Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Mutation Analysis
2.3. Classification of Mutation Types
2.4. Classification of Mutation Positions
2.5. Outcome Evaluation (End-Point)
2.6. Evaluation of Age at RRT
2.7. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Mutation Types as Renal Prognostic Indicators in Patients with ADPKD
3.2.1. Influence of the Mutated Gene on Renal Outcome (Age at RRT)
3.2.2. Influence of Mutation Type on Renal Prognosis in the Entire Cohort
3.2.3. Influence of Mutation Type and Position on Renal Prognosis in PKD1 Truncating Cohort
3.2.4. Influence of Mutation Type on Renal Prognosis in the Cohort Stratified by Sex
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grantham, J.J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2008, 359, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 1994, 77, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Nauli, S.M.; Alenghat, F.J.; Luo, Y.; Williams, E.; Vassilev, P.; Li, X.; Elia, A.E.; Lu, W.; Brown, E.M.; Quinn, S.J.; et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33, 129–137. [Google Scholar] [CrossRef]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Primers 2018, 4, 50. [Google Scholar] [CrossRef]
- Qian, F.; Watnick, T.J.; Onuchic, L.F.; Germino, G.G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 1996, 87, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Brasier, J.L.; Henske, E.P. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J. Clin. Investig. 1997, 99, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Hateboer, N.; Dijk, M.A.V.; Bogdanova, N.; Coto, E.; Saggar-Malik, A.K.; San Millan, J.L.; Torra, R.; Breuning, M.; Ravine, D. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 1999, 353, 103–107. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Audrezet, M.P.; Chen, J.M.; Hourmant, M.; Morin, M.P.; Perrichot, R.; Charasse, C.; Whebe, B.; Renaudineau, E.; Jousset, P.; et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013, 24, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Higashihara, E.; Horie, S.; Kinoshita, M.; Harris, P.C.; Okegawa, T.; Tanbo, M.; Hara, H.; Yamaguchi, T.; Shigemori, K.; Kawano, H.; et al. A potentially crucial role of the PKD1 C-terminal tail in renal prognosis. Clin. Exp. Nephrol. 2018, 22, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Barua, M.; Cil, O.; Paterson, A.D.; Wang, K.; He, N.; Dicks, E.; Parfrey, P.; Pei, Y. Family history of renal disease severity predicts the mutated gene in ADPKD. J. Am. Soc. Nephrol. 2009, 20, 1833–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornec-Le Gall, E.; Audrezet, M.P.; Renaudineau, E.; Hourmant, M.; Charasse, C.; Michez, E.; Frouget, T.; Vigneau, C.; Dantal, J.; Siohan, P.; et al. PKD2-Related Autosomal Dominant Polycystic Kidney Disease: Prevalence, Clinical Presentation, Mutation Spectrum, and Prognosis. Am. J. Kidney Dis. 2017, 70, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossetti, S.; Burton, S.; Strmecki, L.; Pond, G.R.; San Millan, J.L.; Zerres, K.; Barratt, T.M.; Ozen, S.; Torres, V.E.; Bergstralh, E.J.; et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J. Am. Soc. Nephrol. 