Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Culture, Identification, and DNA Extraction
2.3. Amplification Experiments and Gene Detection
2.4. Antibiotic Susceptibility Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Factor | GAST | PUD | GERD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GAST 2 (n = 46) | Others (n = 86) | OR (95%CI) | p Value | PUD 3 (n = 9) | Others (n = 123) | OR (95%CI) | p-Value | GERD 4 (n = 71) | Others (n = 61) | OR (95%CI) | p-Value | |
Age (mean ± SD) | 57.2 ± 15.8 | 57.4 ± 15.7 | 1.0 (0.97–1.0) | 0.81 | 61.3 ± 12.3 | 57.1 ± 15.8 | 1.0 (0.97–1.1) | 0.43 | 56.9 ± 16.0 | 57.9 ± 15.3 | 1.0 (0.97–1.0) | 0.72 |
Male gender | 23 (50.0) | 31 (36.1) | 1.9 (0.9–3.9) | 0.88 | 4 (44.4) | 50 (40.7) | 1.2 (0.3–4.5) | 0.82 | 27 (38.0) | 27 (44.3) | 0.8 (0.4–1.6) | 0.47 |
BMI 1 (mean ± SD) | 27.0 ± 3.8 | 25.8 ± 3.4 | 1.1 (1.0–1.2) | 0.06 | 27.2 ± 3.8 | 26.1 ± 3.6 | 1.1 (0.9–1.3) | 0.42 | 25.9 ± 3.5 | 26.6 ± 3.8 | 0.9 (0.8–1.0) | 0.22 |
rural residence | 20 (42.5) | 27 (31.8) | 1.7 (0.8–3.5) | 0.18 | 3 (33.3) | 44 (35.8) | 1.1 (0.2–4.7) | 0.92 | 24 (33.8) | 23 (38.3) | 0.8 (0.4–1.7) | 0.59 |
Smoking | 12 (26.1) | 28 (32.9) | 0.7 (0.3–1.6) | 0.42 | 3 (33.3) | 37 (30.1) | 1.4 (0.3–6.1) | 0.66 | 20 (28.2) | 20 (33.3) | 0.8 (0.4–1.7) | 0.52 |
ureC | 27 (58.7) | 35 (40.7) | 1.9 (0.9–4.0) | 0.075 | 6 (66.7) | 56 (45.5) | 2.4 (0.6–10.0) | 0.23 | 31 (43.7) | 31 (50.8) | 0.8 (0.4–1.5) | 0.41 |
cagA | 16 (34.8) | 19 (22.1) | 2.0 (0.9–4.4) | 0.093 | 5 (55.6) | 30 (24.4) | 3.9 (1.0–15.3) | 0.054 | 16 (22.5) | 19 (31.2) | 0.6 (0.3–1.4) | 0.27 |
vacA s1m2 | 10 (21.7) | 13 (15.1) | 2.0 (0.7–5.2) | 0.17 | 3 (33.3) | 20 (16.3) | 3.4 (0.6–18.1) | 0.15 | 11 (15.5) | 12 (19.7) | 0.7 (0.3–1.8) | 0.48 |
vacA s1m1 | 8 (17.4) | 6 (7.0) | 3.4 (1.0–11.0) | 0.042 | 3 (33.3) | 11 (8.9) | 6.2 (1.1–34.6) | 0.038 | 5 (7.0) | 9 (14.8) | 0.4 (0.1–1.4) | 0.17 |
vacA s2m2 | 7 (15.2) | 13 (15.2) | 1.4 (0.5–3.9) | 0.56 | 0 (0) | 20 (16.3) | - | - | 12 (16.9) | 8 (13.1) | 1.2 (0.4–3.2) | 0.77 |
iceA1 | 7 (15.2) | 16 (18.6) | 0.8 (0.3–2.1) | 0.63 | 3 (33.3) | 20 (16.3) | 2.6 (0.6–11.1) | 0.21 | 16 (22.5) | 7 (11.5) | 2.2 (0.9–5.9) | 0.1 |
iceA2 | 11 (23.9) | 14 (16.3) | 1.6 (0.7–3.9) | 0.29 | 3 (33.3) | 22 (17.9) | 2.3 (0.5–9.8) | 0.26 | 10 (14.1) | 15 (24.6) | 0.5 (0.2–1.2) | 0.13 |
References
- Atherton, J.C. The pathogenesis of Helicobacter pylori-induced gastro-duodenal disease. Annu. Rev. Pathol. 2006, 1, 63–96. [Google Scholar] [CrossRef] [PubMed]
- Eusebi, L.H.; Zagari, R.M.; Bazzoli, F. Epidemiology of Helicobacter pylori infection. Helicobacter 2014, 19, 1–5. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—The Maastricht V/Florence consensus report. Gut 2017, 66, 646–664. [Google Scholar] [CrossRef] [PubMed]
- Makola, D.; Petura, D.A.; Crowe, S.E. Helicobacter pylori infection and related gastrointestinal diseases. J. Clin. Gastroenterol. 2007, 41, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Moss, S.F. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett. 2009, 282, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covacci, A.; Censini, S.; Bugnoli, M.; Petracca, R.; Burroni, D.; Macchia, G.; Massone, A.; Papini, E.; Xiang, Z.; Figura, N. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. USA 1993, 90, 5791–5795. [Google Scholar] [CrossRef]
