Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Living Donor Kidney Transplantation
2.4. Measurement of Serum Chloride Levels
2.5. Definition of Poor Early Recovery of Kidney Graft Function
2.6. Clinical Variables
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Patients Undergoing LDKT
3.2. Comparison of Perioperative Factors before and after PS Matching
3.3. Comparison of Main Crystalloid Fluid Infusion during Surgery and Electrolyte Values Immediately after Surgery in PS-Matched Patients
3.4. Serial Changes in eGFR until POD 2 in PS-Matched Patients
3.5. Association of Hyperchloremia with Kidney Graft Function (i.e., eGFR ≤ 60 mL/min/1.73 m2) on POD 2
3.6. Postoperative Clinical Outcomes in PS-Matched Patients
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AKI | acute kidney injury |
KT | kidney transplantation |
LDKT | living donor kidney transplantation |
ICU | intensive care unit |
RRT | renal replacement therapy |
CVP | central venous pressure |
POD | postoperative day |
eGFR | estimated glomerular filtration rate |
MDRD | Modification of Diet in Renal Disease |
BMI | body mass index |
PS | propensity score |
References
- Cooper, J.E.; Wiseman, A.C. Acute kidney injury in kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2013, 22, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Chung, B.H.; Piao, S.G.; Kang, S.H.; Hyoung, B.J.; Jeon, Y.J.; Hwang, H.S.; Yoon, H.E.; Choi, B.S.; Kim, J.I.; et al. Clinical significance of slow recovery of graft function in living donor kidney transplantation. Transplantation. 2010, 90, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Tyson, M.; Castle, E.; Andrews, P.; Heilman, R.; Mekeel, K.; Moss, A.; Mulligan, D.; Reddy, K. Early graft function after laparoscopically procured living donor kidney transplantation. J. Urol. 2010, 184, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Berend, K.; van Hulsteijn, L.H.; Gans, R.O. Chloride: the queen of electrolytes? Eur. J. Intern. Med. 2012, 23, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sadan, O.; Singbartl, K.; Kandiah, P.A.; Martin, K.S.; Samuels, O.B. Hyperchloremia Is Associated With Acute Kidney Injury in Patients With Subarachnoid Hemorrhage. Crit. Care Med. 2017, 45, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Suetrong, B.; Pisitsak, C.; Boyd, J.H.; Russell, J.A.; Walley, K.R. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit. Care (Lond., Engl.) 2016, 20, 315. [Google Scholar] [CrossRef] [PubMed]
- Toyonaga, Y.; Kikura, M. Hyperchloremic acidosis is associated with acute kidney injury after abdominal surgery. Nephrology (Carlton, Vic.) 2017, 22, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Song, I.A.; Jeon, Y.T.; Jo, Y.H. Fluctuations in Serum Chloride and Acute Kidney Injury among Critically Ill Patients: A Retrospective Association Study. J. Clin. Med. 2019, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.; Minkovich, L.; Tait, G.; Beattie, W.S. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth. Analg. 2013, 117, 412–421. [Google Scholar] [CrossRef]
