Genome-Wide Association Study of Opioid Cessation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Diagnostic Procedures
2.2. Cessation Phenotype Definition
2.3. Genotyping, Imputation, and Quality Control
2.4. Genetic Association Analysis
Power
2.5. Assessment of SNP Effects on Gene Expression
2.6. Analysis of Genetic Overlap with Other Traits
2.7. Pathway Analysis
3. Results
3.1. Association of Demographic Factors with Opioid Cessation
3.2. Genetic Association Findings for Opioid Cessation
3.3. Biological Pathways and Gene Sets Related to Opioid Cessation
3.4. Polygenic Overlap with Other SUDs and OUD-Related Ttraits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dasgupta, N.; Beletsky, L.; Ciccarone, D. Opioid Crisis: No easy fix to its social and economic determinants. Am. J. Public Health 2018, 108, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Schuchat, A.; Houry, D.; Guy, G.P. New data on opioid use and prescribing in the United States. JAMA 2017, 318, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Katz, R.; Attal-Juncqua, A.; Fischer, J.E. Funding public health emergency preparedness in the United States. Am. J. Public Health 2017, 107, S148–S152. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.H.; Botticelli, M.; Bharel, M. Methadone in primary care - one small step for congress, one Giant leap for addiction treatment. N. Engl. J. Med. 2018, 379, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Schuckit, M.A. Treatment of opioid-use disorders. N. Engl. J. Med. 2016, 375, 1596–1597. [Google Scholar] [CrossRef]
- O’Connor, P.G. Methods of detoxification and their role in treating patients with opioid dependence. J. Am. Med. Assoc. 2005, 294, 961–963. [Google Scholar] [CrossRef]
- Jones, C.M. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers-United States, 2002–2004 and 2008–2010. Drug Alcohol Depend. 2013, 132, 95–100. [Google Scholar] [CrossRef]
- Mistry, C.J.; Bawor, M.; Desai, D.; Marsh, D.C.; Samaan, Z. Genetics of opioid dependence: A review of the genetic contribution to opioid dependence. Curr. Psychiatry Rev. 2014, 10, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Gelernter, J.; Panhuysen, C.; Wilcox, M.; Hesselbrock, V.; Rounsaville, B.; Poling, J.; Weiss, R.; Sonne, S.; Zhao, H.; Farrer, L.; et al. Genomewide linkage scan for opioid dependence and related traits. Am. J. Hum. Genet. 2006, 78, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Lachman, H.M.; Fann, C.S.; Bartzis, M. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum. Mol. Genet. 2007, 116, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Glatt, S.J.; Lasky-Su, J.A.; Zhu, S.C.; Zhang, R.; Zhang, B.; Li, J.; Yuan, X.; Li, J.; Lyons, M.J.; Faraone, S.V.; et al. Genomewide linkage analysis of heroin dependence in Han Chinese results from Wave Two of a multi-stage study. Drug Alcohol Depend. 2008, 98, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bart, G.; Heilig, M.; LaForge, K.S.; Pollak, L.; Leal, S.M.; Ott, J.; Kreek, M.J. Substantial attributable risk related to a functional mu opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol. Psychiatry 2004, 9, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA 1998, 95, 9608–9613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glatt, S.J.; Bousman, C.; Wang, R.S.; Murthy, K.K.; Rana, B.K.; Lasky-Su, J.A.; Zhu, S.C.; Zhang, R.; Li, J.; Zhang, B.; et al. Evaluation of OPRM1 variants in heroin dependence by family-based association testing and meta-analysis. Drug Alcohol Depend. 2007, 90, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kranzler, H.R.; Weiss, R.D.; Luo, X.; Brady, K.T.; Anton, R.F.; Farrer, L.A.; Gelernter, J. Pro-opiomelanocortin gene variation related to alcohol or drug dependence: Evidence and replications across family and population-based studies. Biol. Psychiatry 2009, 66, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Gelernter, J.; Kranzler, H.R.; Sherva, R.; Koesterer, R.; Almas y, L.; Zhao, H.; Farrer, L.A. Genome-wide association study of opioid dependence: Multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry 2014, 76, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, H.; Kranzler, H.R.; Li, M.D.; Jensen, K.; Zayats, T.; Farrer, L.A.; Gelernter, J. Genome-wide association study of copy number variations (CNVs) with opioid dependence. Neuropsychopharmacology 2015, 40, 1016–1026. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.C.; Agrawal, A.; Heath, A.C.; Sherva, R.; Zhang, B.; Al-Hasani, R.; Bruchas, M.R.; Chou, Y.-L.; Fakira, A.K.; Farrer, L.A.; et al. Evidence of CNIH3 involvement in opioid dependence. Mol. Psychiatry 2016, 21, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Zhou, H.; Sherva, R.; Farrer, L.A.; Kranzler, H.R.; Gelernter, J. Genome-wide association study identifies a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol. Psychiatry 2018, 84, 762–770. [Google Scholar] [CrossRef]
