Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Subjects
2.2. Laboratory Measurements
2.3. Jejunal Biopsy Samples
2.4. Cell Viability in Jejunum
2.5. Intestinal Epithelial Cells (IEC) Isolation and Incubation
2.6. Western Blot
2.7. RNA Extraction and RT-PCR
2.8. Enzymatic Activity of G6Pase
2.9. Statistical Analysis
3. Results
3.1. Jejunal Insulin Signalling
3.2. Jejunal Gluconeogenesis/Glycolysis
3.3. Significant Associations between Jejunal mRNA Expression Levels and Biochemical and Anthropometric Baseline Variables
3.4. Associations between mRNA Gene Expression Levels and Changes in BMI and HOMA-IR after RYGB
3.5. Insulin Effects on the mRNA Expression Levels in Incubated IEC
3.5.1. Jejunal Insulin Signalling
3.5.2. Jejunal Gluconeogenesis/Glycolysis
3.6. Leptin Effects on the mRNA Expression Levels in Incubated IEC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mithieux, G.; Gautier-Stein, A. Intestinal glucose metabolism revisited. Diabetes Res. Clin. Pract. 2014, 105, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Penhoat, A.; Fayard, L.; Stefanutti, A.; Mithieux, G.; Rajas, F. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice. Metabolism 2014, 63, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Repiso, C.; Garcia-Serrano, S.; Moreno-Ruiz, F.J.; Alcain-Martinez, G.; Rodriguez-Pacheco, F.; Garcia-Fuentes, E. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2017, 13, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Federico, L.M.; Naples, M.; Taylor, D.; Adeli, K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: Evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes 2006, 55, 1316–1326. [Google Scholar]
- Gutierrez-Repiso, C.; Rodriguez-Pacheco, F.; Garcia-Arnes, J.; Valdés, S.; Gonzalo, M.; Soriguer, F.; Moreno-Ruiz, F.J.; Rodriguez-Canete, A.; Gallego-Perales, J.L.; Alcaín-Martínez, G.; et al. The expression of genes involved in jejunal lipogenesis and lipoprotein synthesis is altered in morbidly obese subjects with insulin resistance. Lab. Investig. 2015, 95, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Soriguer, F.; Garcia-Serrano, S.; Garrido-Sanchez, L.; Repiso, C.G.; Rojo-Martinez, G.; Garcia-Escobar, E.; Garcia-Arnes, J.; Gallego-Perales, J.L.; Delgado, V.; Garcia-Fuentes, E. Jejunal wall triglyceride concentration of morbidly obese persons is lower in those with type 2 diabetes mellitus. J. Lipid Res. 2010, 51, 3516–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho-Plagaro, A.; Santiago-Fernandez, C.; García-Serrano, S.; Rodriguez, C.; Garrido-Sanchez, L.; Escamilla, A.; Gonzalo, M.; Montiel-Casado, C.; Alcaín-Martínez, G.; Garcia-Muñoz, B.; et al. A lower duodenal immune response is associated with an increase of insulin resistance in patients with morbid obesity. Int. J. Obes. 2019, 1–13. [Google Scholar] [CrossRef]
- Mithieux, G.; Rajas, F.; Gautier-Stein, A. A Novel Role for Glucose 6-Phosphatase in the Small Intestine in the Control of Glucose Homeostasis. J. Boil. Chem. 2004, 279, 44231–44234. [Google Scholar] [CrossRef] [Green Version]
- Rajas, F.; Bruni, N.; Montano, S.; Zitoun, C.; Mithieux, G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: Regulation of expression in fasted and diabetic rats. Gastroenterology 1999, 117, 132–139. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Z.; Kong, F.; Feng, S.; Li, X.; Sha, Y.; Zhang, G.; Liu, H.; Zhang, H.; Wang, S.; et al. Roux-en-Y Gastric Bypass Surgery Suppresses Hepatic Gluconeogenesis and Increases Intestinal Gluconeogenesis in a T2DM Rat Model. Obes. Surg. 2016, 26, 2683–2690. [Google Scholar] [CrossRef]
