Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Heal Organ (WHO). Global Status Report on Noncommunicable Diseases 2014; World Heal Organ: Geneva, Switzerland, 2014; p. 176. [Google Scholar]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Executive summary: Heart disease and stroke statistics-2016 update: A Report from the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, K.L.; Havel, P.J. Fructose consumption: Potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr. Opin. Lipidol. 2008, 19, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirtschink, P.; Jang, C.; Arany, Z.; Krek, W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur. Heart J. 2018, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.-R.; Söderlund, S.; Bogl, L.H.; Hakkarainen, A.; Matikainen, N.; Pietiläinen, K.H.; Räsänen, S.; Lundbom, N.; Björnson, E.; Eliasson, B.; et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 2017, 140, 874–888. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Noworolski, S.M.; Wen, M.J.; Dyachenko, A.; Prior, J.L.; Weinberg, M.E.; Herraiz, L.A.; Tai, V.W.; Bergeron, N.; Bersot, T.P.; et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 2015, 100, 2434–2442. [Google Scholar] [CrossRef] [PubMed]
- Faeh, D.; Minehira, K.; Schwarz, J.M.; Periasami, R.; Seongsu, P.; Tappy, L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005, 54, 1907–1913. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.L.; Stanhope, K.L.; Schwarz, J.M.; Graham, J.L.; Hatcher, B.; Griffen, S.C.; Bremer, A.A.; Berglund, L.; McGahan, J.P.; Havel, P.J.; et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur. J. Clin. Nutr. 2012, 66, 201–208. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stodkilde-Jorgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Adiels, M.; Taskinen, M.-R.; Packard, C.; Caslake, M.J.; Soro-Paavonen, A.; Westerbacka, J.; Vehkavaara, S.; Hakkinen, A.; Olofsson, S.-O.; Yki-Jarvinen, H.; et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 2006, 49, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, M.J.; Le Goff, W.; Guerin, M.; Kontush, A. Cholesteryl ester transfer protein: At the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur. Heart J. 2010, 31, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem. Soc. Trans. 2003, 31, 1066–1069. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Khoo, C.; Furtado, J.; Sacks, F.M. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 2010, 121, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 2015, 26, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, S.; Trenchevska, O.; King, S.M.; Nelson, R.W.; Nedelkov, D.; Krauss, R.M.; Yassine, H.N. Changes in low-density lipoprotein size phenotypes associate with changes in apolipoprotein C-III glycoforms after dietary interventions. J. Clin. Lipidol. 2017, 11, 224–233.e2. [Google Scholar] [CrossRef]
- Bremer, A.A.; Stanhope, K.L.; Graham, J.L.; Cummings, B.P.; Wang, W.; Saville, B.R.; Havel, P.J. Fructose-fed rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin. Transl. Sci. 2011, 4, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Medici, V.; Bremer, A.A.; Lee, V.; Lam, H.D.; Nunez, M.V.; Chen, G.X.; Keim, N.L.; Havel, P.J. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 2015, 101, 1144–1154. [Google Scholar] [CrossRef]