- Cover, T.L.; Blaser, M.J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 1992, 267, 10570–10575. [Google Scholar] [PubMed]
- Atherton, J.C.; Cao, P.; Peek, R.M.; Tummuru, M.K.; Blaser, M.J.; Cover, T.L. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 1995, 270, 17771–17777. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Graham, D.Y. Helicobacter pylori virulence and cancer pathogenesis. Future Oncol. 2014, 10, 1487–1500. [Google Scholar] [CrossRef]
- Lage, A.P.; Godfroid, E.; Fauconnier, A.; Burette, A.; Butzler, J.P.; Bollen, A.; Glupczynski, Y. Diagnosis of Helicobacter pylori infection by PCR: Comparison with other invasive techniques and detection of cagA gene in gastric biopsy specimens. J. Clin. Microbiol. 1995, 33, 2752–2756. [Google Scholar]
- Smith, S.M.; O’Morain, C.; McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol. 2014, 20, 9912–9921. [Google Scholar] [CrossRef] [PubMed]
- Bartnik, W.; Celińska-Cedro, D.; Dzieniszewski, J.; Laszewicz, W.; Mach, T.; Przytulski, K.; Skrzydlo-Radomanska, B. Guidelines from the polish society of gastroenterology for the diagnosis and treatment of Helicobacter pylori infection. Gastroenterol. Klin. 2014, 2, 41–49. [Google Scholar]
- Patel, S.K.; Pratap, C.B.; Jain, A.K.; Gulati, A.K.; Nath, G. Diagnosis of Helicobacter pylori: What should be the gold standard? World J. Gastroenterol. 2014, 20, 12847–12859. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, M.G.C.; Vazquez, R.G.; Mendez, I.M.; Vargas, C.R.; Cerezo, S.G. Detection of the glmM gene in Helicobacter pylori isolates with novel primer by PCR. J. Clin. Microbiol. 2011, 49, 1650–1652. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, L.; Figueiredo, C.; Sanna, R.; Plaisier, A.; Schneeberger, P.; De Boer, W.; Quint, W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1998, 115, 58–66. [Google Scholar] [CrossRef]
- Peek, R.M., Jr.; Thompson, S.A.; Donahue, J.P.; Tham, T.K.; Atherton, J.C.; Blaser, M.J.; Miller, G.G. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc. Assoc. Am. Physicians 1998, 110, 531–544. [Google Scholar] [PubMed]
- Grove, D.I.; Koutsouridis, G.; Cummins, A.G. Comparison of culture, histopatology and urease testing for diagnosis of Helicobacter pylori gastritis and susceptibility to amoxicillin, clarithromycin, metronidazole and tetracycline. Pathology 1998, 30, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Loffeld, R.J.; Stobbering, E.; Flendrig, J.A.; Arends, J.W. Helicobacter pylori in gastric biopsy specimens. Comparison of culture, modified giemsa stain, and immunohistochemistry. A retrospective study. J. Pathol. 1991, 165, 69–73. [Google Scholar] [CrossRef]
- Mégraud, F.; Lehours, P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin. Microbiol. Rev. 2007, 20, 280–322. [Google Scholar] [CrossRef]