- Raghunathan, K.; Shaw, A.; Nathanson, B.; Sturmer, T.; Brookhart, A.; Stefan, M.S.; Setoguchi, S.; Beadles, C.; Lindenauer, P.K. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit. Care Med. 2014, 42, 1585–1591. [Google Scholar] [CrossRef]
- Shaw, A.D.; Raghunathan, K.; Peyerl, F.W.; Munson, S.H.; Paluszkiewicz, S.M.; Schermer, C.R. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014, 40, 1897–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marouli, D.; Stylianou, K. Preoperative Albuminuria and Intraoperative Chloride Load: Predictors of Acute Kidney Injury Following Major Abdominal Surgery. J. Clin. Med. 2018, 7, 431. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, G.; Zhang, B.; Liu, C.; Goebel, J.; Zhang, Y.; Nehus, E. Outcomes of Pediatric Kidney Transplantation in Recipients of a Previous Non-Renal Solid Organ Transplant. Am. J. Transplant. 2017, 17, 1928–1934. [Google Scholar] [CrossRef] [PubMed]
- Scurt, F.G.; Ewert, L.; Mertens, P.R.; Haller, H.; Schmidt, B.M.W.; Chatzikyrkou, C. Clinical outcomes after ABO-incompatible renal transplantation: a systematic review and meta-analysis. Lancet (Lond., Engl.) 2019, 393, 2059–2072. [Google Scholar] [CrossRef]
- Stites, E.; Wiseman, A.C. Multiorgan transplantation. Transplant. Rev. (Orlando, Fla.) 2016, 30, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.M.; Kim, Y.; Kang, S.S.; Park, W.Y.; Jin, K.; Park, S.B.; Park, U.J.; Kim, H.T.; Cho, W.H.; Han, S. Long-term Clinical Outcomes of Kidney Re-transplantation. Transplant. Proc. 2017, 49, 997–1000. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Liu, L.; Li, J.; Deng, R.; Xiong, Y.; Yuan, X.; He, X.; Fu, Q.; Wang, C. Different Risk Factors for Graft Survival Between Living-Related and Deceased Donor Kidney Transplantation. Transplant. Proc. 2018, 50, 2416–2420. [Google Scholar] [CrossRef] [PubMed]
- Lich Jr, R.; Howerton, L.W.; Davis, L.A. Childhood urosepsis. J. Ky. Med. Assoc. 1961, 59, 1177–1179. [Google Scholar]
- Taguchi, Y.; Klauber, G.T.; MacKinnon, K.J. Implantation of transplant ureters: a technique. J. Urol. 1971, 105, 194–195. [Google Scholar] [CrossRef]
- Lugo-Baruqui, J.A.; Ayyathurai, R.; Sriram, A.; Pragatheeshwar, K.D. Use of Mannitol for Ischemia Reperfusion Injury in Kidney Transplant and Partial Nephrectomies-Review of Literature. Curr. Urol. Rep. 2019, 20, 6. [Google Scholar] [CrossRef]
- Voldby, A.W.; Brandstrup, B. Fluid therapy in the perioperative setting-a clinical review. J. Intensive Care 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.M.; Ismael, A.Z.; Hammouda, G.E. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth. Analg. 2010, 110, 1440–1446. [Google Scholar] [CrossRef]
