Associations of Plasma 3-Methylhistidine with Frailty Status in French Cohorts of the FRAILOMIC Initiative
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Cohorts
2.2. Participant Characteristics
2.3. Biomarker Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Morley, J.E.; von Haehling, S.; Anker, S.D.; Vellas, B. From sarcopenia to frailty: A road less traveled. J. Cachexia Sarcopenia Muscle 2014, 5, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Anker, S.D.; von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; Marzetti, E.; et al. Biomarkers for physical frailty and sarcopenia: State of the science and future developments. J. Cachexia Sarcopenia Muscle 2015, 6, 278–286. [Google Scholar] [CrossRef]
- Murton, A.J. Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc. Nutr. Soc. 2015, 74, 387–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erusalimsky, J.D.; Grillari, J.; Grune, T.; Jansen-Duerr, P.; Lippi, G.; Sinclair, A.J.; Tegner, J.; Vina, J.; Durrance-Bagale, A.; Minambres, R.; et al. In Search of ‘Omics’-Based Biomarkers to Predict Risk of Frailty and Its Consequences in Older Individuals: The FRAILOMIC Initiative. Gerontology 2016, 62, 182–190. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A. A Comparative Review of Frailty Models and a description of the European-wide FRAILOMIC Initiative. Med. Res. Arch. 2018, 6. [Google Scholar] [CrossRef]
- Kochlik, B.; Stuetz, W.; Pérès, K.; Pilleron, S.; Féart, C.; García García, F.J.; Bandinelli, S.; Tegner, J.; Rodriguez-Manas, L.; Grune, T.; et al. Associations of fat-soluble micronutrients and redox biomarkers with frailty status in the FRAILOMIC initiative. J. Cachexia Sarcopenia Muscle 2019. [Google Scholar] [CrossRef]
- Rodriguez-Manas, L.; Feart, C.; Mann, G.; Vina, J.; Chatterji, S.; Chodzko-Zajko, W.; Gonzalez-Colaco Harmand, M.; Bergman, H.; Carcaillon, L.; Nicholson, C.; et al. Searching for an operational definition of frailty: A Delphi method based consensus statement: The frailty operative definition-consensus conference project. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 62–67. [Google Scholar] [CrossRef]
- Berry, S.D.; Ramachandran, V.S.; Cawthon, P.M.; Gona, P.; McLean, R.R.; Cupples, L.A.; Kiel, D.P. Procollagen type III N-terminal peptide (P3NP) and lean mass: A cross-sectional study. J. Frailty Aging 2013, 2, 129–134. [Google Scholar]
- Drey, M.; Sieber, C.C.; Bauer, J.M.; Uter, W.; Dahinden, P.; Fariello, R.G.; Vrijbloed, J.W.; Fi, A.T.i.g. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp. Gerontol. 2013, 48, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Stimpson, S.A.; Leonard, M.S.; Clifton, L.G.; Poole, J.C.; Turner, S.M.; Shearer, T.W.; Remlinger, K.S.; Clark, R.V.; Hellerstein, M.K.; Evans, W.J. Longitudinal changes in total body creatine pool size and skeletal muscle mass using the D3-creatine dilution method. J. Cachexia Sarcopenia Muscle 2013. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.V.; Walker, A.C.; Miller, R.R.; O’Connor-Semmes, R.L.; Ravussin, E.; Cefalu, W.T. Creatine (methyl-d3) dilution in urine for estimation of total body skeletal muscle mass: Accuracy and variability vs. MRI and DXA. J. Appl. Physiol. 2018, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mussini, E.; Cornelio, F.; Dworzak, F.; Cotellessa, L.; Morandi, L.; Colombo, L.; De Ponte, G.; Marcucci, F. Content of methylhistidines in normal and pathological human skeletal muscles. Muscle Nerve 1983, 6, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Warnes, D.M.; Tomas, F.M.; Ballard, F.J. Increased rates of myofibrillar protein breakdown in muscle-wasting diseases. Muscle Nerve 1981, 4, 62–66. [Google Scholar] [CrossRef]