- Duś, I.; Dobosz, T.; Manzin, A.; Loi, G.; Serra, C.; Radwan-Oczko, M. Role of PCR in Helicobacter pylori diagnostics and research—New approaches for study of coccoid and spiral forms of bacteria. Postepy Hig. Med. Dosw. (Online) 2013, 67, 261–268. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Módena, J.L.P.; Sales, A.I.L.; Acrani, G.O.; Russo, R.; Ribeiro, M.A.V.; Fukuhara, Y.; Da Silveira, W.D.; De Oliveira, R.B.; Brocchi, M. Association between Helicobacter pylori genotypes and gastric disorders in relation to the cag pathogenicity island. Diagn. Microbiol. Infect. Dis. 2007, 59, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Zalewska-Ziob, M.; Wiczkowski, A.; Strzelczyk, J.K.; Adamek, B.; Gawron, K.; Trapp, G.; Sieron, A.; Gadowska-Cicha, A. The prevalence of Helicobacter pylori vacA alleles in patients with chronic gastritis. Adv. Clin. Exp. Med. 2007, 16, 29–33. [Google Scholar]
- Biernat, M.M.; Gościniak, G.; Iwańczak, B. Prevalence of Helicobacter pylori cagA, vacA, iceA, babA2 genotypes in Polish children and adolescents with gastroduodenal disease. Postepy Hig. Med. Dośw. 2014, 68, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Loffeld, R.J.; Werdmuller, B.F.; Kuster, J.G.; Perez-Perez, G.I.; Blaser, M.J.; Kuipers, E.J. Colonization with cagA-positive Helicobacter pylori strains inversely associated with reflux esophagitis and Barrett’s esophagus. Digestion 2000, 62, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Figura, N.; Guglielmetti, P.; Rossolini, A.; Barberi, A.; Cusi, G.; A Musmanno, R.; Russi, M.; Quaranta, S. Cytotoxin production by Campylobacter pylori strains isolated from patients with peptic ulcers and from patients with chronic gastritis only. J. Clin. Microbiol. 1989, 27, 225–226. [Google Scholar] [Green Version]
- Miehlke, S.; Kirsch, C.; Agha-Amiri, K.; Günther, T.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Ehninger, G.; Bayerdörffer, E. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer 2000, 87, 322–327. [Google Scholar] [CrossRef]
- Latifi-Navid, S.; Mohammadi, S.; Maleki, P.; Zahri, S.; Yazdanbod, A.; Siavoshi, F.; Massarrat, S. Helicobacter pylori vacA d1/-i1 genotypes and geographic differentiation between high and low incidence areas of gastric cancer in Iran. Arch. Iran. Med. 2013, 16, 330–337. [Google Scholar]
- Van Doorn, L.; Figueiredo, C.; Mégraud, F.; Peña, S.; Midolo, P.; Queiroz, D.M.D.M.; Carneiro, F.; VanderBorght, B.; Pegado, M.D.G.F.; Sanna, R.; et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 1999, 116, 823–830. [Google Scholar] [CrossRef]
- Fernández-Reyes, M.; Tamayo, E.; Rojas-Rengifo, D.; Fischer, W.; Carrasco-García, E.; Alonso, M.; Lizasoain, J.; Bujanda, L.; Cosme, Á.; Montes, M. Helicobacter pylori and primary antimicrobial resistance in Northern Spain. Eur. J. Clin. Investig. 2019, 13150. [Google Scholar] [CrossRef]
- Idowu, A.; Mzukwa, A.; Harrison, U.; Palamides, P.; Haas, R.; Mbao, M.; Mamdoo, R.; Bolon, J.; Jolaiya, T.; Smith, S.; et al. Detection of Helicobacter pylori and its virulence genes (cagA, dupA, and vacA) among patients with gastroduodenal diseases in Chris Hani Baragwanath Academic Hospital, South Africa. BMC Gastroenterol. 2019, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Iwańczak, B.W.; Laszewicz, F.; Iwańczak, K.; Dzierzanowska-Fangrat, K.; Rozynek, M.; Dzierzanowska, D.; Gosciniak, G.; Dlugosz, J.; Task force of The Polish Society of Gastroenterology. Genotypic and clinical differences of seropositive Helicobacter pylori children and adults in the Polish population. J. Physiol. Pharmacol. 2014, 65, 801–807. [Google Scholar]