- Scott, C.K.; Dennis, M.L.; Laudet, A.; Funk, R.R.; Simeone, R.S. Surviving drug addiction: The effect of treatment and abstinence on mortality. Am. J. Public Health 2011, 101, 737–744. [Google Scholar] [CrossRef]
- Tkacz, J.; Severt, J.; Cacciola, J.; Ruetsch, C. Compliance with buprenorphine medication-assisted treatment and relapse to opioid use. Am. J. Addict. 2012, 21, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hasin, D.S.; O’Brien, C.P.; Auriacombe, M.; Borges, G.; Bucholz, K.; Budney, A.; Compton, W.M.; Crowley, T.; Ling, W.; Petry, N.M.; et al. DSM-5 criteria for substance use disorders: Recommendations and rationale. Am. J. Psychiatry 2013, 170, 834–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.Z.; Han, S.; Kranzler, H.R.; Palmer, A.A.; Gelernter, J. Sex-specific linkage scans in opioid dependence. Am. J. Med. Genet. 2017, 174, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelernter, J.; Panhuysen, C.; Weiss, R.; Brady, K.; Hesselbrock, V.; Rounsaville, B.; Poling, J.; Wilcox, M.; Farrer, L.; Kranzler, H.R. Genomewide linkage scan for cocaine dependence and related traits: Significant linkages for a cocaine-related trait and cocaine-induced paranoia. Am. J. Med. Genet. 2005, 136, 45–52. [Google Scholar] [CrossRef]
- Sherva, R.; Wang, Q.; Kranzler, H.; Zhao, H.; Koesterer, R.; Herman, A.; Farrer, L.A.; Gelernter, J. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry 2016, 73, 472–480. [Google Scholar] [CrossRef]
- Malison, R.T.; Kalayasiri, R.; Sanichwankul, K.; Sughondhabirom, A.; Mutirangura, A.; Pittman, B.; Gueorguieva, R.; Kranzler, H.R.; Gelernter, J. Inter-rater reliability and concurrent validity of DSM-IV opioid dependence in a Hmong isolate using the Thai version of the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). Addict. Behav. 2011, 36, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Pierucci-Lagha, A.; Gelernter, J.; Chan, G.; Arias, A.; Cubells, J.F.; Farrer, L.; Kranzler, H.R. Reliability of DSM-IV diagnostic criteria using the semi-structured assessment for drug dependence and alcoholism (SSADDA). Drug Alcohol Depend. 2007, 91, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.C.; Lynskey, M.T.; Heath, A.C.; Wray, N.; Agrawal, A.; Shand, F.L.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Schrage, A.J.; et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict. Biol. 2014, 19, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Bucholz, K.K.; Cadoret, R.; Cloninger, C.R.; Dinwiddie, S.H.; Hesselbrock, V.M.; Nurnberger, J.I., Jr.; Reich, T.; Schmidt, I.; Schuckit, M.A. A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. J. Stud. Alcohol. 1994, 55, 149–158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010, 26, 2190–2191. [Google Scholar] [CrossRef]
- Purcell, S.; Cherny, S.S.; Sham, P.C. Genetic power calculator: Design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003, 19, 149–150. [Google Scholar] [CrossRef]
- Carithers, L.J.; Ardlie, K.; Barcus, M.; Branton, P.A.; Britton, A.; Buia, S.A.; Compton, C.C.; DeLuca, D.S.; Peter-Demchok, J.; Gelfand, E.T.; et al. A novel approach to high-quality postmortem tissue procurement: The GTEx project. Biopreserv. Biobank. 2015, 13, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, A.; Trabzuni, D.; Guelfi, S.; Varghese, V.; Smith, C.; Walker, R.; De, T.; UK Brain Expression Consortium; North American Brain Expression Consortium; Coin, L.; et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 2014, 17, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Rapid GWAS of Thousands of Phenotypes for 337,000 Samples in the UK Biobank 2017. Available online: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank (accessed on 20 September 2017).