- Gonzalez-granda, A.; Damms-machado, A.; Basrai, M.; Bischoff, S.C. Changes in Plasma Acylcarnitine and Lysophosphatidylcholine Levels Following a High-Fructose Diet: A Targeted Metabolomics Study in Healthy Women. Nutrients 2018, 10, 1254. [Google Scholar] [CrossRef]
- Teff, K.L.; Elliott, S.S.; Tschöp, M.; Kieffer, T.J.; Rader, D.; Heiman, M.; Townsend, R.R.; Keim, N.L.; D’Alessio, D.; Havel, P.J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 2004, 89, 2963–2972. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Usui, S.; Ishigami, M.; Sakai, N.; Nakamura, T.; Matsuzawa, Y.; Yamashita, S. Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Toshima, G.; Iwama, Y.; Kimura, F.; Matsumoto, Y.; Miura, M. LipoSEARCH®; Analytical GP-HPLC method for lipoprotein profiling and its applications. J. Biol. Macromol. 2013, 13, 21–32. [Google Scholar]
- Araki, E.; Yamashita, S.; Arai, H.; Yokote, K.; Satoh, J.; Inoguchi, T.; Nakamura, J.; Maegawa, H.; Yoshioka, N.; Yukio, T.; et al. Effects of Pemafibrate, a Novel Selective PPARα Modulator, on Lipid and Glucose Metabolism in Patients With Type 2 Diabetes and Hypertriglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial. Diabetes Care 2018, 41, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Campos, H.; Moye, L.A.; Sacks, F.M. LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ooi, E.M.M.; Barrett, P.H.R.; Chan, D.C.; Watts, G.F. Apolipoprotein C-III: Understanding an emerging cardiovascular risk factor. Clin. Sci. 2008, 114, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, J.; Cong, L.; Harbaran, S.; Richter, A.; Xu, J.; Meseck, M.; Dong, H.H. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Investig. 2004, 114, 1493–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, K.L.; Griffen, S.C.; Bremer, A.A.; Vink, R.G.; Schaefer, E.J.; Nakajima, K.; Schwarz, J.M.; Beysen, C.; Berglund, L.; Keim, N.L.; et al. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions. Am. J. Clin. Nutr. 2011, 94, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Caron, S.; Verrijken, A.; Mertens, I.; Samanez, C.H.; Mautino, G.; Haas, J.T.; Duran-Sandoval, D.; Prawitt, J.; Francque, S.; Vallez, E.; et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 513–519. [Google Scholar] [CrossRef]
- West, G.; Rodia, C.; Li, D.; Johnson, Z.; Dong, H.; Kohan, A.B. Key differences between apoC-III regulation and expression in intestine and liver. Biochem. Biophys. Res. Commun. 2017, 491, 747–753. [Google Scholar] [CrossRef]
- Kim, M.; Lai, M.; Herman, M.A.; Kim, M.; Krawczyk, S.A.; Doridot, L.; Fowler, A.J.; Wang, J.X.; Trauger, S.A.; Noh, H.; et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J. Clin. Investig. 2016, 126, 4372–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.Y.; Wallig, M.A.; Chung, B.H.; Nara, T.Y.; Cho, B.H.S.; Nakamura, M.T. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim. Biophys. Acta Mol. Basis Dis. 2008, 1782, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramms, B.; Gordts, P.L.S.M. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr. Opin. Lipidol. 2018, 29, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.A.; Price, C.A.; Graham, J.L.; Stanhope, K.L.; King, S.; Hung, Y.-H.; Sethupathy, P.; Wong, S.; Hamilton, J.; Krauss, R.M.; et al. Fructose-induced hypertriglyceridemia in rhesus macaques is attenuated with fish oil or apoC3 RNA interference. J. Lipid Res. 2019, 60, jlr.M089508. [Google Scholar] [CrossRef] [PubMed]