- Troy, S.; Soty, M.; Ribeiro, L.; Laval, L.; Migrenne, S.; Fioramonti, X.; Pillot, B.; Fauveau, V.; Aubert, R.; Viollet, B.; et al. Intestinal Gluconeogenesis Is a Key Factor for Early Metabolic Changes after Gastric Bypass but Not after Gastric Lap-Band in Mice. Cell Metab. 2008, 8, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.A. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci. 2000, 57, 170–178. [Google Scholar] [PubMed]
- Schormann, N.; Hayden, K.L.; Lee, P.; Banerjee, S.; Chattopadhyay, D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci. 2019, 28, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Renström, F.; Burén, J.; Svensson, M.; Eriksson, J.W. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism 2007, 56, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Thirone, A.C.; Huang, C.; Klip, A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol. Metab. 2006, 17, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, S.M.; Ueki, K.; Engelman, J.A.; Kahn, R.C.; Cantley, L.C. Phosphoinositide 3-Kinase Catalytic Subunit Deletion and Regulatory Subunit Deletion Have Opposite Effects on Insulin Sensitivity in Mice. Mol. Cell. Boil. 2005, 25, 1596–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 2010, 1, 68–75. [Google Scholar] [CrossRef]
- Mithieux, G.; Rajas, F.; Zitoun, C. Glucose utilization is suppressed in the gut of insulin-resistant high fat-fed rats and is restored by metformin. Biochem. Pharmacol. 2006, 72, 198–203. [Google Scholar] [CrossRef]
- Shepherd, P.R. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol. Scand. 2005, 183, 3–12. [Google Scholar] [CrossRef]
- Carvalheira, J.B.; Torsoni, M.A.; Ueno, M.; Amaral, M.E.; Araújo, E.P.; Velloso, L.A.; Gontijo, J.A.; Saad, M.J. Cross-Talk between the Insulin and Leptin Signaling Systems in Rat Hypothalamus. Obes. Res. 2005, 13, 48–57. [Google Scholar] [CrossRef]
- Nazarians-Armavil, A.; Menchella, J.A.; Belsham, D.D. Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription. Mol. Endocrinol. 2013, 27, 990–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Fuentes, E.; García-Almeida, J.; Garcia-Arnes, J.; Rivas-Marín, J.; Gallego-Perales, J.; González-Jiménez, B.; Cardona, I.; Garcia-Serrano, S.; Garriga, M.J.; Gonzalo, M.; et al. Morbidly Obese Individuals with Impaired Fasting Glucose have a Specific Pattern of Insulin Secretion and Sensitivity: Effect of Weight Loss after Bariatric Surgery. Obes. Surg. 2006, 16, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- González-Plaza, J.J.; Santiago-Fernandez, C.; Gutierrez-Repiso, C.; García-Serrano, S.; Rodriguez-Pacheco, F.; Ho-Plagaro, A.; Garrido-Sanchez, L.; Moreno-Ruiz, F.J.; Rodríguez-Cañete, A.; García-Fuentes, E. The changes in the transcriptomic profiling of subcutaneous adipose tissue after bariatric surgery depend on the insulin resistance state. Surg. Obes. Relat. Dis. 2018, 14, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Murri, M.; García-Fuentes, E.; García-Almeida, J.M.; Garrido-Sanchez, L.; Mayas, M.D.; Bernal, R.; Tinahones, F.J. Changes in Oxidative Stress and Insulin Resistance in Morbidly Obese Patients After Bariatric Surgery. Obes. Surg. 2009, 20, 363–368. [Google Scholar] [CrossRef]
- Garrido-Sánchez, L.; Vendrell, J.; Fernández-García, D.; Ceperuelo-Mallafré, V.; Chacón, M.R.; Ocana-Wilhelmi, L.; Alcaide, J.; Tinahones, F.J.; García-Fuentes, E. De Novo Lipogenesis in Adipose Tissue Is Associated with Course of Morbid Obesity after Bariatric Surgery. PLoS ONE 2012, 7, e31280. [Google Scholar] [CrossRef] [Green Version]
- Enzymatic Activity of Glucose-6-Phosphatase [EC 3.1.3.9]. Available online: https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-glucose-6-phosphatase.html (accessed on 9 January 2020).