- Waljee, J.F.; Brummett, C.M. Opioid prescribing for low back pain: What is the role of payers? JAMA Netw. Open 2018, 1, e180236. [Google Scholar] [CrossRef]
- Deyo, R.A.; Von Korff, M.; Duhrkoop, D. Opioids for low back pain. Br. Med. J. 2015, 350, g6380. [Google Scholar] [CrossRef]
- Euesden, J.; Lewis, C.M.; O’Reilly, P.F. PRSice: Polygenic Risk Score software. Bioinformatics 2015, 31, 1466–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segre, A.V.; Groop, L.; Mootha, V.K.; Daly, M.J.; Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 2010, 6, e1001058. [Google Scholar] [CrossRef] [PubMed]
- Lein, E.S.; Hawrylycz, M.J.; Ao, N.; Ayres, M.; Bensinger, A.; Bernard, A.; Boe, A.F.; Boguski, M.S.; Brockway, K.S.; Byrnes, E.J.; et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007, 445, 168–176. [Google Scholar] [CrossRef]
- Wang, J.; Bixby, J.L. Receptor tyrosine phosphatase-delta is a homophilic, neurite-promoting cell adhesion molecular for CNS neurons. Mol. Cell Neurosci. 1999, 14, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Lind, P.A.; Macgregor, S.; Vink, J.M.; Pergadia, M.L.; Hansell, N.K.; de Moor, M.H.; Smit, A.B.; Hottenga, J.J.; Richter, M.M.; Heath, A.C.; et al. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res. Hum. Genet. 2010, 13, 10–29. [Google Scholar] [CrossRef]
- Corradini, I.; Verderio, C.; Sala, M.; Wilson, M.C.; Matteoli, M. SNAP-25 in neuropsychiatric disorders. Ann. N. Y. Acad. Sci. 2009, 1152, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.J.; Klempan, T.A.; De Luca, V.; Sicard, T.; Volavka, J.; Czobor, P.; Sheitman, B.B.; Lindenmayer, J.P.; Citrome, L.; McEvoy, J.P.; et al. The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci. Lett. 2005, 379, 81–89. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Jia, M.; Sun, X.; Wang, N.; Li, Y.; Cui, C. Phosphorylated SNAP25 in the CA1 regulates morphine-associated contextual memory retrieval via increasing GluN2B-NMDAR surface localization. Addict. Biol. 2018, 23, 1067–1078. [Google Scholar] [CrossRef]
- Feng, Y.; Crosbie, J.; Wigg, K.; Pathare, T.; Ickowicz, A.; Schachar, R.; Tannock, R.; Roberts, W.; Malone, M.; Swanson, J.; et al. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol. Psychiatry 2005, 10, 998–1005. [Google Scholar] [CrossRef]
- Eserian, J.K. Vitamin D as an effective treatment approach for drug abuse and addiction. J. Med. Hypotheses Ideas 2013, 7, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Poisbeau, P.A.M.; Gazzo, G.; Lacaud, A.; Kemmel, V.; Landel V4 Lelievre, V.; Feron, F. Cholecalciferol (Vitamin D3) Reduces Rat Neuropathic Pain by Modulating Opioid Signaling. Mol. Neurobiol. 