- Audibert, C.; Janvier, B.; Grignon, B.; Salaüna, L.; Burucoa, C.; Lecron, J.-C.; Fauchere, J.-L. Correlation between IL-8 induction, cagA status and vacA genotypes in 153 French Helicobacter pylori isolates. Res. Microbiol. 2000, 151, 191–200. [Google Scholar] [CrossRef]
- Molina-Castro, S.; Garita-Combronero, J.; Malespin-Bendana, W.; Une, C.; Ramirez, V. Virulence factor genotyping of Helicobacter pylori isolated from Costa Rican dyspeptic patients. Microb. Pathogen. 2019, 128, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Matsunari, O.; Miftahussurur, M.; Shiota, S.; Suzuki, R.; Vilaichone, R.-K.; Uchida, T.; Ratanachu-Ek, T.; Tshering, L.; Mahachai, V.; Yamaoka, Y. Rare Helicobacter pylori virulence genotypes in Bhutan. Sci. Rep. 2016, 6, 22584. [Google Scholar] [CrossRef] [PubMed]
- Akeel, M.; Shehata, A.; Elhafey, A.; Elmakki, E.; Aboshouk, T.; Ageely, H.; Mahfouz, M. Helicobacter pylori vacA, cagA and iceA genotypes in dyspeptic patients from southwestern region, Saudi Arabia: Distribution and association with clinical outcomes and histopathological changes. BMC Gastroenterol. 2019, 19, 16. [Google Scholar] [CrossRef]
- Boyanova, L.; Yordanov, D.; Gergova, G.; Markowska, R.; Mitov, I. Association of iceA and babA genotypes in Helicobacter pylori strains with patient and strain characteristics. Antonie van Leeuwenhoek 2010, 98, 343–350. [Google Scholar] [CrossRef]
- Homan, M.; Luzar, B.; Kocjan, B.J.; Orel, R.; Močilnik, T.; Shrestha, M.; Kveder, M.; Poljak, M. Prevalence and clinical relevance of cagA, vacA, and iceA genotypes of Helicobacter pylori isolated from Slovenian children. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 289–296. [Google Scholar] [CrossRef]
- Lin, H.-J.; Perng, C.-L.; Lo, W.-C.; Wu, C.-W.; Tseng, G.-Y.; Li, A.F.-Y.; Sun, I.-C.; Ou, Y.-H.; Lin, C.-L.P.H.-J. Helicobacter pylori cagA, iceA and vacA genotypes in patients with gastric cancer in Taiwan. World J. Gastroenterol. 2004, 10, 2493–2497. [Google Scholar] [CrossRef]
- Almeida, N.; Donato, M.M.; Romaozinho, J.M.; Luxo, C.; Cardoso, O.; Cipriano, M.A.; Marinho, C.; Fernandes, A.; Sofia, C. Correlation of Helicobacter pylori genotypes with gastric histopathology in the central region of a south-european country. Dig. Dis. Sci. 2015, 60, 74–85. [Google Scholar] [CrossRef]
- Mégraud, F. Time to change approaches to Helicobacter pylori management. Lancet Gastroenterol. Hepatol. 2017, 2, 692–693. [Google Scholar] [CrossRef]
- Bińkowska, A.; Biernat, M.M.; Łaczmański, Ł.; Gościniak, G. Molecular patterns of resistance among Helicobacter pylori strains in south-western Poland. Front. Microbiol. 2018, 9, 3154. [Google Scholar] [CrossRef] [PubMed]
- Karczewska, E.; Klesiewicz, K.; Wojtas-Bonior, I.; Skiba, I.; Sito, E.; Czajecki, K.; Zwolińska-Wcisło, M.; Budak, A. Levofloxacin resistance of Helicobacter pylori strains isolated from patients in Southern Poland, between 2006-2012. Acta Pol. Pharm. 2014, 71, 477–483. [Google Scholar] [PubMed]
- GLOBOCAN 2018. Available online: https://gco.iarc.fr (accessed on 6 July 2019).
