Relationship of Serum Progesterone and Progesterone Metabolites with Mammographic Breast Density and Terminal Ductal Lobular Unit Involution among Women Undergoing Diagnostic Breast Biopsy
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Mammographic Breast Density Assessment
2.3. Histologic Assessment of TDLU Involution
2.4. Blood Collection and Laboratory Assay
2.5. Statistical Analysis
3. Results
3.1. Luteal Menstrual Cycle Phase Women (n = 65)
3.2. Follicular Menstrual Cycle Phase Women (n = 88)
3.3. Postmenopausal Women (n = 103)
3.4. Sensitivity Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Feigelson, H.S.; Henderson, B.E. Estrogens and breast cancer. Carcinogenesis 1996, 17, 2279–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaneck, G.E.; Fishman, J. Effects of estrogens on MCF-7 cells: Positive or negative regulation by the nature of the ligand-receptor complex. Biochem. Biophys. Res. Commun. 1991, 174, 276–281. [Google Scholar] [CrossRef]
- Yager, J.D. Endogenous estrogens as carcinogens through metabolic activation. J. Natl. Cancer Inst. Monogr. 2000, 27, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Yager, J.D.; Wang, J.P.; Jupe, E.R.; Santen, R.J. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids 2013, 78, 161–170. [Google Scholar] [CrossRef]
- Key, T.; Appleby, P.; Barnes, I.; Reeves, G.; Endogenous, H.; Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J. Natl. Cancer Inst. 2002, 94, 606–616. [Google Scholar] [CrossRef]
- Brisken, C. Progesterone signalling in breast cancer: A neglected hormone coming into the limelight. Nat. Rev. Cancer 2013, 13, 385–396. [Google Scholar] [CrossRef]
- Muti, P. Is progesterone a neutral or protective factor for breast cancer? Nat. Rev. Cancer 2014, 14, 146. [Google Scholar] [CrossRef]
- Wiebe, J.P.; Muzia, D.; Hu, J.; Szwajcer, D.; Hill, S.A.; Seachrist, J.L. The 4-pregnene and 5alpha-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Res. 2000, 60, 936–943. [Google Scholar]
- Wiebe, J.P. Progesterone metabolites in breast cancer. Endocr. Relat. Cancer 2006, 13, 717–738. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, J.P.; Rivas, M.A.; Mercogliano, M.F.; Elizalde, P.V.; Schillaci, R. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5alpha-dihydroprogesterone (5alphaP) and can be suppressed by the 5alpha-reductase inhibitor, finasteride. J. Steroid. Biochem. Mol. Biol. 2015, 149, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Khodr, Z.G.; Sherman, M.E.; Pfeiffer, R.M.; Gierach, G.L.; Brinton, L.A.; Falk, R.T.; Patel, D.A.; Linville, L.M.; Papathomas, D.; Clare, S.E.; et al. Circulating sex hormones and terminal duct lobular unit involution of the normal breast. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2765–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, A.; Frydenberg, H.; Furberg, A.S.; Flote, V.G.; Finstad, S.E.; McTiernan, A.; Ursin, G.; Wilsgaard, T.; Ellison, P.T.; Jasienska, G.; et al. Cyclic endogenous estrogen and progesterone vary by mammographic density phenotypes in premenopausal women. Eur. J. Cancer Prev. 2016, 25, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flote, V.G.; Frydenberg, H.; Ursin, G.; Iversen, A.; Fagerland, M.W.; Ellison, P.T.; Wist, E.A.; Egeland, T.; Wilsgaard, T.; McTiernan, A.; et al. High-density lipoprotein-cholesterol, daily estradiol and progesterone, and mammographic density phenotypes in premenopausal women. Cancer Prev. Res. 2015, 8, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Ingles, S.A.; Van Den Berg, D.; Wang, W.; Lavallee, C.; Huang, M.H.; Crandall, C.J.; Stanczyk, F.Z.; Greendale, G.A.; Ursin, G. Progestogen levels, progesterone receptor gene polymorphisms, and mammographic density changes: Results from the Postmenopausal Estrogen/Progestin Interventions Mammographic Density Study. Menopause 2012, 19, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.J.; Boyd, N.F. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: Hypotheses based on epidemiological evidence. Breast Cancer Res. 2008, 10, 201. [Google Scholar] [CrossRef]
