0.06–0.66) | 0.24 (0.07–0.87) | 0.26 (0.07–0.83) | 0.1947 |
0–0.14 | 647 (42.6%) | 172 (45.0%) | 155 (43.7%) | 158 (41.1%) | 162 (40.7%) | |
0.15–0.52 | 379 (25.0%) | 98 (25.7%) | 86 (24.2%) | 93 (24.2%) | 102 (25.6%) | |
>0.52 | 493 (32.5%) | 112 (29.3%) | 114 (32.1%) | 133 (34.6%) | 134 (33.7%) | |
missing data | 194 | 60 | 41 | 41 | 52 | |
TMAO | ||||||
median (IQR) | 2.93 (1.99–4.97) | 2.85 (1.89–4.97) | 2.96 (2.01–4.98) | 2.93 (2.00–4.46) | 3.05 (2.07–5.43) | 0.4744 |
<2 | 340 (25.1%) | 98 (28.3%) | 74 (23.9%) | 83 (25.1%) | 85 (23.2%) | |
2–2.99 | 350 (25.9%) | 87 (25.1%) | 84 (27.2%) | 86 (26.0%) | 93 (25.3%) | |
3–3.99 | 206 (15.2%) | 42 (12.1%) | 51 (16.5%) | 60 (18.1%) | 53 (14.4%) | |
4–6.99 | 257 (19.0%) | 66 (19.1%) | 50 (16.2%) | 63 (19.0%) | 78 (21.3%) | |
≥7 | 200 (14.8%) | 53 (15.3%) | 50 (16.2%) | 39 (11.8%) | 58 (15.8%) | |
missing data | 360 | 96 | 87 | 94 | 83 |
Anti-apoA-I IgG Levels | ||||||
---|---|---|---|---|---|---|
All Patients | ≤0.45 Q1 | >0.45 and ≤0.65 Q2 | >0.65 and ≤0.95 Q3 | >0.95 Q4 | P * | |
SBP, mmHg | ||||||
Median (IQR) | 129 (114–145) | 129 (115–145) | 129 (115–144) | 128 (112–145) | 130 (114–146) | 0.9714 |
Missing data | 0 | 0 | 0 | 0 | 0 | |
DBP, mmHg | ||||||
Median (IQR) | 75 (65–84) | 75 (66–84) | 75 (65–84) | 73 (65–84) | 74 (63–84) | 0.6476 |
Missing data | 17 | 7 | 2 | 4 | 4 | |
Hemoglobin, g/L | ||||||
Median (IQR) | 138 (127–149) | 137 (124–149) | 138 (126–148) | 139 (129–148) | 139 (128–150) | 0.3715 |
Missing data | 87 | 30 | 19 | 19 | 19 | |
Hematocrit, % | ||||||
Median (IQR) | 41 (38–43.3) | 41 (37–43) | 40 (37–43) | 41 (38–44) | 41 (38–44) | 0.2161 |
Missing data | 76 | 26 | 14 | 18 | 18 | |
Leucocytes, G/L | ||||||
Median (IQR) | 9.6 (7.4–12.1) | 9.5 (7.3–12.0) | 9.2 (7.1–12.0) | 9.8 (7.9–12.1) | 9.8 (7.6–12.3) | 0.0340 |
Missing data | 73 | 25 | 14 | 17 | 17 | |
Erythrocytes, T/L | ||||||
Median (IQR) | 4.5 (4.1–4.8) | 4.5 (4.1–4.9) | 4.4 (4.1–4.8) | 4.5 (4.2–4.8) | 4.5 (4.1–4.8) | 0.3240 |
Missing data | 84 | 28 | 17 | 19 | 20 | |
Lymphocytes, % | ||||||
Median (IQR) | 1.62 (1.16–2.35) | 1.67 (1.20–2.55) | 1.54 (1.09–2.31) | 1.69 (1.19–2.34) | 1.58 (1.11–2.22) | 0.0526 |
Missing data | 395 | 118 | 95 | 87 | 95 | |
Neutrophils, G/L | ||||||
Median (IQR) | 7.3 (5.3 to 10.0) | 7.0 (5.0 to 9.7) | 7.2 (4.7 to 10.1) | 7.4 (5.5 to 9.9) | 7.6 (5.5 to 10.1) | 0.1500 |
Missing data | 412 | 122 | 97 | 93 | 100 | |
Monocytes, % | ||||||
Median (IQR) | 0.62 (0.45 to 0.95) | 0.63 (0.45 to 1.05) | 0.56 (0.41 to 0.92) | 0.64 (0.48 to 0.99) | 0.61 (0.45 to 0.90) | 0.1220 |
Missing data | 398 | 118 | 96 | 88 | 96 | |
Basophils, % | ||||||
Median (IQR) | 0.03 (0.01–0.07) | 0.03 (0.02–0.08) | 0.03 (0.01–0.07) | 0.03 (0.01–0.07) | 0.03 (0.01–0.06) | 0.7491 |
Missing data | 399 | 118 | 95 | 88 | 98 | |
Eosinophils, % | ||||||
Median (IQR) | 0.08 (0.02–0.19) | 0.10 (0.03–0.21) | 0.08 80.03–0.20) | 0.07 (0.02–0.17) | 0.07 (0.02–0.16) | 0.0237 |