2019, 56, 7208–7221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.W.; Alford, D.P.; Holick, M.F.; Malabanan, A.O.; Samet, J.H. Low vitamin D status of patients in methadone maintenance treatment. J. Addict. Med. 2009, 3, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, P.; Sperneder, S.; Hoijer, J.; Bergqvist, J.; Bjorkhem-Bergman, L. Low vitamin D levels are associated with higher opioid dose in palliative cancer patients--results from an observational study in Sweden. PLoS ONE 2015, 10, e0128223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.K.; Hooten, W.M.; Schmidt, J.E.; Kerkvliet, J.L.; Townsend, C.O.; Bruce, B.K. Prevalence and clinical correlates of vitamin D inadequacy among patients with chronic pain. Pain Med. 2008, 9, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Gudin, J. Opioid therapies and cytochrome p450 interactions. J. Pain Symptom Manage. 2012, 44, S4–S14. [Google Scholar] [CrossRef]
- Leppert, W. CYP2D6 in the metabolism of opioids for mild to moderate pain. Pharmacology 2011, 87, 274–285. [Google Scholar] [CrossRef]
- Yiannakopoulou, E. Pharmacogenomics and opioid analgesics: Clinical implications. Int. J. Genom. 2015, 2015, 368979. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Ul Haq, I.; Faisal, M.; Waseem, D.; Taqi, M.M. Implication of OPRM1 A118G polymorphism in opioids addicts in Pakistan: In vitro and in silico analysis. J. Mol. Neurosci. 2018, 65, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Wrzosek, M.; Jakubczyk, A.; Wrzosek, M.; Kaleta, B.; Lukaszkiewicz, J.; Matsumoto, H.; Brower, K.; Nowicka, G.; Wojnar, M. Association between Fok I vitamin D receptor gene (VDR) polymorphism and impulsivity in alcohol-dependent patients. Mol. Biol. Rep. 2014, 41, 7223–7228. [Google Scholar] [CrossRef] [Green Version]
- Fujita-Hamabe, W.; Nakamoto, K.; Tokuyama, S. Involvement of NCAM and FGF receptor signaling in the development of analgesic tolerance to morphine. Eur. J. Pharmacol. 2011, 672, 77–82. [Google Scholar] [CrossRef]
- Belcheva, M.M.; Haas, P.D.; Tan, Y.; Heaton, V.M.; Coscia, C.J. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J. Pharmacol. Exp. Ther. 2002, 303, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Skupio, U.; Sikora, M.; Korostynski, M.; Wawrzczak-Bargiela, A.; Piechota, M.; Ficek, J.; Przewlocki, R. Behavioral and transcriptional patterns of protracted opioid self-administration in mice. Addict. Biol. 2017, 22, 1802–1816. [Google Scholar] [CrossRef] [PubMed]
- Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 2009, 8, 235–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isakova, T.; Cai, X.; Lee, J.; Katz, R.; Cauley, J.A.; Fried, L.F.; Hoofnagle, A.N.; Satterfield, S.; Harris, T.B.; Shlipak, M.G.; et al. Associations of FGF23 with change in bone mineral density and fracture risk in older individuals. J. Bone Miner. Res. 2016, 31, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, F.; Pergolizzi, J.; Raffa, R.B.; Mattia, C. The unsolved case of “bone-impairing analgesics”: The endocrine effects of opioids on bone metabolism. Ther. Clin. Risk Manag. 2015, 11, 515–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuang, M.T.; Lyons, M.J.; Meyer, J.M.; Doyle, T.; Eisen, S.A.; Goldberg, J.; True, W.; Lin, N.; Toomey, R.; Eaves, L. Co-occurrence of abuse of different drugs in men: The role of drug-specific and shared vulnerabilities. Arch. Gen. Psychiatry 1998, 55, 967–972. [Google Scholar] [CrossRef]