- Wiebe, J.P.; Lewis, M.J.; Cialacu, V.; Pawlak, K.J.; Zhang, G. The role of progesterone metabolites in breast cancer: Potential for new diagnostics and therapeutics. J. Steroid. Biochem. Mol. Biol. 2005, 93, 201–208. [Google Scholar] [CrossRef]
- Wiebe, J.P.; Zhang, G.; Welch, I.; Cadieux-Pitre, H.A. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors. Breast Cancer Res. 2013, 15, R38. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Khodr, Z.G.; Sherman, M.E.; Palakal, M.; Pfeiffer, R.M.; Linville, L.; Geller, B.M.; Vacek, P.M.; Weaver, D.L.; Chicoine, R.E.; et al. Relation of Serum Estrogen Metabolites with Terminal Duct Lobular Unit Involution Among Women Undergoing Diagnostic Image-Guided Breast Biopsy. Horm. Cancer 2016, 7, 305–315. [Google Scholar] [CrossRef]
- Ghosh, K.; Vachon, C.M.; Pankratz, V.S.; Vierkant, R.A.; Anderson, S.S.; Brandt, K.R.; Visscher, D.W.; Reynolds, C.; Frost, M.H.; Hartmann, L.C. Independent association of lobular involution and mammographic breast density with breast cancer risk. J. Natl. Cancer Inst. 2010, 102, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.D.; Pfeiffer, R.M.; Patel, D.A.; Linville, L.; Brinton, L.A.; Gierach, G.L.; Yang, X.R.; Papathomas, D.; Visscher, D.; Mies, C.; et al. Terminal duct lobular unit involution of the normal breast: Implications for breast cancer etiology. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, N.; Martin, L.; Stone, J.; Little, L.; Minkin, S.; Yaffe, M. A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1048–1053. [Google Scholar]
- Boyd, N.F.; Stone, J.; Martin, L.J.; Jong, R.; Fishell, E.; Yaffe, M.; Hammond, G.; Minkin, S. The association of breast mitogens with mammographic densities. Br. J. Cancer 2002, 87, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, J.J.; Maskarinec, G.; Pagano, I.; Cheung, L.W.; Stanczyk, F.Z. Mammographic densities and circulating hormones: A cross-sectional study in premenopausal women. Breast 2006, 15, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, K.A.; Eliassen, A.H.; Hankinson, S.E.; Rosner, B.A.; Tamimi, R.M. Circulating Hormones and Mammographic Density in Premenopausal Women. Horm. Cancer 2018, 9, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Egleston, B.L.; Chandler, D.W.; Van Horn, L.; Hylton, N.M.; Klifa, C.C.; Lasser, N.L.; LeBlanc, E.S.; Paris, K.; Shepherd, J.A.; et al. Adolescent endogenous sex hormones and breast density in early adulthood. Breast Cancer Res. 2015, 17, 77. [Google Scholar] [CrossRef] [Green Version]
- Tamimi, R.M.; Hankinson, S.E.; Colditz, G.A.; Byrne, C. Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2641–2647. [Google Scholar] [CrossRef] [Green Version]