- Kovacs, P.; Hanson, R.L.; Lee, Y.-H.; Yang, X.; Kobes, S.; Permana, P.A.; Bogardus, C.; Baier, L.J. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians. Diabetes 2003, 52, 3005–3009. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Vaag, A.; Hansson, M.; Groop, L. Down-regulation of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc gene expression by insulin in skeletal muscle is not associated with insulin resistance or type 2 diabetes. J. Clin. Endocrinol. Metab. 2002, 87, 255–259. [Google Scholar] [CrossRef]
- Stümpel, F.; Burcelin, R.; Jungermann, K.; Thorens, B. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: Evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2001, 98, 11330–11335. [Google Scholar] [CrossRef] [Green Version]
- Veilleux, A.; Grenier, E.; Marceau, P.; Carpentier, A.C.; Richard, D.; Levy, E. Intestinal lipid handling: Evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Lefai, E.; Roques, M.; Vega, N.; Laville, M.; Vidal, H. Expression of the splice variants of the p85alpha regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients. Biochem. J. 2001, 360, 117–126. [Google Scholar] [CrossRef]
- Giorgino, F.; Pedrini, M.T.; Matera, L.; Smith, R.J. Specific increase in p85alpha expression in response to dexamethasone is associated with inhibition of insulin-like growth factor-I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells. J. Boil. Chem. 1997, 272, 7455–7463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, K.; Fruman, D.A.; Brachmann, S.M.; Tseng, Y.-H.; Cantley, L.C.; Kahn, C.R. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol. Cell. Boil. 2002, 22, 965–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Xu, H.; Li, J.; Geng, L.; Li, X.; Zhou, X.; Wang, X. Leptin and its receptor in glucose metabolism of T-cell lymphoma. Oncol. Lett. 2018, 16, 5838–5846. [Google Scholar] [CrossRef] [PubMed]
- Coward, R.J.; Welsh, G.I.; Yang, J.; Tasman, C.; Lennon, R.; Koziell, A.; Satchell, S.; Holman, G.D.; Kerjaschki, N.; Tavaré, J.M.; et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 2005, 54, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, P.; Koistinen, H.A.; Koivisto, V.A. Insulin-independent glucose transport regulates insulin sensitivity. FEBS Lett. 1998, 436, 301–303. [Google Scholar] [CrossRef]
- Shimomura, I.; Hammer, R.E.; Ikemoto, S.; Brown, M.S.; Goldstein, J.L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999, 401, 73–76. [Google Scholar] [CrossRef]
- Jun, J.Y.; Ma, Z.; Pyla, R.; Segar, L. Leptin treatment inhibits the progression of atherosclerosis by attenuating hypercholesterolemia in type 1 diabetic Ins2(+/Akita):apoE(-/-) mice. Atherosclerosis 2012, 225, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Sabino-Silva, R.; Mori, R.C.; David-Silva, A.; Okamoto, M.M.; Freitas, H.S.; Machado, U.F. The Na(+)/glucose cotransporters: From genes to therapy. Braz. J. Med. Biol. Res. 2010, 43, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Takata, K.; Kasahara, T.; Kasahara, M.; Ezaki, O.; Hirano, H. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in the ciliary body and iris of the rat eye. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1659–1666. [Google Scholar]
- Moghaddam, A.A.; Woodward, M.; Huxley, R. Obesity and Risk of Colorectal Cancer: A Meta-analysis of 31 Studies with 70,000 Events. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2533–2547. [Google Scholar] [CrossRef] [Green Version]
- Basen-Engquist, K.; Chang, M. Obesity and cancer risk: Recent review and evidence. Curr. Oncol. Rep. 2011, 13, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.-K.; Yeon, J.-Y.; Park, S.-Y.; Park, J.H.Y.; Choi, M.-S. Obesity-induced metabolic stresses in breast and colon cancer. Ann. N. Y. Acad. Sci. 2011, 1229, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, J.; Chen, H.; Duan, Z.; Xu, Q.; Wei, M.; Wang, L.; Zhong, M. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J. Biosci. 2012, 37, 91–101. [Google Scholar] [CrossRef] [PubMed]