- Batal, R.; Tremblay, M.; Barrett, P.H.R.; Jacques, H.; Fredenrich, A.; Mamer, O.; Davignon, J.; Cohn, J.S. Plasma kinetics of apoC-III and apoE in normolipidemic and hypertriglyceridemic subjects. J. Lipid Res. 2000, 41, 706–718. [Google Scholar] [PubMed]
- Yao, Z. Human apolipoprotein C-III—A new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins. Cardiovasc. Hematol. Disord. Drug Targets 2012, 12, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, M.; Yao, Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr. Metab. 2010, 7, 1–17. [Google Scholar] [CrossRef]
- Sundaram, M.; Curtis, K.R.; Amir Alipour, M.; LeBlond, N.D.; Margison, K.D.; Yaworski, R.A.; Parks, R.J.; McIntyre, A.D.; Hegele, R.A.; Fullerton, M.D.; et al. The apolipoprotein C-III (Gln38Lys) variant associated with human hypertriglyceridemia is a gain-of-function mutation. J. Lipid Res. 2017, 58, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Matikainen, N.; Adiels, M.; Söderlund, S.; Stennabb, S.; Ahola, T.; Hakkarainen, A.; Borén, J.; Taskinen, M.R. Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride-rich lipoproteins. Obesity 2014, 22, 1854–1859. [Google Scholar] [CrossRef]
- Gordts, P.L.S.M.; Nock, R.; Son, N.-H.; Ramms, B.; Lew, I.; Gonzales, J.C.; Thacker, B.E.; Basu, D.; Lee, R.G.; Mullick, A.E.; et al. ApoC-III Modulates Clearance of Triglyceride-Rich Lipoproteins in Mice Through Low Density Lipoprotein Family Receptors. J. Clin. Investig. 2016, 126, 2855–2866. [Google Scholar] [CrossRef]
- Talayero, B.; Wang, L.; Furtado, J.; Carey, V.J.; Bray, G.A.; Sacks, F.M. Obesity favors apolipoprotein E- and C-III-containing high density lipoprotein subfractions associated with risk of heart disease. J. Lipid Res. 2014, 55, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodis, H.N. Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis. Circulation 1999, 99, 2852–2854. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Alaupovic, P.; Moye, L.A.; Cole, T.G.; Sussex, B.; Stampfer, M.J.; Pfeffer, M.A.; Braunwald, E. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000, 102, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Sharrett, A.R.; Heiss, G.; Chambless, L.E.; Boerwinkle, E.; Coady, S.A.; Folsom, A.R.; Patsch, W. Metabolic and lifestyle determinants of postprandial lipemia differ from those of fasting triglycerides the Atherosclerosis Risk in Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting compared with nonfasting triglyceride and risk of cardiovascular events in women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjærg-hansen, A. Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Varbo, A.; Freiberg, J.J.; Nordestgaard, B.G. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin. Chem. 2015, 61, 533–543. [Google Scholar] [CrossRef]
- Haidari, M.; Leung, N.; Mahbub, F.; Uffelman, K.D.; Kohen-Avramoglu, R.; Lewis, G.F.; Adeli, K. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance: Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing li. J. Biol. Chem. 2002, 277, 31646–31655. [Google Scholar] [CrossRef]
- Steenson, S.; Umpleby, A.M.; Lovegrove, J.A.; Jackson, K.G.; Fielding, B.A. Role of the enterocyte in fructose-induced hypertriglyceridaemia. Nutrients 2017, 9, 349. [Google Scholar] [CrossRef]
- Nestel, P.J.; Fidge, N.H. Apoprotein C Metabolism in Man. Adv. Lipid Res. 1982, 19, 55–83. [Google Scholar]