Clinical Diagnosis | No. of Patients (Mean Age in Years ± SD) | ||
---|---|---|---|
Male (n = 54) | Female (n = 78) | Total (n = 132) | |
Gastritis/duodenitis | 23 (57.0 ± 15.3) | 23 (57.5 ± 16.6) | 46 (57.2 ± 15.6) |
Peptic ulcer (gastric/duodenal) | 4 (55.0 ± 12.6) | 5 (66.4 ± 10.6) | 9 (61.3 ± 12.3) |
Gastroesophageal reflux disease | 27 (58.1 ± 15.5) | 44 (56.2 ± 16.4) | 71 (56.9 ± 16.0) |
Normal | 1 (31.0) | 5 (57.4 ± 17.6) | 6 (53.0 ± 19.1) |
VacA Alleles 1 | CagA Status (%) | IceA Genotype (%) | Total (%) | ||||
---|---|---|---|---|---|---|---|
CagA(+) | CagA(−) | IceA1 | IceA2 | IceA1+2 | Negative | ||
s1m1 | 11 (17.7) | 1 (1.6) | 4 (6.5) | 5 (8.1) | 0 | 3 (4.8) | 12 (19.4) |
s1bm2 | 1 (1.6) | 0 | 0 | 0 | 1 (1.6) | 0 | 1 (1.6) |
s1m1/s1m2 | 1 (1.6) | 2 (3.2) | 0 | 2 (3.2) | 1 (1.6) | 0 | 3 (4.8) |
s1m2 | 16 (25.8) | 5 (8.1) | 10 (16.1) | 7 (11.3) | 0 | 4 (6.5) | 21 (33.9) |
s2m2 | 3 (4.8) | 15 (24.2) | 5 (8.1) | 5 (8.1) | 0 | 8 (12.9) | 18 (29.0) |
s2m1/s2m2 | 0 | 2 (3.2) | 0 | 1 (1.6) | 0 | 1 (1.6) | 2 (3.2) |
s2m1 | 0 | 1 (1.6) | 0 | 1 (1.6) | 0 | 0 | 1 (1.6) |
negative | 1 (1.6) | 0 | 0 | 0 | 0 | 1 (1.6) | 1 (1.6) |
Total | 35 (56.5) | 27 (43.5) | 20 (32.3) | 22 (35.5) | 3 (4.8) | 17 (27.4) | 62 (100) |
Genotype | GAST 1 (%) | PUD 2 (%) | GERD 3 (%) | p-Value |
---|---|---|---|---|
n = 27 | n = 6 | n = 31 | ||
Vac1 genotypes 4 | ||||
s1m1 | 7 (25.9) | 3 (50) | 4 (12.9) | 0.11 |
s1m1/s1m2 | 2 (7.4) | 0 | 1 (3.2) | 0.64 |
s1m2 | 9 (33.3) | 3 (50) | 11 (35.5) | 0.74 |
s2m2 | 7 (25.9) | 0 | 11 (35.5) | 0.2 |
s2m1/s2m2 | 2 (7.4) | 0 | 1 (3.2) | 0.64 |
s2m1 | 0 | 0 | 1 (3.2) | - |
negative | 1 (3.7) | 0 | 0 | - |
cagA status | ||||
positive | 16 (59.3) | 5 (83.3) | 16 (51.6) | 0.35 |
negative | 11 (40.7) | 1 (16.7) | 15 (48.4) | |
iceA alleles | ||||
iceA1 | 6 (22.2) | 3 (50) | 14 (45.2) | 0.14 |
iceA2 | 10 (37.0) | 3 (50) | 8 (35.8) | 0.42 |
iceA1+2 | 1 (3.7) | 0 | 2 (6.5) | 0.75 |
negative | 10 (37.0) | 0 | 7 (22.6) | 0.14 |
vacA s1m1/cagA+ | 7 (25.9) | 3 (50.0) | 4 (12.9) | 0.11 |
vacAs1m2/cagA+ | 6 (22.2) | 2 (33.3) | 9 (29.0) | 0.78 |
vacAs2m2/cagA+ | 1 (3.7) | 0 | 2 (6.5) | 0.75 |
vacAs1m1/cagA− | 1 (3.7) | 0 | 1 (3.2) | 0.89 |
vacAs1m2/cagA− | 4 (14.8) | 1 (16.7) | 2 (6.5) | 0.53 |
vacAs2m2/cagA− | 6 (22.2) | 0 | 10 (32.3) | 0.23 |