- Vink, J.M.; Hottenga, J.J.; de Geus, E.J.; Willemsen, G.; Neale, M.C.; Furberg, H.; Boomsma, D.I. Polygenic risk scores for smoking: Predictors for alcohol and cannabis use? Addiction 2014, 109, 1141–1151. [Google Scholar] [CrossRef] [Green Version]
- Klejbor, I.; Myers, J.M.; Hausknecht, K.; Corso, T.D.; Gambino, A.S.; Morys, J.; Maher, P.A.; Hard, R.; Richards, J.; Stachowiak, E.K.; et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J. Neurochem. 2006, 97, 1243–1258. [Google Scholar] [CrossRef]
- Groves, N.J.; Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Mackay-Sim, A.; Burne, T.H. Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav. Brain Res. 2013, 241, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Dennis, B.B.; Bawor, M.; Paul, J.; Plater, C.; Pare, G.; Worster, A.; Varenbut, M.; Daiter, J.; Marsh, D.C.; Desai, D.; et al. Pain and opioid addiction: A systematic review and evaluation of pain measurement in patients with opioid dependence on methadone maintenance treatment. Curr. Drug Abuse Rev. 2016, 9, 49–60. [Google Scholar] [CrossRef]
- Busse, J.W.; Wang, L.; Kamaleldin, M.; Craigie, S.; Riva, J.J.; Montoya, L.; Mulla, S.M.; Lopes, L.C.; Vogel, N.; Chen, E.; et al. Opioids for chronic noncancer pain: A systematic review and meta-analysis. JAMA 2018, 320, 2448–2460. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.Y.; Zheng, M.; Sun, Y.; Sahbaie, P.; Low, S.A.; Peltz, G.; Scherrer, G.; Flores, C.; Clark, J.D. The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration. BMC Genom. 2014, 15, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, P.; Palmer, M.R.; Tsepilov, Y.A.; Freidin, M.B.; Boer, C.G.; Yau, M.S.; Evans, D.S.; Gelemanovic, A.; Bartz, T.M.; Nethander, M.; et al. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet. 2018, 14, e1007601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, A.M.; Pietrzak, R.H.; Kranzler, H.R.; Ma, L.; Zhou, H.; Liu, X.; Kramer, J.; Kuperman, S.; Edenberg, H.J.; Nurnberger, J.I.; et al. Polygenic scores for major depressive disorder and risk of alcohol dependence. JAMA Psychiatry 2017, 74, 1153–1160. [Google Scholar] [CrossRef]
Yale–Penn a | CATS b | ||||||||
---|---|---|---|---|---|---|---|---|---|
African Ancestry | European Ancestry | European Ancestry | |||||||
Cessation Status | Not Ceased | Ceased | Not Classified | Not Ceased | Ceased | Not Classified | Not Ceased | Ceased | Not Classified |
Total n (% female) | 682 (32.3) | 448 (40.6) | 101 (30.7) | 1235 (33.3) | 624 (41.3) | 344 (37.5) | 723 (37.1) | 337 (41.8) | 166 (48.2) |
Age (SD) in years | 41.5 (8.4) | 45.2 (8.4) | 43.7 (9.1) | 30.1 (10.2) | 40.3 10.7) | 35.6 (9.7) | 35.9 (8.3) | 39.0 (8.3) | 35.5 (8.8) |