- Wolska, A.; Dunbar, R.L.; Freeman, L.A.; Ueda, M.; Amar, M.J.; Sviridov, D.O.; Remaley, A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017, 267, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia 2003, 46, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, S. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters. J. Lipid Res. 1985, 26, 487–494. [Google Scholar] [PubMed]
- Krauss, R.M. Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Adiels, M.; Olofsson, S.O.; Taskinen, M.R.; Borén, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Berneis, K.K.; Krauss, R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002, 43, 1363–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berneis, K.; Rizzo, M.; Spinas, G.A.; Di Lorenzo, G.; Di Fede, G.; Pepe, I.; Pernice, V.; Rini, G.B. The predictive role of atherogenic dyslipidemia in subjects with non-coronary atherosclerosis. Clin. Chim. Acta 2009, 406, 36–40. [Google Scholar] [CrossRef]
- Rizzo, M.; Pernice, V.; Frasheri, A.; Di Lorenzo, G.; Rini, G.B.; Spinas, G.A.; Berneis, K. Small, dense low-density lipoproteins (LDL) are predictors of cardio- and cerebro-vascular events in subjects with the metabolic syndrome. Clin. Endocrinol. 2009, 70, 870–875. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef]
- Xiao, C.; Dash, S.; Morgantini, C.; Hegele, R.A.; Lewis, G.F. Pharmacological targeting of the atherogenic dyslipidemia complex: The next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes 2016, 65, 1767–1778. [Google Scholar] [CrossRef]
- Aeberli, I.; Hochuli, M.; Gerber, P. Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men A randomized controlled trial. Diabetes Care 2013, 36, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Aeberli, I.; Gerber, P.A.; Hochuli, M.; Kohler, S.; Haile, S.R.; Gouni-Berthold, I.; Berthold, H.K.; Spinas, G.A.; Berneis, K. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 94, 479–485. [Google Scholar] [CrossRef] [PubMed]
Diameter | Cholesterol (mg/dL) | TG (mg/dL) | |||||||
---|---|---|---|---|---|---|---|---|---|
Fasting | Postprandial | Fasting | Postprandial | ||||||
(nm) | Glucose | Fructose | Glucose | Fructose | Glucose | Fructose | Glucose | Fructose | |
TRLp1 | >90 | 2.7 ± 0.6 | 3.2 ± 0.8 | 3.4 ± 0.7 | 3.6 ± 0.9 | 10.0 ± 2.6 | 14.1 ± 3.4 | 19.0 ± 4.1 | 22.1 ± 5.0 |
TRLp2 | 75 | 1.4 ± 0.2 | 1.5 ± 0.3 | 1.6 ± 0.2 | 1.6 ± 0.3 | 6.6 ± 1.3 | 6.9 ± 1.3 | 10.1 ± 1.7 | 10.3 ± 2.1 |
TRLp3 | 64 | 3.8 ± 0.5 | 3.7 ± 0.5 | 4.1 ± 0.5 | 3.7 ± 0.6 | 14.9 ± 2.6 | 14.1 ± 2.3 | 18.4 ± 2.7 | 17.9 ± 2.9 |
TRLp4 | 53.6 | 7.4 ± 0.7 | 6.8 ± 0.7 | 7.1 ± 0.7 | 6.4 ± 0.8 | 27.1 ± 4.0 | 23.9 ± 3.4 | 29.7 ± 4.0 | 28.0 ± 4.0 |
TRLp5 | 44.5 | 16.5 ± 1.0 | 14.6 ± 1.0 | 14.4 ± 1.2 | 12.6 ± 1.1 | 33.9 ± 4.4 | 28.9 ± 3.5 | 35.0 ± 4.3 | 32.7 ± 3.9 |
TRLp6 | 36.8 | 12.9 ± 1.1 | 11.5 ± 1.2 | 10.6 ± 1.4 | 9.5 ± 1.3 | 17.7 ± 2.0 | 15.1 ± 1.7 | 18.5 ± 2.0 | 17.6 ± 1.9 |
TRLp7 | 31.3 | 6.0 ± 0.4 | 5.5 ± 0.6 | 6.4 ± 0.5 | 6.0 ± 0.5 | 5.0 ± 0.5 | 4.3 ± 0.5 | 5.6 ± 0.5 | 5.5 ± 0.5 |
LDLp1 | 28.6 | 19.4 ± 1.1 | 18.2 ± 1.2 | 20.7 ± 1.6 | 19.1 ± 1.2 | 7.6 ± 0.6 | 6.9 ± 0.7 | 8.7 ± 0.7 | 8.5 ± 0.7 |
LDLp2 | 25.5 | 39.0 ± 1.3 | 36.3 ± 2.1 | 36.6 ± 1.6 | 35.7 ± 2.1 | 8.4 ± 0.6 | 8.0 ± 0.8 | 9.4 ± 0.7 | 9.6 ± 1.0 |
LDLp3 | 23.0 | 21.7 ± 1.3 | 20.2 ± 1.9 | 19.0 ± 1.6 | 18.6 ± 1.7 | 5.5 ± 0.5 | 5.1 ± 0.6 | 5.9 ± 0.6 | 6.0 ± 0.8 |
LDLp4 | 20.7 | 6.3 ± 0.5 | 5.8 ± 0.6 | 5.6 ± 0.7 | 5.2 ± 0.5 | 2.1 ± 0.2 | 1.9 ± 0.2 | 2.2 ± 0.3 | 2.2 ± 0.3 |