- Trappe, T.; Williams, R.; Carrithers, J.; Raue, U.; Esmarck, B.; Kjaer, M.; Hickner, R. Influence of age and resistance exercise on human skeletal muscle proteolysis: A microdialysis approach. J. Physiol. 2004, 554, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Perry, S.V. Biological activity and the 3-methylhistidine content of actin and myosin. Biochem. J. 1970, 119, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asatoor, A.M.; Armstrong, M.D. 3-methylhistidine, a component of actin. Biochem. Biophys. Res. Commun. 1967, 26, 168–174. [Google Scholar] [CrossRef]
- Hardy, M.F.; Perry, S.V. In vitro methylation of muscle proteins. Nature 1969, 223, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Long, C.L.; Haverberg, L.N.; Young, V.R.; Kinney, J.M.; Munro, H.N.; Geiger, J.W. Metabolism of 3-methylhistidine in man. Metabolism 1975, 24, 929–935. [Google Scholar] [CrossRef]
- Young, V.R.; Alexis, S.D.; Baliga, B.S.; Munro, H.N.; Muecke, W. Metabolism of administered 3-methylhistidine. Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J. Biol. Chem. 1972, 247, 3592–3600. [Google Scholar] [PubMed]
- Park, J.; Mehrotra, R.; Rhee, C.M.; Molnar, M.Z.; Lukowsky, L.R.; Patel, S.S.; Nissenson, A.R.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in peritoneal dialysis patients. Nephrol. Dial. Transplant. 2013, 28, 2146–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, M.; Bassler, K.H. Endogenous 3-methylhistidine excretion in healthy women and men with reference to muscle protein metabolism. Zeitschrift für Ernährungswissenschaft 1984, 23, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Tomas, F.M.; Ballard, F.J.; Pope, L.M. Age-dependent changes in the rate of myofibrillar protein degradation in humans as assessed by 3-methylhistidine and creatinine excretion. Clin. Sci. 1979, 56, 341–346. [Google Scholar] [CrossRef]
- McKeran, R.O.; Halliday, D.; Purkiss, P.; Royston, P. 3-Methylhistidine excretion as an index of myofibrillar protein catabolism in neuromuscular disease. J. Neurol. Neurosurg. Psychiatry 1979, 42, 536–541. [Google Scholar] [CrossRef]
- Bachmann, K.; Galeazzi, R.; Millet, A.; Burger, A.G. Plasma levels of 3-methylhistidine after ingestion of the pure amino acid or of muscular proteins measured by radioimmunoassay. Metabolism 1984, 33, 107–110. [Google Scholar] [CrossRef]
- Kochlik, B.; Gerbracht, C.; Grune, T.; Weber, D. The Influence of Dietary Habits and Meat Consumption on Plasma 3-Methylhistidine-A Potential Marker for Muscle Protein Turnover. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Qureshi, G.A.; Gutierrez, A.; Bergstrom, J. Determination of histidine, 1-methylhistidine and 3-methylhistidine in biological samples by high-performance liquid chromatography. Clinical application of urinary 3-methylhistidine in evaluating the muscle protein breakdown in uraemic patients. J. Chromatogr. 1986, 374, 363–369. [Google Scholar] [CrossRef]
- Gutierrez, A.; Alvestrand, A.; Qureshi, G.A.; Bergstrom, J. Influence of a meat-free diet on the urinary excretion of 3-methylhistidine and creatinine in chronic renal failure. J. Intern. Med. 1992, 232, 129–132. [Google Scholar] [CrossRef]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Fenton, A.; Montgomery, E.; Nightingale, P.; Peters, A.M.; Sheerin, N.; Wroe, A.C.; Lipkin, G.W. Glomerular filtration rate: New age- and gender- specific reference ranges and thresholds for living kidney donation. BMC Nephrol. 2018, 19, 336. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Saum, K.U.; Schottker, B.; Meid, A.D.; Holleczek, B.; Haefeli, W.E.; Hauer, K.; Brenner, H. Is Polypharmacy Associated with Frailty in Older People? Results from the ESTHER Cohort Study. J. Am. Geriatr. Soc. 2017, 65, e27–e32. [Google Scholar] [CrossRef] [PubMed]