Mean # OUD Criteria (SD) | 7.5 (2.2) | 7.3 (2.6) | 8.1 (2.2) | 8.5 (2) | 8.3 (2.1) | 8.6 (2.1) | 9.0 (1.4) | 8.8 (1.5) | 9.0 (1.4) |
n families/persons c | 42/91 | 21/42 | 2/4 | 70/142 | 20/40 | 9/20 | 0/0 | 0/0 | 0/0 |
Chr:position | ID | MA | Locus | African American | European Ancestry | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAF | OR | N | p | Dir | MAF | OR | N | p | Dir | OR | P | ||||
7:55887138 | rs11767417 | T | SEPT14 | 0.31 | 1.29 | 1130 | 1.06 × 10−2 | +++ | 0.11 | 1.50 | 2919 | 2.02 × 10−5 | ++-+ | 1.39 | 1.30 × 10−6 |
9:9783693 | rs4740988 | T | PTPRD | 0.24 | 1.48 | 1068 | 4.33 × 10−4 | ++? | 0.25 | 1.25 | 2919 | 6.62 × 10−4 | ++++ | 1.31 | 2.24 × 10−6 |
2:76417353 | rs10209663 | C | SUCLA2P2/AC073091.2 | 0.40 | 0.69 | 1130 | 2.20 × 10−4 | −−− | 0.09 | 0.73 | 2919 | 4.11 × 10−3 | −−−− | 0.71 | 3.09 × 10−6 |
12:19767596 | rs10743328 | C | AEBP2 | 0.13 | 1.36 | 1130 | 7.53 × 10−3 | +++ | 0.12 | 1.50 | 2265 | 1.41 × 10−4 | +?++ | 1.43 | 3.37 × 10−6 |
8:2082245 | rs36098404 | G | MYOM2 | 0.26 | 0.93 | 1130 | 4.53 × 10−1 | +−− | 0.07 | 1.72 | 2919 | 4.11 × 10−6 | ++++ | 1.22 | 7.77 × 10−2 |
12:81223948 | rs12316031 | T | MIR617 | 0.28 | 1.43 | 1068 | 5.37 × 10−3 | ++? | 0.10 | 1.48 | 2919 | 2.88 × 10−4 | ++++ | 1.46 | 5.84 × 10−6 |
20:10086110 | rs592026 | G | SNAP25-AS1 | 0.11 | 1.11 | 822 | 5.48 × 10−1 | +?? | 0.19 | 1.44 | 2919 | 6.53 × 10−6 | +−++ | 1.24 | 3.23 × 10−3 |
8:121847800 | rs4367595 | A | RP11-713M15.2/RP11-369K17.1 | 0.22 | 1.27 | 1130 | 4.76 × 10−2 | ++− | 0.37 | 1.27 | 2919 | 7.45 × 10−5 | ++++ | 1.27 | 9.47 × 10−6 |
18:40805792 | rs114592700 | C | RIT2-SYT4 | 0.05 | 1.28 | 822 | 3.03 × 10−1 | +?? | 0.07 | 1.74 | 2919 | 9.50 × 10−6 | ++++ | 1.61 | 3.22 × 10−4 |
Predictor Trait | GWAS n | GWAS p threshold | PRS padj | R2 |
---|---|---|---|---|
Former smoker | 83,133 | 1 | 4.44 × 10−3 | 0.0075 |
Former drinker | 21,894 | 0.092 | 6.24 × 10−4 | 0.0099 |
Back pain for >3 months | 84,489 | 0.18 | 1.25 × 10−7 | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cox, J.W.; Sherva, R.M.; Lunetta, K.L.; Johnson, E.C.; Martin, N.G.; Degenhardt, L.; Agrawal, A.; Nelson, E.C.; Kranzler, H.R.; Gelernter, J.; et al. Genome-Wide Association Study of Opioid Cessation. J. Clin. Med. 2020, 9, 180. https://doi.org/10.3390/jcm9010180
Cox JW, Sherva RM, Lunetta KL, Johnson EC, Martin NG, Degenhardt L, Agrawal A, Nelson EC, Kranzler HR, Gelernter J, et al. Genome-Wide Association Study of Opioid Cessation. Journal of Clinical Medicine. 2020; 9(1):180. https://doi.org/10.3390/jcm9010180
Chicago/Turabian StyleCox, Jiayi W., Richard M. Sherva, Kathryn L. Lunetta, Emma C. Johnson, Nicholas G. Martin, Louisa Degenhardt, Arpana Agrawal, Elliot C. Nelson, Henry R. Kranzler, Joel Gelernter, and et al. 2020. "Genome-Wide Association Study of Opioid Cessation" Journal of Clinical Medicine 9, no. 1: 180. https://doi.org/10.3390/jcm9010180