Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. Arginine Vasopressin (AVP)
3.2. Molecular Component of AVP
3.3. Animal Studies
3.4. Clinical Studies
3.5. Discussion
3.6. Safety Profile
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Ousley, O.; Cermak, T. Autism Spectrum Disorder: Defining Dimensions and Subgroups. Curr. Dev. Disord. Rep. 2013, 1, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; BMC Med.: Arlington, VA, USA, 2013. [Google Scholar]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Autistic Spectrum Disorders. Center for Disease Control and Prevention. Available online: https://www.cdc.gov/ncbddd/autism/data.html (accessed on 3 August 2018).
- Ronald, A.; Happé, F.; Bolton, P.; Butcher, L.M.; Price, T.S.; Wheelwright, S.; Baron-Cohen, S.; Plomin, R. Genetic heterogeneity between the three components of the autism spectrum: A twin study. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Taniai, H.; Nishiyama, T.; Miyachi, T.; Imaeda, M.; Sumi, S. Genetic influences on the board spectrum of autism: Study of proband-ascertained twins. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.E.; Law, J.K.; Yenokyan, G.; Mcgready, J.; Kaufmann, W.E.; Law, P.A. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 2009, 163, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 2011, 68, 1095–1102. [Google Scholar] [CrossRef]
- Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.; Dobkins, K.; et al. Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef]
- Miyachi, T.; Tanemura, M.; Sumi, S.; Taniai, H. Sibling risk of pervasive developmental disorder estimated by means of an epidemiologic survey in Nagoya, Japan. J. Hum. Genet. 2006, 51, 518–522. [Google Scholar] [Green Version]
- Hall, S.S.; Lightbody, A.A.; Reiss, A.L. Compulsive, self-injurious, and autistic behavior in children and adolescents with fragile X syndrome. Am. J. Ment. Retard. 2008, 113, 44–53. [Google Scholar] [CrossRef]
- Zecavati, N.; Spence, S.J. Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr. Neurol. Neurosci. Rep. 2009, 9, 129–136. [Google Scholar] [CrossRef]
- DiGuiseppi, C.; Hepburn, S.; Davis, J.M.; Fidler, D.J.; Hartway, S.; Lee, N.R.; Miller, L.; Ruttenber, M.; Robinson, C. Screening for autism spectrum disorders in children with Down syndrome. J. Dev. Behav. Pediatr. 2010, 31, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Tordjman, S.; Baumann, C.; Burglen, L.; Excoffier, E.; Lazar, G.; Mazet, P.; Verloes, A. Specific genetic disorders and autism: Clinical contribution towards their identification. J. Autism Dev. Disord. 2005, 35, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Oztan, O.; Jackson, L.P.; Libove, R.A.; Sumiyoshi, R.D.; Phillips, J.M.; Garner, J.P.; Hardan, A.Y.; Parker, K.J. Biomarker discovery for disease status and severity in children with autism. Psychoneuroendocrinology 2018, 89, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.E.; Baio, J.; Van Naarden Braun, K.; Doernberg, N.; Meaney, F.J.; Kirby, R.S.; Network, A.D.D.M. A public health collaboration for the surveillance of autism spectrum disorders. Paediatr. Perinat. Epidemiol. 2007, 21, 179–190. [Google Scholar] [CrossRef]
- Ji, N.; Findling, R.L. An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Curr. Opin. Psychiatry 2015, 28, 91–101. [Google Scholar] [PubMed]
- Carson, D.S.; Garner, J.P.; Hyde, S.A.; Libove, R.A.; Berquist, S.W.; Hornbeak, K.B.; Jackson, L.P.; Sumiyoshi, R.D.; Howerton, C.L.; Hannah, S.L.; et al. Arginine Vasopressin Is a Blood-Based Biomarker of Social Functioning in Children with Autism. PLoS ONE 2015, 10, e0132224. [Google Scholar] [CrossRef]
- Hammock, E.A.; Young, L.J. Oxytocin, vasopressin and pair bonding: Implications for autism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010, 65, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, Z.R.; Young, L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008, 322, 900–904. [Google Scholar] [CrossRef]