- Yessayan, L.; Neyra, J.A.; Canepa-Escaro, F.; Vasquez-Rios, G.; Heung, M.; Yee, J. Effect of hyperchloremia on acute kidney injury in critically ill septic patients: a retrospective cohort study. BMC Nephrol. 2017, 18, 346. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.C.; Hwang, S.J.; Massaro, J.M.; Jacques, P.F.; Fox, C.S.; Chu, A.Y. Lifestyle factors and indices of kidney function in the Framingham Heart Study. Am. J. Nephrol. 2015, 41, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Solez, K.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.; Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411–422. [Google Scholar] [CrossRef]
- Stuart, E.A. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef]
- Yang, J.Y.; Webster-Clark, M.; Lund, J.L.; Sandler, R.S.; Dellon, E.S.; Sturmer, T. Propensity score methods to control for confounding in observational cohort studies: a statistical primer and application to endoscopy research. Gastrointest. Endosc. 2019. [Google Scholar] [CrossRef]
- Oh, T.K.; Jeon, Y.T.; Sohn, H.; Chung, S.H.; Do, S.H. Association of Perioperative Hyperchloremia and Hyperchloremic Metabolic Acidosis with Acute Kidney Injury After Craniotomy for Intracranial Hemorrhage. World Neurosurg. 2019. [Google Scholar] [CrossRef]
- Oh, T.K.; Song, I.A.; Kim, S.J.; Lim, S.Y.; Do, S.H.; Hwang, J.W.; Kim, J.; Jeon, Y.T. Hyperchloremia and postoperative acute kidney injury: A retrospective analysis of data from the surgical intensive care unit. Crit. Care (Lond., Engl.) 2018, 22, 277. [Google Scholar] [CrossRef] [PubMed]
- Shackford, S.R.; Zhuang, J.; Schmoker, J. Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J. Neurosurg. 1992, 76, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Kim, C.Y.; Jeon, Y.T.; Hwang, J.W.; Do, S.H. Perioperative hyperchloremia and its association with postoperative acute kidney injury after craniotomy for primary brain tumor resection: A Retrospective, Observational Study. J. Neurosurg. Anesthesiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. Jama 2012, 308, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Redfield, R.R.; Scalea, J.R.; Zens, T.J.; Muth, B.; Kaufman, D.B.; Djamali, A.; Astor, B.C.; Mohamed, M. Predictors and outcomes of delayed graft function after living-donor kidney transplantation. Transpl. Int. 2016, 29, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Myburgh, J.A.; Mythen, M.G. Resuscitation fluids. N. Engl. J. Med. 2013, 369, 2462–2463. [Google Scholar] [CrossRef]
- Stone, H.H.; Fulenwider, J.T. Renal decapsulation in the prevention of post-ischemic oliguria. Ann. Surg. 1977, 186, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.S. Regulation of renal blood flow by plasma chloride. J. Clin. Investig. 1983, 71, 726–735. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, H.; Bammens, B.; Lemahieu, W.; Maes, B.D.; Vanrenterghem, Y. Comparison of peritoneal dialysis and haemodialysis after renal transplant failure. Nephrol. Dial. Transplant. 2006, 21, 1669–1674. [Google Scholar] [CrossRef] [Green Version]