Missing data | 401 | 119 | 96 | 88 | 98 | |
Thromboctyes, G/L | ||||||
Median (IQR) | 215 (183–257) | 226 (188–272) | 211 (179–250) | 218 (185–253) | 208 (176–255) | 0.0026 |
Missing data | 85 | 27 | 15 | 21 | 22 | |
Total cholesterol, mmol/L | ||||||
Median (IQR) | 4.9 (4.1–5.7) | 4.9 (4.1–5.8) | 4.9 (4.0–5.8) | 4.9 (4.1–5.7) | 4.7 (4.0–5.6) | 0.1602 |
Missing data | 49 | 13 | 13 | 11 | 12 | |
HDL, mmol/L | ||||||
Median (IQR) | 1.13 (0.69–1.60) | 1.14 (0.93–1.40) | 1.14 (0.96–1.40) | 1.13 (0.94–1.40) | 1.10 (0.93–1.33) | 0.2852 |
Missing data | 65 | 20 | 15 | 14 | 16 | |
LDL, mmol/L | ||||||
Median (IQR) | 308 (2.34–3.84) | 3.07 (2.32–3.94) | 3.13 (2.40–3.82) | 3.08 (2.37–3.81) | 2.99 (2.26–3.81) | 0.7418 |
Missing data | 68 | 20 | 16 | 16 | 16 | |
Triglyceride | ||||||
Median (IQR) | 1.02 (0.69–1.60) | 1.08 (0.72–1.70) | 1.05 (0.69–1.68) | 1.00 (0.66–1.51) | 0.99 (0.69–1.48) | 0.2165 |
Missing data | 58 | 17 | 15 | 13 | 13 | |
Creatinine, µmol/L | ||||||
Median (IQR) | 76 (65–91) | 75 (64–88) | 76 (66–91) | 76 (65–92) | 77 (66–92) | 0.3484 |
Missing data | 0 | 0 | 0 | 0 | 0 | |
NT-ProBNP, ng/L | ||||||
Median (IQR) | 414 (131–1436) | 386 (118–1462) | 355 (129–1196) | 433 (132–1627) | 544 (159–1633) | 0.0390 |
Missing data | 195 | 60 | 41 | 42 | 52 | |
eGFR, mL/min | ||||||
Median (IQR) | 90.9 (73.5–108.8) | 92.1 (75.8–110.9) | 91.0 (73.5–107.2) | 89.8 (73.5–108.3) | 90.7 (70.5–108.6) | 0.4791 |
Missing data | 5 | 1 | 1 | 2 | 1 | |
Renal failure (eGFR <60), n (%) | 214/1708 | 47/441 | 53/395 | 56/423 | 58/449 | 0.5828 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuilleumier, N.; Pagano, S.; Combescure, C.; Gencer, B.; Virzi, J.; Räber, L.; Carballo, D.; Carballo, S.; Nanchen, D.; Rodondi, N.; et al. Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. J. Clin. Med. 2019, 8, 1002. https://doi.org/10.3390/jcm8071002
Vuilleumier N, Pagano S, Combescure C, Gencer B, Virzi J, Räber L, Carballo D, Carballo S, Nanchen D, Rodondi N, et al. Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. Journal of Clinical Medicine. 2019; 8(7):1002. https://doi.org/10.3390/jcm8071002
Chicago/Turabian StyleVuilleumier, Nicolas, Sabrina Pagano, Christophe Combescure, Baris Gencer, Julien Virzi, Lorenz Räber, David Carballo, Sebastian Carballo, David Nanchen, Nicolas Rodondi, and et al. 2019. "Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes" Journal of Clinical Medicine 8, no. 7: 1002. https://doi.org/10.3390/jcm8071002
APA StyleVuilleumier, N., Pagano, S., Combescure, C., Gencer, B., Virzi, J., Räber, L., Carballo, D., Carballo, S., Nanchen, D., Rodondi, N., Windecker, S., Hazen, S. L., Wang, Z., Li, X. S., von Eckardstein, A., Matter, C. M., Lüscher, T. F., Klingenberg, R., & Mach, F. (2019). Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. Journal of Clinical Medicine, 8(7), 1002. https://doi.org/10.3390/jcm8071002