- Heinrichs, M.; von Dawans, B.; Domes, G. Oxytocin, vasopressin, and human social behavior. Front. Neuroendocrinol. 2009, 30, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Born, J.; Lange, T.; Kern, W.; McGregor, G.P.; Bickel, U.; Fehm, H.L. Sniffing neuropeptides: A transnasal approach to the human brain. Nat. Neurosci. 2002, 5, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S., 3rd. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 8, 127–151. [Google Scholar] [CrossRef]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science Review: Vasopressin and the cardiovascular system part-I—Receptor physiology. Crit. Care 2003, 7, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, H.K.; Lee, H.-J.; Macbeth, A.H.; Young, W.S.; Iii, W.S.Y. Vasopressin: Behavioral roles of an “original” neuropeptide. Prog. Neurobiol. 2008, 84, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Green, J.J.; Hollander, E. Autism and oxytocin: New developments in translational approaches to therapeutics. Neurotherapeutics 2010, 7, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, S.G.; Connelly, J.J.; Towers, A.J.; Johnson, J.; Biscocho, D.; Markunas, C.A.; Lintas, C.; Abramson, R.K.; Wright, H.H.; Ellis, P.; et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 2009, 7, 62. [Google Scholar] [CrossRef]
- Wang, Y.F.; Hatton, G.I. Astrocytic plasticity and patterned oxytocin neuronal activity: Dynamic interactions. J. Neurosci. 2009, 2, 1743–1754. [Google Scholar] [CrossRef]
- Bielsky, I.F.; Hu, S.B.; Szegda, K.L.; Westphal, H.; Young, L.J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 2004, 29, 483–493. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Aldag, J.M.; Insel, T.R.; Young, L.J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 2001, 21, 8278–8285. [Google Scholar] [CrossRef]
- Bielsky, I.F.; Young, L.J. Oxytocin, vasopressin, and social recognition in mammals. Peptides 2004, 25, 1565–1574. [Google Scholar] [CrossRef]
- Engelmann, M. Vasopressin in the septum: Not important versus causally involved in learning and memory—Two faces of the same coin? Prog. Brain Res. 2008, 170, 389–395. [Google Scholar] [PubMed]
- Jarcho, M.R.; Mendoza, S.P.; Mason, W.A.; Yang, X.; Bales, K.L. Intranasal vasopressin affects pair bonding and peripheral gene expression in male Callicebus cupreus. Genes Brain Behav. 2011, 10, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Belyakova, A.S.; Sinjushin, A.A.; Voskresenskaya, O.G.; Kamensky, A.A.; Golubovich, V.P. The analog of arginine-vasopressin (6-9) fragment, Ac-D-SPRG, exhibits antidepressant action in rats in case of intranasal injection. Neurochem. J. 2015, 9, 201–205. [Google Scholar] [CrossRef]
- Ramos, L.; Hicks, C.; Caminer, A.; McGregor, I.S. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats. Psychoneuroendocrinology 2014, 46, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.C.; Balland, J.F.; Dhauna, J.; Yang, S.Y.; Traina, J.L.; Vazquez, J.; Bales, K.L. Early Intranasal Vasopressin Administration Impairs Partner Preference in Adult Male Prairie Voles (Microtus ochrogaster). Front. Endocrinol. 2017, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Varlinskaya, E.I.; Petrov, E.S.; Robinson, S.R.; Smotherman, W.P. Behavioral effects of centrally administered arginine vasopressin in the rat fetus. Behav. Neurosci. 1994, 108, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Lukas, M.; Bredewold, R.; Landgraf, R.; Neumann, I.D.; Veenema, A.H. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology 2011, 36, 843–853. [Google Scholar] [CrossRef]
- Hardan, A.; Parker, K.; Garner, J. A Randomized Controlled Trial of Intranasal Vasopressin Treatment for Social Deficits in Children with Autism, 4th ed.; World Summit of Pediatrics: Rome, Italy, 2018; p. 35. Available online: http://www.wsp-congress.com/documenti/Abstract-Book-WSP2018-v6.pdf (accessed on 12 September 2018).
- Hardan, A. The Role of Vasopressin in the Social Deficits of Autism. National Institute of Health. Available online: https://clinicaltrials.gov/ct2/show/NCT01962870 (accessed on 12 September 2018).