- Bell, P.D.; Komlosi, P.; Zhang, Z.R. ATP as a mediator of macula densa cell signalling. Purinergic Signal. 2009, 5, 461–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Garvin, J.L.; Liu, R.; Carretero, O.A. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int. 2004, 66, 1479–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Maintain Immune Therapy | |||
---|---|---|---|
Induction Therapy | Basiliximab | 20 mg IV. at Surgical Day and POD 4 | |
Thymoglobulin | 1.25 mg/kg IV at surgical day and during POD 4 | ||
Maintenance therapy | Tacrolimus | 0.06 mg/kg on 2 day before surgery 0.05 mg/kg on 1 day before surgery | Dosage control under serum level after surgery |
Mycophenolate | MMF 750 mg/MYF 540 mg p.o. q.d. and raise bid after surgery | Under 50 kg patient MMF 500 mg/MYF 360 mg p.o. bid | |
Steroids | Prednisone 125 mg IV qid and reduce until 60 mg tid | p.o. change until 10 mg p.o. bid for prednisolone | |
Immune Therapy for Graft Rejection | |||
Steroid pulse therapy | Prednisone 500 mg IV/day | Cessation of IV within 5 days and switch to p.o. medication | |
Thymoglobulin rescue therapy | 1.25 mg/kg IV for 5 days |
Before PS Matching | After PS Matching | |||||||
---|---|---|---|---|---|---|---|---|
Group | No Hyperchloremia | Hyperchloremia | p | SD | No Hyperchloremia | Hyperchloremia | p | SD |
n | 201 | 100 | 100 | 100 | ||||
Recipient parameter | ||||||||
Preoperative finding | ||||||||
Age (years) | 50 (42–56) | 53 (42–58) | 0.087 | 0.118 | 52 (46–59) | 53 (42–58) | 0.850 | −0.040 |
Sex (male) | 121 (60.2%) | 67 (67.0%) | 0.251 | −0.144 | 68 (68.0%) | 67 (67.0%) | 0.880 | 0.021 |
Body mass index (kg/m2) | 22.7 (20.7–25.2) | 23.1 (21.2–25.2) | 0.398 | 0.131 | 23.2 (21.1–25.6) | 23.1 (21.2–25.2) | 0.910 | 0.040 |
Comorbidity | ||||||||
Diabetes mellitus | 60 (29.9%) | 26 (26.0%) | 0.486 | −0.087 | 29 (29.0%) | 26 (26.0%) | 0.635 | −0.068 |
Hypertension | 123 (61.2%) | 52 (52.0%) | 0.128 | −0.183 | 53 (53.0%) | 52 (52.0%) | 0.887 | −0.020 |
Dialysis history | 141 (70.1%) | 79 (79.0%) | 0.103 | 0.216 | 76 (76.0%) | 79 (79.0%) | 0.611 | 0.073 |
Dialysis duration (month) | 2.0 (0.0–30.0) | 6.0 (1.0–57.0) | 0.008 | 0.238 | 3.0 (0.0–37.5) | 6.0 (1.0–57.0) | 0.171 | 0.170 |
Laboratory analysis | ||||||||
WBC count (x 109/L) | 6.7 (5.1–8.8) | 6.3 (4.7–8.1) | 0.090 | −0.238 | 6.6 (4.8–7.7) | 6.3 (4.7–8.1) | 0.581 | −0.081 |
Hemoglobin (g/dL) | 10.7 (9.5–12.0) | 10.9 (9.9–11.9) | 0.333 | 0.145 | 10.7 (9.5–12.0) | 10.9 (9.9–11.9) | 0.433 | 0.121 |
Platelet count (x 109/L) | 178.0 (146.0–225.5) | 183.0 (139.0–231.0) | 0.874 | −0.009 | 181.0 (149.0–236.8) | 183.0 (139.0–231.0) | 0.815 | −0.016 |
Sodium (mEq/L) | 137.0 (135.0–139.0) | 138.0 (135.3–139.0) | 0.018 | 0.175 | 137.0 (135.0–139.0) | 138.0 (135.3–139.0) | 0.094 | 0.127 |
Chloride (mEq/L) | 98.0 (95.0–101.0) | 98.0 (95.0–102.0) | 0.387 | 0.173 | 98.0 (95.0–101.0) | 98.0 (95.0–102.0) | 0.698 | 0.115 |
Potassium (mEq/L) | 4.8 (4.2–5.4) | 4.7 (4.2–5.2) | 0.400 | −0.037 | 4.8 (4.2–5.4) | 4.7 (4.2–5.2) | 0.534 | 0.060 |