2002, 13, 1230–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Y.; Obaji, J.; Dupuis, A.; Paterson, A.D.; Magistroni, R.; Dicks, E.; Parfrey, P.; Cramer, B.; Coto, E.; Torra, R.; et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 2009, 20, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, T.; Teraoka, A.; Akagawa, H.; Makabe, S.; Akihisa, T.; Sato, M.; Kataoka, H.; Mitobe, M.; Furukawa, T.; Tsuchiya, K.; et al. Mutation analyses by next-generation sequencing and multiplex ligation-dependent probe amplification in Japanese autosomal dominant polycystic kidney disease patients. Clin. Exp. Nephrol. 2019, 23, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Komeda, M.; Takahashi, M.; Yamashita, N.; Cigira, M.; Suzuki, T.; Suzuki, K.; Nihei, H.; Mochizuki, T. Mutational analysis within the 3’ region of the PKD1 gene in Japanese families. Mutat. Res. 2001, 458, 77–84. [Google Scholar] [CrossRef]
- Hayashi, T.; Mochizuki, T.; Reynolds, D.M.; Wu, G.; Cai, Y.; Somlo, S. Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 1997, 44, 131–136. [Google Scholar] [CrossRef]
- Watnick, T.J.; Piontek, K.B.; Cordal, T.M.; Weber, H.; Gandolph, M.A.; Qian, F.; Lens, X.M.; Neumann, H.P.; Germino, G.G. An unusual pattern of mutation in the duplicated portion of PKD1 is revealed by use of a novel strategy for mutation detection. Hum. Mol. Genet. 1997, 6, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Heyer, C.M.; Sundsbak, J.L.; Abebe, K.Z.; Chapman, A.B.; Torres, V.E.; Grantham, J.J.; Bae, K.T.; Schrier, R.W.; Perrone, R.D.; Braun, W.E.; et al. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 2872–2884. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.C.; Bae, K.T.; Rossetti, S.; Torres, V.E.; Grantham, J.J.; Chapman, A.B.; Guay-Woodford, L.M.; King, B.F.; Wetzel, L.H.; Baumgarten, D.A.; et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 3013–3019. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, S.; Harris, P.C. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 1374–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.H.; Conklin, J.; Chan, W.; Roslin, N.M.; Liu, J.; He, N.; Wang, K.; Sundsbak, J.L.; Heyer, C.M.; Haider, M.; et al. Refining Genotype-Phenotype Correlation in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Chen, S.C.; Yang, Y.M.; Yan, K.; Qian, Y.Q.; Zhang, J.Y.; Hu, Y.T.; Dong, M.Y.; Jin, F.; Huang, H.F.; et al. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease. Sci. Rep. 2015, 5, 17468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopp, K.; Ward, C.J.; Hommerding, C.J.; Nasr, S.H.; Tuan, H.F.; Gainullin, V.G.; Rossetti, S.; Torres, V.E.; Harris, P.C. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Investig. 2012, 122, 4257–4273. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, T.; Maquat, L.E. Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 2016, 129, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.S.; Wilkinson, M.F.; Gecz, J. Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neurosci. Biobehav. Rev. 2014, 46 Pt 2, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, S.; Strmecki, L.; Gamble, V.; Burton, S.; Sneddon, V.; Peral, B.; Roy, S.; Bakkaloglu, A.; Komel, R.; Winearls, C.G.; et al. Mutation analysis of the entire PKD1 gene: Genetic and diagnostic implications. Am. J. Hum. Genet. 2001, 68, 46–63. [Google Scholar] [CrossRef] [Green Version]
Variables | Entire | PKD1 | PKD2 | p-Value |
---|---|---|---|---|
n = 123 | n = 99 | n = 24 | ||