- Herr, M.; Sirven, N.; Grondin, H.; Pichetti, S.; Sermet, C. Frailty, polypharmacy, and potentially inappropriate medications in old people: Findings in a representative sample of the French population. Eur. J. Clin. Pharmacol. 2017, 73, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Pilotto, A.; Vaona, A.; Demurtas, J.; Mueller, C.; Huntley, J.; Crepaldi, G.; et al. Polypharmacy Is Associated With Higher Frailty Risk in Older People: An 8-Year Longitudinal Cohort Study. J. Am. Med. Dir. Assoc. 2017, 18, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, A.J.; Sayer, A.A.; Clegg, A.; Rockwood, K.; Parker, S.; Hindle, J.V. New horizons in multimorbidity in older adults. Age Ageing 2017, 46, 882–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adlerberth, A.; Jagenburg, R.; Lindstedt, G.; Stenstrom, G.; Hasselgren, P.O. Effects of thyroid hormone and beta-adrenoceptor blocking agents on urinary excretion of 3-methylhistidine and plasma amino acids in man. Eur. J. Clin. Invest. 1986, 16, 316–320. [Google Scholar] [CrossRef]
- Quan-Jun, Y.; Jian-Ping, Z.; Jian-Hua, Z.; Yong-Long, H.; Bo, X.; Jing-Xian, Z.; Bona, D.; Yuan, Z.; Cheng, G. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation. Basic Clin. Pharmacol. Toxicol. 2017, 120, 303–311. [Google Scholar] [CrossRef]
- Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.; Rundle, M.; Frost, G.; et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017, 105, 600–608. [Google Scholar] [CrossRef]
- Mitry, P.; Wawro, N.; Rohrmann, S.; Giesbertz, P.; Daniel, H.; Linseisen, J. Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption. Eur. J. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- 3C Study Group. Vascular factors and risk of dementia: Design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology 2003, 22, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Peres, K.; Matharan, F.; Allard, M.; Amieva, H.; Baldi, I.; Barberger-Gateau, P.; Bergua, V.; Bourdel-Marchasson, I.; Delcourt, C.; Foubert-Samier, A.; et al. Health and aging in elderly farmers: The AMI cohort. BMC Public Health 2012, 12, 558. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Weber, D.; Peres, K.; Colpo, M.; Gomez-Cabrero, D.; Stuetz, W.; Dartigues, J.F.; Ferrucci, L.; Bandinelli, S.; Garcia-Garcia, F.J.; et al. Patterns of circulating fat-soluble vitamins and carotenoids and risk of frailty in four European cohorts of older adults. Eur. J. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Samieri, C.; Jutand, M.A.; Feart, C.; Capuron, L.; Letenneur, L.; Barberger-Gateau, P. Dietary patterns derived by hybrid clustering method in older people: Association with cognition, mood, and self-rated health. J. Am. Diet. Assoc. 2008, 108, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Tabue-Teguo, M.; Grasset, L.; Avila-Funes, J.A.; Genuer, R.; Proust-Lima, C.; Peres, K.; Feart, C.; Amieva, H.; Harmand, M.G.; Helmer, C.; et al. Prevalence and Co-Occurrence of Geriatric Syndromes in People Aged 75 Years and Older in France: Results From the Bordeaux Three-city Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 109–116. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Gutierrez Avila, G.; Alfaro-Acha, A.; Amor Andres, M.S.; De Los Angeles De La Torre Lanza, M.; Escribano Aparicio, M.V.; Humanes Aparicio, S.; Larrion Zugasti, J.L.; Gomez-Serranillo Reus, M.; Rodriguez-Artalejo, F.; et al. The prevalence of frailty syndrome in an older population from Spain. The Toledo Study for Healthy Aging. J. Nutr. Health Aging 2011, 15, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Santos-Eggimann, B.; Cuenoud, P.; Spagnoli, J.; Junod, J. Prevalence of frailty in middle-aged and older community-dwelling Europeans living in 10 countries. J. Gerontol A Biol. Sci. Med. Sci. 2009, 64, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, C.; Veronese, N.; Maggi, S.; Baggio, G.; Toffanello, E.D.; Zambon, S.; Sartori, L.; Musacchio, E.; Perissinotto, E.; Crepaldi, G.; et al. Factors Influencing Transitions Between Frailty States in Elderly Adults: The Progetto Veneto Anziani Longitudinal Study. J. Am. Geriatr. Soc. 2017, 65, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; St Sauver, J.L.; Jacobson, D.J.; Manemann, S.M.; Fan, C.; Roger, V.L.; Yawn, B.P.; Finney Rutten, L.J. Social and behavioural factors associated with frailty trajectories in a population-based cohort of older adults. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Franse, C.B.; van Grieken, A.; Qin, L.; Melis, R.J.F.; Rietjens, J.A.C.; Raat, H. Socioeconomic inequalities in frailty and frailty components among community-dwelling older citizens. PLoS ONE 2017, 12, e0187946. [Google Scholar] [CrossRef] [PubMed]
- Ballew, S.H.; Chen, Y.; Daya, N.R.; Godino, J.G.; Windham, B.G.; McAdams-DeMarco, M.; Coresh, J.; Selvin, E.; Grams, M.E. Frailty, Kidney Function, and Polypharmacy: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2017, 69, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Dominguez, R.; Urpi-Sarda, M.; Jauregui, O.; Needs, P.W.; Kroon, P.A.; Andres-Lacueva, C. Quantitative Dietary Fingerprinting (QDF)-A Novel Tool for Comprehensive Dietary Assessment Based on Urinary Nutrimetabolomics. J. Agric. Food Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total | Robust | Pre-Frail | Frail | p-Value |
---|---|---|---|---|---|
N, % (n) | 100 (360) | 37.8 (136) | 43.1 (155) | 19.2 (69) | |
Sex, % (n) | <0.001 # | ||||
Female | 49.4 (178) | 34.6 (47) | 56.1 (87) | 63.8 (44) | |
Male | 50.6 (182) | 65.74 (89) | 43.9 (68) | 36.2 (25) | |
Age, years | 78.8 ± 6.4 | 75.9 ± 6.0 a | 79.6 ± 5.8 b | 83.0 ± 5.8 c | <0.001 |
BMI, kg/m2 | 27.0 ± 4.5 | 26.7 ± 3.1 | 27.0 ± 4.4 | 27.7 ± 6.6 | 0.390 |
BMI groups, % (n) | 0.003 # | ||||
<25 kg/m2 | 33.5 (119) | 28.4 (38) | 35.7 (55) | 38.8 (26) | |
25–29.9 kg/m2 | 44.8 (159) | 56.0 (75) | 42..2 (65) | 28.4 (19) | |
≥30 kg/m2 | 21.7 (77) | 15.7 (21) | 22.1 (34) | 32.8 (22) | |
Cohort, % (n) | <0.001 # | ||||
3-C | 48.3 (174) | 27.9 (38) | 63.9 (99) | 56.6 (37) | |
AMI | 51.7 (186) | 72.1 (98) | 36.1 (56) | 46.6 (32) | |
Education, % (n) | 0.036 # | ||||
low | 51.7 (186) | 58.1 (79) | 43.9 (68) | 56.5 (39) | |
intermediate-high | 48.3 (174) | 41.9 (57) | 56.1 (87) | 43.5 (30) | |
Medication (n/day) | 5.38 ± 3.30 | 4.39 ± 2.88 a | 5.34 ± 3.08 b | 7.43 ± 3.64 c | <0.001 |
Meat servings, % (n) | 0.001# | ||||
≤3 per week | 18.2 (64) | 12.5 (17) | 18.3 (28) | 30.2 (19) | |
4–6 per week | 37.2 (131) | 30.9 (42) | 44.4 (68) | 33.3 (21) | |
≥7 per week | 44.6 (157) | 56.6 (77) | 37.3 (57) | 36.5 (23) | |
Fish servings, % (n) | 0.201 # | ||||
<1 per week | 15.1 (53) | 13.2 (18) | 13.9 (21) | 22.2 (14) | |
1 per week | 38.3 (134) | 45.6 (62) | 35.8 (54) | 28.6 (18) | |
2–3 per week | 43.7 (153) | 39.0 (53) | 47.7 (72) | 44.4 (28) | |
≥4 per week | 2.9 (10) | 2.2 (3) | 2.6 (4) | 4.8 (3) |
Biomarker | Robust (n = 136) | Pre-Frail (n = 155) | Frail (n = 69) | p-Value |
---|---|---|---|---|