Antibiotics | Susceptibility (%) | MIC Range | MIC50 | MIC90 |
---|---|---|---|---|
Amoxicillin | 35 (100) | <0.016 | <0.016 | <0.016 |
Clarithromycin | 30 (85.7) | <0.016–>256 | <0.016 | 16 |
Metronidazole | 24 (68.6) | <0.016–>256 | 0.064 | >256 |
Tetracycline | 35 (100) | <0.016–0.19 | <0.016 | 0.094 |
Levofloxacin | 31 (88.6) | <0.002–>32 | 0.047 | 8 |
Rifampicin | 26 (74.3) | <0.002–>256 | 0.5 | 2 |
Age | Gender | Diagnosis | Genotype | Resistance Pattern | MIC (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|
AC 4 | CH 5 | MZ 6 | LE 7 | RI 8 | TC 9 | |||||
53 | M | GERD 1 | cagA(+)s1m1 iceA2 | CH+MZ+LE | <0.016 | 12 | 24 | >32 | 0.125 | 0.19 |
64 | F | GAST 2 | cagA(+)s1m1 iceA2 | CH+MZ | <0.016 | >256 | >256 | 0.047 | 0.75 | <0.016 |
70 | F | GERD | cagA(−)s2m2 iceA2 | CH+MZ+LE+RI | <0.016 | 8 | 64 | 8 | 2 | <0.016 |
71 | F | GERD | cagA(+)s1m2 iceA1 | MZ+RI | <0.016 | <0.016 | >256 | 0.023 | >256 | <0.016 |
44 | M | PUD 3 | cagA(+)s1m2 iceA1 | MZ+RI | <0.016 | <0.016 | >256 | 0.125 | 2 | <0.016 |
34 | F | GERD | cagA(+)s2m2 iceA1 | MZ+LE | <0.016 | <0.016 | >256 | >32 | <0.002 | <0.016 |
29 | F | GERD | cagA(+)s1m2 iceA2 | CH+MZ+LE | <0.016 | >256 | >256 | >32 | 0.5 | 0.094 |
73 | F | GAST | cagA(−)s2m2 iceA2 | MZ+RI | <0.016 | <0.016 | >256 | 0.047 | 2 | 0.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korona-Glowniak, I.; Cichoz-Lach, H.; Siwiec, R.; Andrzejczuk, S.; Glowniak, A.; Matras, P.; Malm, A. Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. J. Clin. Med. 2019, 8, 1071. https://doi.org/10.3390/jcm8071071
Korona-Glowniak I, Cichoz-Lach H, Siwiec R, Andrzejczuk S, Glowniak A, Matras P, Malm A. Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. Journal of Clinical Medicine. 2019; 8(7):1071. https://doi.org/10.3390/jcm8071071
Chicago/Turabian StyleKorona-Glowniak, Izabela, Halina Cichoz-Lach, Radoslaw Siwiec, Sylwia Andrzejczuk, Andrzej Glowniak, Przemyslaw Matras, and Anna Malm. 2019. "Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland" Journal of Clinical Medicine 8, no. 7: 1071. https://doi.org/10.3390/jcm8071071
APA StyleKorona-Glowniak, I., Cichoz-Lach, H., Siwiec, R., Andrzejczuk, S., Glowniak, A., Matras, P., & Malm, A. (2019). Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. Journal of Clinical Medicine, 8(7), 1071. https://doi.org/10.3390/jcm8071071