- Zink, C.F.; Kempf, L.; Hakimi, S.; Rainey, C.A.; Stein, J.L.; Meyer-Lindenberg, A.; Stein, J. Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans. Transl. Psychiatry 2011, 1, e3. [Google Scholar] [CrossRef]
- Zink, C.F.; Stein, J.L.; Kempf, L.; Hakimi, S.; Meyer-Lindenberg, A. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J. Neurosci. 2010, 3, 7017–7022. [Google Scholar] [CrossRef]
- Parker, K.; Oztan, O.; Libove, R.; Sumiyoshi, R.; Summers, J.; Hinman, K.; Fung, L.; Motonaga, K.; Carson, D.; Phillips, J.; et al. Intranasal Vasopressin Treatment Improves Social Abilities in Children with Autism; IMFAR: San Francisco, CA, USA, 2017. [Google Scholar]
- Guastella, A.J.; Kenyon, A.R.; Alvares, G.A.; Carson, D.S.; Hickie, I.B. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry 2010, 67, 1220–1222. [Google Scholar] [CrossRef]
- Thompson, R.R.; George, K.; Walton, J.C.; Orr, S.P.; Benson, J. Sex-specific influences of vasopressin on human social communication. Proc. Natl. Acad. Sci. USA 2006, 103, 7889–7894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunnlieb, C.; Nave, G.; Camerer, C.F.; Schosser, S.; Vogt, B.; Münte, T.F.; Heldmann, M. Vasopressin increases human risky cooperative behavior. Proc. Natl. Acad. Sci. USA 2016, 113, 2051–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Xu, P.; Luo, Y.-J.; Feng, C. Differential Effects of Intranasal Vasopressin on the Processing of Adult and Infant Cues: An ERP Study. Front. Hum. Neurosci. 2018, 12, 329. [Google Scholar] [CrossRef] [PubMed]
- Price, D.; Burris, D.; Cloutier, A.; Thompson, C.B.; Rilling, J.K.; Thompson, R.R. Dose-Dependent and Lasting Influences of Intranasal Vasopressin on Face Processing in Men. Front. Endocrinol. 2017, 8, 220. [Google Scholar] [CrossRef] [PubMed]
- Rilling, J.K.; Li, T.; Chen, X.; Gautam, P.; Haroon, E.; Thompson, R.R. Arginine Vasopressin Effects on Subjective Judgments and Neural Responses to Same and Other-Sex Faces in Men and Women. Front. Endocrinol. 2017, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Johnson, Z.V.; Young, L.J. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci. Biobehav. Rev. 2017, 76, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovino, M.; Messana, T.; De Pergola, G.; Iovino, E.; Dicuonzo, F.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. The Role of Neurohypophyseal Hormones Vasopressin and Oxytocin in Neuropsychiatric Disorders. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Zai, C.C.; Muir, K.E.; Nowrouzi, B.; Shaikh, S.A.; Choi, E.; Berall, L.; Trépanier, M.-O.; Beitchman, J.H.; Kennedy, J.L. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012, 200, 784–788. [Google Scholar] [CrossRef] [PubMed]
- D’Arc, B.F.; Mottron, L.; Elsabbagh, M.; Jacquemont, S. Tinkering with the vasopressin pathway in autism. Sci. Transl. Med. 2019, 11, eaax7315. [Google Scholar] [CrossRef]
- Bolognani, F.; del Valle Rubido, M.; Squassante, L.; Wandel, C.; D’ardhuy, X.L.; Boak, L.; Derks, M.; Kletzl, H.; Lennon-Chrimes, S.L.; Murtagh, L.; et al. Results of a Phase 2 Randomized Double-Blind Placebo Controlled Study (VANILLA) Investigating the Efficacy and Safety of a V1a Antagonist (RG7314) in Adult Men with ASD; IMFAR: San Francisco, CA, USA, 2017. [Google Scholar]
- Cataldo, I.; Azhari, A.; Esposito, G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front. Mol. Neurosci. 2018, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Vasopressins—Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11979316#section=IUPAC-Name (accessed on 1 October 2018).
- Dünser, M.W.; Mayr, A.J.; Tür, A.; Pajk, W.; Barbara, F.; Knotzer, H.; Ulmer, H.; Hasibeder, W.R. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine resistant vasodilatory shock: Incidence and risk factors. Crit. Care Med. 2003, 31, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
Study | Dose of Inhaled Vasopressin | Results |
---|---|---|
Hardan et al. [41] | 24 IU ^ or 32 IU BID # | improvement in social responsiveness scale |
Zink et al. [42] | 40 IU once daily | prosocial effect |
Parker et al. [44] | 12 IU or 16 IU BID | improvement in social responsiveness scale |
Guastella et al. [45] | 20 IU once daily | improvement in judgment of faces |
Thompson et al. [46] | 20 IU once daily | stimulates facial motor impression |
Brunnlieb et al. [47] | 40 IU once daily | downregulated risk-integration region |
Wu et al. [48] | 20 IU once daily | quick attention to both adult and infant cues |
Price et al. [49] | 20 IU or 40 IU once daily | improvement in effects on face processing |
Rilling et al. [50] | 40 IU once daily | increased positive ratings of same-sex faces |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendaus, M.A.; Jomha, F.A.; Alhammadi, A.H. Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder. J. Clin. Med. 2019, 8, 1061. https://doi.org/10.3390/jcm8071061
Hendaus MA, Jomha FA, Alhammadi AH. Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder. Journal of Clinical Medicine. 2019; 8(7):1061. https://doi.org/10.3390/jcm8071061
Chicago/Turabian StyleHendaus, Mohamed A., Fatima A. Jomha, and Ahmed H. Alhammadi. 2019. "Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder" Journal of Clinical Medicine 8, no. 7: 1061. https://doi.org/10.3390/jcm8071061
APA StyleHendaus, M. A., Jomha, F. A., & Alhammadi, A. H. (2019). Vasopressin in the Amelioration of Social Functioning in Autism Spectrum Disorder. Journal of Clinical Medicine, 8(7), 1061. https://doi.org/10.3390/jcm8071061