Albumin (g/dL) | 4.0 (3.6–4.3) | 4.0 (3.7–4.2) | 0.553 | 0.106 | 3.9 (3.6–4.3) | 4.0 (3.7–4.2) | 0.383 | 0.087 |
Creatinine (mg/dL) | 7.8 (6.2–9.9) | 7.7 (6.3–10.4) | 0.715 | 0.064 | 7.7 (6.2–9.5) | 7.7 (6.3–10.4) | 0.737 | 0.044 |
Glucose (mg/dL) | 152.0 (126.5–189.0) | 140.0 (100.8–171.3) | 0.011 | 0.069 | 149.0 (121.5–190.8) | 140.0 (100.8–171.3) | 0.050 | −0.034 |
Intraoperative finding | ||||||||
Surgery time (min) | 260 (222–295) | 275 (230–309) | 0.085 | 0.195 | 265 (235–302) | 275 (230–309) | 0.735 | 0.001 |
Average of vital sign | ||||||||
SBP (mmHg) | 125 (117–134) | 123 (114–132) | 0.186 | −0.149 | 125 (115–131) | 123 (114–132) | 0.870 | 0.011 |
DBP (mmHg) | 73 (65–79) | 69 (63–77) | 0.029 | −0.274 | 71 (63–77) | 69 (63–77) | 0.525 | −0.061 |
Heart rate (beats/min) | 81 (73–89) | 80 (71–86) | 0.372 | −0.039 | 80 (71–88) | 80 (71–86) | 0.855 | 0.012 |
CVP (mmHg) | 10 (8–12) | 10 (8–12) | 0.174 | 0.186 | 10 (8–12) | 10 (8–12) | 0.991 | 0.026 |
Body temperature (℃) | 36.3 (36.1–36.5) | 36.3 (36.0–36.5) | 0.482 | −0.067 | 36.3 (36.1–36.5) | 36.3 (36.0–36.5) | 0.660 | −0.030 |
Total crystalloid infusion (mL) | 2900 (2200–3600) | 3100 (2500–4100) | 0.066 | 0.221 | 3190 (2500–3838) | 3100 (2500–4100) | 0.990 | −0.014 |
Urine output (mL) | 400 (200–700) | 350 (100–700) | 0.180 | −0.131 | 375 (193–626) | 350 (100–700) | 0.777 | −0.032 |
Blood loss (mL) | 150 (100–250) | 200 (150–300) | 0.004 | 0.221 | 200 (100–300) | 200 (150–300) | 0.096 | 0.075 |
Donor-graft parameter | ||||||||
Age (years) | 47 (35–54) | 50 (36–56) | 0.233 | 0.111 | 47 (34–53) | 50 (36–56) | 0.157 | 0.162 |
Sex (male) | 103 (51.2%) | 47 (47.0%) | 0.488 | 0.085 | 47 (47.0%) | 47 (47.0%) | 1.000 | 0.000 |
Body mass index (kg/m2) | 23.7 (21.6–25.9) | 23.1 (21.8–25.1) | 0.276 | −0.197 | 23.3 (21.0–25.4) | 23.1 (21.8–25.1) | 0.664 | −0.006 |
Graft weight (g) | 184.0 (160.0–216.0) | 180.0 (160.5–212.0) | 0.398 | −0.172 | 178.0 (158.0–203.5) | 180.0 (160.5–212.0) | 0.374 | 0.090 |
Total graft ischemic time (min) | 58 (43–85) | 68 (51–126) | 0.006 | 0.265 | 64 (45–109) | 68 (51–126) | 0.200 | 0.113 |
Human leukocyte antigen analysis | ||||||||
PRA (positive) | ||||||||
Class I | 63 (31.3%) | 36 (36.0%) | 0.418 | 0.097 | 32 (32.0%) | 36 (36.0%) | 0.550 | 0.083 |
Class II | 44 (21.9%) | 31 (31.0%) | 0.085 | 0.196 | 29 (29.0%) | 31 (31.0%) | 0.758 | 0.043 |
DSA (positive) | ||||||||
Class I | 41 (20.4%) | 17 (17.0%) | 0.481 | −0.090 | 17 (17.0%) | 17 (17.0%) | 1.000 | 0.000 |
Class II | 34 (16.9%) | 24 (24.0%) | 0.142 | 0.165 | 23 (23.0%) | 24 (24.0%) | 0.868 | 0.023 |
FCXM (positive) | ||||||||
T-cell | 2 (1.0%) | 1 (1.0%) | 1.000 | 0.000 | 1 (1.0%) | 1 (1.0%) | 1.000 | 0.000 |
B-cell | 36 (17.9%) | 20 (20.0%) | 0.661 | 0.052 | 20 (20.0%) | 20 (20.0%) | 1.000 | 0.000 |
Group | No Hyperchloremia | Hyperchloremia | p |
---|---|---|---|
n | 100 | 100 | |
Total crystalloid fluid infusion (mL) | 3190 (2500–3838) | 3100 (2500–4100) | 0.990 |
0.9% normal saline (%) | 2.1 (1.7–2.6) | 97.7 (95.8–98.4) | <0.001 |