3-MH | 4.72 (4.40; 5.07) a | 5.16 (4.82; 5.52) a,b | 5.72 (5.18; 6.32) b | 0.006 |
1-MH | 5.28 (4.46; 6.25) | 5.42 (4.64; 6.35) | 5.57 (4.39; 7.06) | 0.930 |
Crea | 86.70 (80.52; 92.89) | 94.42 (88.62; 100.21) | 97.70 (88.88; 106.52) | 0.074 |
3-MH/Crea | 0.059 (0.055; 0.063) a | 0.060 (0.056; 0.064) a | 0.067 (0.063; 0.071) b | 0.011 |
1-MH/Crea | 0.063 (0.054; 0.074) | 0.060 (0.052; 0.070) | 0.061 (0.048; 0.076) | 0.899 |
eGFR | 70.54 (67.67; 73.41) a | 60.96 (58.27; 63.65) b | 58.42 (54.33; 62.52) b | <0.001 |
3-MH/eGFR | 0.069 (0.062; 0.077) a | 0.089 (0.080; 0.099) b | 0.102 (0.087; 0.120) b | <0.001 |
3-MH/1-MH | 0.894 (0.763; 1.048) | 0.950 (0.819; 1.103) | 1.026 (0.819; 1.287) | 0.601 |
Biomarker | Pre-Frail (n = 155) vs. Robust (n = 136) | Frail (n = 69) vs. Robust (n = 136) | ||
---|---|---|---|---|
B (95% CI) | p-Value | B (95% CI) | p-Value | |
3-MH | 0.089 (−0.001; 0.178) | 0.053 | 0.096 (0.035; 0.157) | 0.002 |
Model 1 | 0.068 (−0.031; 0.167) | 0.180 | 0.107 (0.033; 0.181) | 0.005 |
Model 2 | 0.066 (−0.034; 0.166) | 0.194 | 0.083 (0.005; 0.162) | 0.038 |
3-MH/Crea | 0.001 (−0.003; 0.005) | 0.578 | 0.004 (0.001; 0.007) | 0.006 |
Model 1 | 0.001 (−0.004; 0.005) | 0.795 | 0.004 (0.000; 0.008) | 0.029 |
Model 2 | 0.001 (−0.004; 0.005) | 0.756 | 0.003 (−0.001; 0.007) | 0.092 |
3-MH/eGFR | 0.248 (0.103; 0.393) | 0.001 | 0.196 (0.100; 0.292) | <0.001 |
Model 1 | 0.137 (−0.020; 0.294) | 0.087 | 0.170 (0.055; 0.285) | 0.004 |
Model 2 | 0.130 (−0.028; 0.287) | 0.106 | 0.136 (0.013; 0.260) | 0.031 |
3-MH/1-MH | 0.061 (−0.159; 0.281) | 0.586 | 0.069 (−0.068; 0.206) | 0.320 |
Model 1 | 0.128 (−0.117; 0.373) | 0.304 | 0.046 (−0.123; 0.215) | 0.593 |
Model 2 | 0.146 (−0.098; 0.390) | 0.239 | 0.052 (−0.129; 0.234) | 0.570 |
Biomarker Quintiles | Pre-Frail (n = 155) vs. Robust (n = 136) | Frail (n = 69) vs. Robust (n = 136) | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
3-MH | 1.11 (0.95; 1.31) | 0.198 | 1.39 (1.12; 1.71) | 0.003 |
Model 1 | 1.07 (0.89; 1.28) | 0.494 | 1.31 (1.03; 1.67) | 0.029 |
Model 2 | 1.09 (0.90; 1.32) | 0.382 | 1.31 (1.01; 1.70) | 0.046 |
3-MH/Crea | 1.02 (0.86; 1.20) | 0.855 | 1.24 (1.01; 1.53) | 0.043 |
Model 1 | 1.01 (0.83; 1.22) | 0.942 | 1.18 (0.92; 1.51) | 0.185 |
Model 2 | 1.02 (0.84; 1.24) | 0.857 | 1.21 (0.93; 1.58) | 0.161 |
3-MH/eGFR | 1.30 (1.10; 1.54) | 0.002 | 1.56 (1.25; 1.94) | <0.001 |
Model 1 | 1.16 (0.96; 1.41) | 0.127 | 1.33 (1.04; 1.71) | 0.025 |
Model 2 | 1.18 (0.97; 1.43) | 0.109 | 1.35 (1.03; 1.77) | 0.030 |
3-MH/1-MH | 1.04 (0.89; 1.23) | 0.603 | 1.10 (0.90; 1.35) | 0.365 |
Model 1 | 1.10 (0.92; 1.32) | 0.292 | 1.13 (0.89; 1.44) | 0.310 |
Model 2 | 1.11 (0.92; 1.34) | 0.269 | 1.17 (0.90; 1.51) | 0.246 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochlik, B.; Stuetz, W.; Pérès, K.; Féart, C.; Tegner, J.; Rodriguez-Mañas, L.; Grune, T.; Weber, D. Associations of Plasma 3-Methylhistidine with Frailty Status in French Cohorts of the FRAILOMIC Initiative. J. Clin. Med. 2019, 8, 1010. https://doi.org/10.3390/jcm8071010
Kochlik B, Stuetz W, Pérès K, Féart C, Tegner J, Rodriguez-Mañas L, Grune T, Weber D. Associations of Plasma 3-Methylhistidine with Frailty Status in French Cohorts of the FRAILOMIC Initiative. Journal of Clinical Medicine. 2019; 8(7):1010. https://doi.org/10.3390/jcm8071010
Chicago/Turabian StyleKochlik, Bastian, Wolfgang Stuetz, Karine Pérès, Catherine Féart, Jesper Tegner, Leocadio Rodriguez-Mañas, Tilman Grune, and Daniela Weber. 2019. "Associations of Plasma 3-Methylhistidine with Frailty Status in French Cohorts of the FRAILOMIC Initiative" Journal of Clinical Medicine 8, no. 7: 1010. https://doi.org/10.3390/jcm8071010