LDLp5 | 18.6 | 2.5 ± 0.2 | 2.4 ± 0.2 | 2.3 ± 0.2 | 2.2 ± 0.2 | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.4 ± 0.2 | 1.3 ± 0.2 |
LDLp6 | 16.7 | 1.4 ± 0.1 | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.2 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.1 |
Glucose | Fructose | |||||
---|---|---|---|---|---|---|
0 weeks | 10 weeks | % change | 0 weeks | 10 weeks | % change | |
Lipoprotein TG (mg/dL) | ||||||
TRL TG–FST | 116.4 ± 17.3 | 122.8 ± 16.6 | 14.3 ± 6.0 * | 107.3 ± 14.5 | 111.9 ± 15.4 | 7.2 ± 6.8 |
TRL TG–PP | 138.3 ± 19.4 | 149.8 ± 18.9 | 11.4 ± 6.1 | 134.2 ± 18.8 | 180.9 ± 22.4 | 42.9 ± 8.3 aa,**** |
LDL TG–FST | 24.7 ± 2.3 | 26.1 ± 2.2 | 6.3 ± 6.3 | 23.7 ± 2.5 | 26.8 ± 2.9 | 13.9 ± 5.3 **** |
LDL TG–PP | 27.3 ± 2.7 | 30.6 ± 2.2 | 8.8 ± 4.4 * | 28.5 ± 2.9 | 33.2 ± 3.1 | 18.6 ± 3.1 **** |
Lipoprotein Chol (mg/dL) | ||||||
TRL Chol–FST | 51.3 ± 43.7 | 46.3 ± 5.3 | −4.1 ± 3.0 | 46.7 ± 4.0 | 47.9 ± 4.7 | 2.6 ± 3.8 |
TRL Chol–PP | 48.1 ± 4.3 | 46.4 ± 6.1 | −2.7 ± 3.6 | 43.4 ± 4.5 | 49.8 ± 4.7 | 16.3 ± 5.1 aa,*** |
LDL Chol–FST | 90.4 ± 3.3 | 96.1 ± 3.9 | 7.0 ± 3.7 | 84.3.0 ± 5.3 | 101 ± 7 | 19.3 ± 2.9 a,**** |
LDL Chol–PP | 86.0 ± 3.9 | 90.3 ± 3.4 | 7.1 ± 2.6 ** | 82.1 ± 5.0 | 94.3 ± 6.1 | 14.7 ± 1.9 a,**** |
Total FST LDL Cholesterol | FST LDLp3-6 Cholesterol | |||||||
---|---|---|---|---|---|---|---|---|
Glucose | P Value | Fructose | P Value | Glucose | P Value | Fructose | P Value | |
r | r | r | r | |||||
Total TG–PP | 0.03 | 0.91 | 0.21 | 0.44 | −0.13 | 0.65 | 0.21 | 0.43 |
Total TRL TG–PP | 0.04 | 0.88 | 0.01 | 0.97 | −0.14 | 0.64 | 0.28 | 0.29 |
TRLp1 TG–PP | −0.07 | 0.82 | −0.08 | 0.77 | −0.21 | 0.47 | 0.40 | 0.12 |
TRLp2 TG–PP | 0.02 | 0.94 | −0.04 | 0.88 | −0.23 | 0.42 | 0.53 | 0.04 |
TRLp3 TG–PP | 0.10 | 0.72 | 0.01 | 0.96 | 0.03 | 0.91 | 0.51 | 0.05 |
TRLp4 TG–PP | 0.06 | 0.83 | 0.07 | 0.78 | −0.04 | 0.88 | 0.39 | 0.14 |
TRLp5 TG–PP | 0.08 | 0.78 | 0.06 | 0.84 | −0.09 | 0.75 | 0.33 | 0.21 |
TRLp6TG–PP | 0.04 | 0.88 | −0.17 | 0.53 | −0.14 | 0.63 | 0.16 | 0.54 |
TRLp7 TG–PP | −0.07 | 0.82 | −0.27 | 0.30 | −0.22 | 0.44 | −0.06 | 0.82 |
ApoCIII FST | −0.27 | 0.36 | 0.44 | 0.09 | −0.37 | 0.20 | 0.44 | 0.09 |
ApoCIII PP | −0.32 | 0.26 | 0.53 | 0.03 | −0.48 | 0.08 | 0.51 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hieronimus, B.; Griffen, S.C.; Keim, N.L.; Bremer, A.A.; Berglund, L.; Nakajima, K.; Havel, P.J.; Stanhope, K.L. Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans. J. Clin. Med. 2019, 8, 913. https://doi.org/10.3390/jcm8070913
Hieronimus B, Griffen SC, Keim NL, Bremer AA, Berglund L, Nakajima K, Havel PJ, Stanhope KL. Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans. Journal of Clinical Medicine. 2019; 8(7):913. https://doi.org/10.3390/jcm8070913
Chicago/Turabian StyleHieronimus, Bettina, Steven C. Griffen, Nancy L. Keim, Andrew A. Bremer, Lars Berglund, Katsuyuki Nakajima, Peter J. Havel, and Kimber L. Stanhope. 2019. "Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans" Journal of Clinical Medicine 8, no. 7: 913. https://doi.org/10.3390/jcm8070913
APA StyleHieronimus, B., Griffen, S. C., Keim, N. L., Bremer, A. A., Berglund, L., Nakajima, K., Havel, P. J., & Stanhope, K. L. (2019). Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans. Journal of Clinical Medicine, 8(7), 913. https://doi.org/10.3390/jcm8070913