MO-Low-IR | MO-High-IR | MO-Metf-T2DM | |
---|---|---|---|
N (men/women) | 15 (6/9) | 15 (5/10) | 15 (5/10) |
Age (years) | 40.3 ± 9.8 | 42.2 ± 5.1 | 44.2 ± 12.9 |
Weight (kg) | 129.3 ± 16.8 | 159.3 ± 35.5 * | 126.7 ± 12.8 1 |
BMI (kg/m2) | 46.8 ± 6.1 | 54.1 ± 8.0 * | 47.9 ± 6.3 |
Waist (cm) | 131.6 ± 13.6 | 151.7 ± 17.2 * | 133.5 ± 10.6 |
Hip (cm) | 146.4 ± 7.6 | 157.7 ± 13.1 | 139.2 ± 14.5 1 |
Glucose (mg/dL) | 88.3 ± 8.8 | 116.3 ± 50.9 # | 136.5 ± 51.6 b |
Insulin (µIU/mL) | 13.1 ± 1.9 | 28.6 ± 9.1 † | 18.5 ± 7.6 a,1 |
Cholesterol (mg/dL) | 215.4 ± 62.2 | 209.3 ± 30.5 | 208.7 ± 20.5 |
Triglycerides (mg/dL) | 106.5 ± 31.1 | 141.8 ± 49.3 | 186.5 ± 52.6 a,1 |
HOMA-IR | 2.83 ± 0.50 | 8.26 ± 3.09 † | 6.21 ± 2.10 c |
Leptin | 49.2 ± 15.6 | 101.6 ± 49.1 * | 57.9 ± 32.7 |
Insulin * | HOMA-IR * | BMI | Waist * | |
---|---|---|---|---|
IRS1 | r = 0.487; p = 0.003 | r = 0.443; p = 0.008 | Ns | Ns |
p110β | r = 0.370; p = 0.048 | r = 0.379; p = 0.043 | Ns | Ns |
p85α/p110β | r = −0.558; p = 0.002 | r = -0.628; p < 0.001 | r = −0.476; p = 0.009 | r = −0.687; p = 0.001 |
G6Pase | r = 0.461; p = 0.005 | r = 0.424; p = 0.010 | Ns | Ns |
PEPCK | r = 0.347; p = 0.045 | Ns | r = 0.416; p = 0.025 | r = 0.446; p = 0.043 |
HK1 | r = 0.380; p = 0.022 | r = 0.526; p = 0.001 | r = 0.360; p = 0.024 | r = 0.479; p = 0.007 |
Dependent Variable | r2 | Significant Independent Variables | |
---|---|---|---|
Model 1 | p85α | 0.212 | BMI (B = −0.406; p = 0.046) |
p110β | 0.091 | Insulin (B = 0.376; p = 0.047) | |
p85α/p110β | 0.208 | Insulin (B = −0.448; p = 0.013) | |
Model 2 | IRS1 | 0.822 | Insulin (B = 0.611; p = 0.009) Leptin (B = 0.514; p = 0.032) |
Presurgery | 1 Month after RYGB | 3 Months after RYGB | 6 Months after RYGB | 12 Months after RYGB | |
---|---|---|---|---|---|
BMI (kg/m2) | 49.2 ± 7.5 a | 42.3 ± 5.7 b | 37.3 ± 4.8 c | 34.9 ± 4.8 d | 31.2 ± 3.2 e |
ΔBMI | - | 12.9 ± 3.2 d | 21.9 ± 4.2 c | 28.8 ± 5.5 b | 35.2 ± 7.6 a |
HOMA-IR | 5.9 ± 3.9 a | 3.4 ± 2.3 b | 2.3 ± 1.0 c | 1.6 ± 0.8 d | 1.4 ± 0.8 d |
ΔHOMA-IR | - | 26.6 ± 29.5 d | 49.9 ± 23.8 c | 64.9 ± 17.4 b | 66.2 ± 16.8 a |
Months after RYGB | IRS1 | p85α/p110β | |
---|---|---|---|
ΔBMI | 1 | r = 0.718; p < 0.001 | NS |
3 | r = 0.594; p = 0.003 | r = −0.440; p = 0.028 | |
6 | r = 0.490; p = 0.024 | Ns | |
12 | Ns | Ns | |
ΔHOMA-IR * | 1 | Ns | r = −0.610; p = 0.004 |
3 | r = 0.641; p = 0.002 | r = −0.685; p = 0.001 | |
6 | r = 0.663; p = 0.004 | r = −0.641; p = 0.002 | |
12 | r = 0.454; p = 0.045 | r = −0.513; p = 0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Repiso, C.; Ho-Plagaro, A.; Santiago-Fernandez, C.; Garcia-Serrano, S.; Rodríguez-Pacheco, F.; Valdes, S.; Garrido-Sanchez, L.; Rodríguez-Díaz, C.; López-Gómez, C.; Moreno-Ruiz, F.J.; et al. Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin. J. Clin. Med. 2020, 9, 196. https://doi.org/10.3390/jcm9010196
Gutierrez-Repiso C, Ho-Plagaro A, Santiago-Fernandez C, Garcia-Serrano S, Rodríguez-Pacheco F, Valdes S, Garrido-Sanchez L, Rodríguez-Díaz C, López-Gómez C, Moreno-Ruiz FJ, et al. Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin. Journal of Clinical Medicine. 2020; 9(1):196. https://doi.org/10.3390/jcm9010196
Chicago/Turabian StyleGutierrez-Repiso, Carolina, Ailec Ho-Plagaro, Concepción Santiago-Fernandez, Sara Garcia-Serrano, Francisca Rodríguez-Pacheco, Sergio Valdes, Lourdes Garrido-Sanchez, Cristina Rodríguez-Díaz, Carlos López-Gómez, Francisco J. Moreno-Ruiz, and et al. 2020. "Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin" Journal of Clinical Medicine 9, no. 1: 196. https://doi.org/10.3390/jcm9010196
APA StyleGutierrez-Repiso, C., Ho-Plagaro, A., Santiago-Fernandez, C., Garcia-Serrano, S., Rodríguez-Pacheco, F., Valdes, S., Garrido-Sanchez, L., Rodríguez-Díaz, C., López-Gómez, C., Moreno-Ruiz, F. J., Alcain-Martinez, G., Gautier-Stein, A., Mithieux, G., & Garcia-Fuentes, E. (2020). Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin. Journal of Clinical Medicine, 9(1), 196. https://doi.org/10.3390/jcm9010196