Sex (Men) | 52 (42.3) | 42 (42.4) | 10 (41.7) | 0.9463 |
Mutation Type | ||||
Truncating | 91 (74.0) | 69 (69.7) | 22 (91.7) | 0.0363 |
Splicing | 12 (9.8) | 11 (11.1) | 1 (4.2) | 0.4575 |
Frameshift ins/del | 30 (24.4) | 25 (25.3) | 5 (20.8) | 0.6511 |
Large deletion | 8 (6.5) | 5 (5.1) | 3 (12.5) | 0.1865 |
Nonsense | 41 (33.3) | 28 (28.3) | 13 (54.2) | 0.0158 |
Non-truncating | 32 (26.0) | 30 (30.3) | 2 (8.3) | 0.0363 |
Substitution | 29 (23.6) | 27 (27.3) | 2 (8.3) | 0.0499 |
In-frame ins/del | 3 (2.4) | 3 (3.0) | 0 (0.0) | 1.0000 |
Mutation Position | ||||
PKD1 N-terminal domain | NA | 19 (19.2) | NA | NA |
PKD domain | NA | 18 (18.2) | NA | NA |
REJ domain | NA | 21 (21.2) | NA | NA |
TM domain | NA | 36 (36.4) | NA | NA |
PKD1 C-terminal domain | NA | 5 (5.1) | NA | NA |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
PKD1 (vs. PKD2) | 2.75 (1.16–8.10) | 0.0202 | NA | NA |
Mutation Type | ||||
PKD1 Truncating | 2.77 (1.36–5.98) | 0.0046 | NA | NA |
PKD1 Non-truncating | 0.72 (0.31–1.52) | 0.4068 | NA | NA |
PKD2 Truncating | 0.44 (0.15–1.05) | 0.0645 | NA | NA |
PKD2 Non-truncating | 5.191 × 10−9 (0–.) | 0.0961 | NA | NA |
PKD1 Splicing | 4.01 (1.35–9.67) | 0.0156 | 5.39 (1.70–14.51) | 0.0063 |
PKD1 Frameshift ins/del | 2.43 (1.14–4.88) | 0.0232 | 3.14 (1.43–6.59) | 0.0055 |
PKD1 Large deletion | 1.14 (0.06–5.43) | 0.8975 | - | - |
PKD1 Nonsense | 0.84 (0.33–1.83) | 0.6725 | - | - |
PKD1 Substitution | 0.74 (0.31–1.57) | 0.4515 | - | - |
PKD1 In-frame ins/del | 3.998 × 10−8 (0–.) | 0.5121 | - | - |
PKD2 Splicing | 32.69 (1.62–255.79) | 0.0293 | 52.40 (2.49–446.52) | 0.0181 |
PKD2 Frameshift ins/del | 1.776 × 10−9 (0–.) | 0.0258 | NA | NA |
PKD2 Large deletion | 1.29 (0.07–6.15) | 0.8089 | - | - |
PKD2 Nonsense | 0.41 (0.10–1.17) | 0.1035 | - | - |
PKD2 Substitution | 5.191 × 10−9 (0–.) | 0.0961 | - | - |
PKD2 In-frame ins/del | NA | NA | NA | NA |
Men (vs. women) | 1.50 (0.78–2.89) | 0.2205 | 1.18 (0.59–2.36) | 0.6395 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Mutation Type | ||||
PKD1 Truncating | 1 (reference) | NA | NA | |
PKD1 Non-truncating | 0.46 (0.19–1.03) | 0.0601 | NA | NA |
PKD2 Truncating | 0.31 (0.10–0.77) | 0.0106 | NA | NA |
PKD2 Non-truncating | 2.953 × 10−9 (0–.) | 0.0384 | NA | NA |
PKD1 Splicing | 1 (reference) | 1 (reference) | ||
PKD1 Frameshift ins/del | 0.53 (0.19–1.71) | 0.2709 | 0.58 (0.19–1.75) | 0.3297 |
PKD1 Large deletion | 0.33 (0.02–2.11) | 0.2684 | 0.38 (0.04–3.57) | 0.4005 |
PKD1 Nonsense | 0.24 (0.07–0.81) | 0.0234 | 0.26 (0.08–0.88) | 0.0304 |
PKD1 Substitution | 0.19 (0.06–0.65) | 0.0099 | 0.20 (0.06–0.66) | 0.0081 |
PKD1 In-frame ins/del | 3.130 × 10−10 (0–.) | 0.2747 | 3.720 × 10−10 (0–.) | 0.9998 |
PKD2 Splicing | 10.20 (0.47–94.14) | 0.1147 | 9.92 (0.90–109.16) | 0.0607 |
PKD2 Frameshift ins/del | 2.820 × 10−10 (0–.) | 0.0010 | 3.190 × 10−10 (0–.) | 0.9990 |
PKD2 Large deletion | 0.38 (0.02–2.42) | 0.3374 | 0.41 (0.05–3.61) | 0.4213 |
PKD2 Nonsense | 0.11 (0.02–0.46) | 0.0032 | 0.12 (0.03–0.53) | 0.0055 |
PKD2 Substitution | 2.910 × 10−10 (0–.) | 0.0060 | 2.930 × 10−10 (0–.) | 0.9993 |
PKD2 In-frame ins/del | NA | NA | NA | NA |
Men (vs. women) | 1.50 (0.78–2.89) | 0.2205 | 1.21 (0.60–2.45) | 0.5985 |
Variables | Univariate Analysis (Model 1) | Univariate Analysis (Model 2) | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Mutation Type | ||||