Plasma Solution-A (%) | 97.8 (96.8–98.2) | 2.2 (1.6–3.9) | <0.001 |
Electrolyte values | |||
Chloride (mEq/L) | 107.0 (103.0–108.8) | 112.0 (111.0–114.0) | <0.001 |
‡△[Cl−] (mEq/L) | 8.0 (2.0–12.0) | 15.0 (11.0–17.8) | <0.001 |
Sodium (mEq/L) | 140.0 (137.0–142.0) | 140.0 (138.0–142.0) | 0.783 |
Potassium (mEq/L) | 4.3 (4.0–4.6) | 4.4 (4.0–4.9) | 0.124 |
Group | No Hyperchloremia | Hyperchloremia | p |
---|---|---|---|
n | 100 | 100 | |
eGFR (mL/min/1.73 m2) | |||
Immediately after surgery | 21.5 (9.3–34.3) | 17.5 (8.1–29.6) | 0.151 |
Postoperative day 1 | 54.3 (23.2–77.3)††† | 43.2 (13.5–70.4)††† | 0.134 |
Postoperative day 2 | 66.7 (33.8–85.7)†††,§§§ | 53.4 (21.3–71.7)†††,§§§ | 0.058 |
Group | No Hyperchloremia | Hyperchloremia | p |
---|---|---|---|
n | 100 | 100 | |
eGFR ≥ 60 mL/min/1.73 m2 | |||
Immediately after surgery | 6 (6.0%) | 2 (2.0%) | 0.279 |
Postoperative day 1 | 44 (44.0%)††† | 30 (30.0%)††† | 0.040 |
Postoperative day 2 | 58 (58.0%)†††,§§§ | 38 (38.0%)††† | 0.005 |
eGFR 59–30 mL/min/1.73 m2 | |||
Immediately after surgery | 25 (25.0%) | 23 (23.0%) | 0.741 |
Postoperative day 1 | 28 (28.0%) | 32 (32.0%) | 0.537 |
Postoperative day 2 | 23 (23.0%) | 30 (30.0%) | 0.262 |
eGFR < 30 mL/min/1.73 m2 | |||
Immediately after surgery | 69 (69.0%) | 75 (75.0%) | 0.345 |
Postoperative day 1 | 28 (28.0%)††† | 38 (38.0%)††† | 0.133 |
Postoperative day 2 | 19 (19.0%)†††,§§ | 32 (32.0%)††† | 0.035 |
Multivariable Logistic Regression Analysis | ||||
---|---|---|---|---|
ß | Odds ratio | 95% CI | p | |
In the whole patients (n = 301) | ||||
Hyperchloremia adjusted for PS | 0.592 | 1.808 | 1.053–3.104 | 0.032 |
In the PS-matched patients (n = 200) | ||||
Hyperchloremia adjusted for PS | 0.721 | 2.057 | 1.146–3.694 | 0.016 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, J.; Park, S.-C.; Yun, S.-S.; Ku, J.; Park, J.; Shim, J.-W.; Lee, H.M.; Kim, Y.-S.; Moon, Y.E.; Hong, S.H.; et al. Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis. J. Clin. Med. 2019, 8, 955. https://doi.org/10.3390/jcm8070955
Go J, Park S-C, Yun S-S, Ku J, Park J, Shim J-W, Lee HM, Kim Y-S, Moon YE, Hong SH, et al. Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis. Journal of Clinical Medicine. 2019; 8(7):955. https://doi.org/10.3390/jcm8070955
Chicago/Turabian StyleGo, Jin, Sun-Cheol Park, Sang-Seob Yun, Jiyeon Ku, Jaesik Park, Jung-Woo Shim, Hyung Mook Lee, Yong-Suk Kim, Young Eun Moon, Sang Hyun Hong, and et al. 2019. "Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis" Journal of Clinical Medicine 8, no. 7: 955. https://doi.org/10.3390/jcm8070955
APA StyleGo, J., Park, S. -C., Yun, S. -S., Ku, J., Park, J., Shim, J. -W., Lee, H. M., Kim, Y. -S., Moon, Y. E., Hong, S. H., & Chae, M. S. (2019). Exposure to Hyperchloremia Is Associated with Poor Early Recovery of Kidney Graft Function after Living-Donor Kidney Transplantation: A Propensity Score-Matching Analysis. Journal of Clinical Medicine, 8(7), 955. https://doi.org/10.3390/jcm8070955