PKD1 Splicing | 2.69 (0.88–6.89) | 0.0796 | 1 (reference) | |
PKD1 Frameshift ins/del | 1.72 (0.75–3.88) | 0.1953 | 0.60 (0.21–1.93) | 0.3637 |
PKD1 Large deletion | 0.81 (0.04–3.99) | 0.8350 | 0.35 (0.02–2.30) | 0.3042 |
PKD1 Nonsense | 0.36 (0.14–0.85) | 0.0189 | 0.24 (0.07–0.81) | 0.0236 |
Mutation Position | ||||
PKD1 N-terminal domain | 0.86 (0.24–2.36) | 0.7798 | 1 (reference) | |
PKD domain | 1.08 (0.40–2.59) | 0.8749 | 1.24 (0.35–4.90) | 0.7440 |
REJ domain | 1.01 (0.33–2.54) | 0.9904 | 1.16 (0.30–4.83) | 0.8241 |
TM domain | 1.36 (0.55–3.17) | 0.4903 | 1.43 (0.44–5.44) | 0.5624 |
PKD1 C-terminal domain | 4.873 × 10−9 (0–.) | 0.0927 | 5.877 × 10−9 (0–.) | 0.1461 |
Variables | Univariate Analysis (Model 1) Men, n = 52 | Univariate Analysis (Model 1) Women, n = 71 | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
PKD1 (vs. PKD2) | 1.79 (0.58–7.76) | 0.3331 | 3.64 (1.02–23.23) | 0.0462 |
Mutation Type | ||||
PKD1 Truncating | 4.02 (1.38–14.75) | 0.0093 | 1.83 (0.70–5.04) | 0.2196 |
PKD1 Non-truncating | 0.17 (0.01–0.85) | 0.0272 | 1.31 (0.45–3.42) | 0.5953 |
PKD2 Truncating | 0.75 (0.17–2.27) | 0.6343 | 0.29 (0.05–1.05) | 0.0598 |
PKD2 Non-truncating | 4.924 × 10−9 (0–.) | 0.1691 | 1.453 × 10−8 (0–.) | 0.4762 |
PKD1 Splicing | 2.02 (0.47–6.17) | 0.3057 | 24.45 (3.19–149.12) | 0.0049 |
PKD1 Frameshift ins/del | 2.85 (1.03–7.47) | 0.0449 | 1.57 (0.44–4.45) | 0.4494 |
PKD1 Large deletion | 6.69 (0.35–39.26) | 0.1597 | 1.384 × 10−8 (0–.) | 0.3100 |
PKD1 Nonsense | 0.79 (0.18–2.46) | 0.7052 | 0.97 (0.27–2.87) | 0.9596 |
PKD1 Substitution | 0.17 (0.01–0.85) | 0.0272 | 1.37 (0.47–3.58) | 0.5386 |
PKD1 In-frame ins/del | NA | NA | 3.883 × 10−8 (0–.) | 0.5782 |
PKD2 Splicing | 22.42 (1.04–234.30) | 0.0478 | NA | NA |
PKD2 Frameshift ins/del | 1.415 × 10−8 (0–.) | 0.2985 | 4.158 × 10−9 (0–.) | 0.0402 |
PKD2 Large deletion | 1.76 (0.10–9.08) | 0.6164 | 1.453 × 10−8 (0–.) | 0.4762 |
PKD2 Nonsense | 0.34 (0.02–1.68) | 0.2202 | 0.60 (0.09–2.14) | 0.4697 |
PKD2 Substitution | 4.924 × 10−9 (0–.) | 0.1691 | 1.453 × 10−8 (0–.) | 0.4762 |
PKD2 In-frame ins/del | NA | NA | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kataoka, H.; Fukuoka, H.; Makabe, S.; Yoshida, R.; Teraoka, A.; Ushio, Y.; Akihisa, T.; Manabe, S.; Sato, M.; Mitobe, M.; et al. Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. J. Clin. Med. 2020, 9, 146. https://doi.org/10.3390/jcm9010146
Kataoka H, Fukuoka H, Makabe S, Yoshida R, Teraoka A, Ushio Y, Akihisa T, Manabe S, Sato M, Mitobe M, et al. Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. Journal of Clinical Medicine. 2020; 9(1):146. https://doi.org/10.3390/jcm9010146
Chicago/Turabian StyleKataoka, Hiroshi, Hinata Fukuoka, Shiho Makabe, Rie Yoshida, Atsuko Teraoka, Yusuke Ushio, Taro Akihisa, Shun Manabe, Masayo Sato, Michihiro Mitobe, and et al. 2020. "Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations" Journal of Clinical Medicine 9, no. 1: 146. https://doi.org/10.3390/jcm9010146
APA StyleKataoka, H., Fukuoka, H., Makabe, S., Yoshida, R., Teraoka, A., Ushio, Y., Akihisa, T., Manabe, S., Sato, M., Mitobe, M., Tsuchiya, K., Nitta, K., & Mochizuki, T. (2020). Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. Journal of Clinical Medicine, 9(1), 146. https://doi.org/10.3390/jcm9010146