- Sprague, B.L.; Trentham-Dietz, A.; Gangnon, R.E.; Buist, D.S.; Burnside, E.S.; Bowles, E.J.; Stanczyk, F.Z.; Sisney, G.S. Circulating sex hormones and mammographic breast density among postmenopausal women. Horm. Cancer 2011, 2, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.; Skinner, J.; Sala, E.; Denton, E.; Dowsett, M.; Folkerd, E.; Healey, C.S.; Dunning, A.; Doody, D.; Ponder, B.; et al. Associations among Mammographic Density, Circulating Sex Hormones, and Polymorphisms in Sex Hormone Metabolism Genes in Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Trabert, B.; Falk, R.T.; Stanczyk, F.Z.; McGlynn, K.A.; Brinton, L.A.; Xu, X. Reproducibility of an assay to measure serum progesterone metabolites that may be related to breast cancer risk using liquid chromatography-tandem mass spectrometry. Horm. Mol. Biol. Clin. Investig. 2015, 23, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Gierach, G.L.; Geller, B.M.; Shepherd, J.A.; Patel, D.A.; Vacek, P.M.; Weaver, D.L.; Chicoine, R.E.; Pfeiffer, R.M.; Fan, B.; Mahmoudzadeh, A.P.; et al. Comparison of Mammographic Density Assessed as Volumes and Areas among Women Undergoing Diagnostic Image-Guided Breast Biopsy. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2338–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevrhal, S.; Shepherd, J.A.; Smith-Bindman, R.; Cummings, S.R.; Kerlikowske, K. Accuracy of Mammographic Breast Density Analysis: Results of Formal Operator Training. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1389–1393. [Google Scholar]
- Shepherd, J.A.; Kerlikowske, K.; Ma, L.; Duewer, F.; Fan, B.; Wang, J.; Malkov, S.; Vittinghoff, E.; Cummings, S.R. Volume of mammographic density and risk of breast cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1473–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkov, S.; Wang, J.; Kerlikowske, K.; Cummings, S.R.; Shepherd, J.A. Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume. Med. Phys. 2009, 36, 5525–5536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gierach, G.L.; Patel, D.A.; Pfeiffer, R.M.; Figueroa, J.D.; Linville, L.; Papathomas, D.; Johnson, J.M.; Chicoine, R.E.; Herschorn, S.D.; Shepherd, J.A.; et al. Relationship of Terminal Duct Lobular Unit Involution of the Breast with Area and Volume Mammographic Densities. Cancer Prev. Res. 2016, 9, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.R.; Figueroa, J.D.; Falk, R.T.; Zhang, H.; Pfeiffer, R.M.; Hewitt, S.M.; Lissowska, J.; Peplonska, B.; Brinton, L.; Garcia-Closas, M.; et al. Analysis of terminal duct lobular unit involution in luminal A and basal breast cancers. Breast Cancer Res. 2012, 14, R64. [Google Scholar] [CrossRef] [Green Version]
- Rosebrock, A.; Caban, J.J.; Figueroa, J.; Gierach, G.; Linville, L.; Hewitt, S.; Sherman, M. Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8676. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.D.; Pfeiffer, R.M.; Brinton, L.A.; Palakal, M.M.; Degnim, A.C.; Radisky, D.; Hartmann, L.C.; Frost, M.H.; Stallings Mann, M.L.; Papathomas, D.; et al. Standardized measures of lobular involution and subsequent breast cancer risk among women with benign breast disease: A nested case-control study. Breast Cancer Res. Treat. 2016, 159, 163–172. [Google Scholar] [CrossRef]
- Milanese, T.R.; Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Degnim, A.C.; Vachon, C.M.; Reynolds, C.A.; et al. Age-related lobular involution and risk of breast cancer. J. Natl. Cancer Inst. 2006, 98, 1600–1607. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.J.; Collins, L.C.; Connolly, J.L.; Colditz, G.A.; Schnitt, S.J.; Tamimi, R.M. Lobule type and subsequent breast cancer risk: Results from the Nurses’ Health Studies. Cancer 2009, 115, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Masters, J.R.W.; Drife, J.O.; Scarisbrick, J.J. Cyclic Variation of DNA Synthesis in Human Breast Epithelium. JNCI J. Natl. Cancer Inst. 1977, 58, 1263–1265. [Google Scholar] [CrossRef]
- Longacre, T.A.; Bartow, S.A. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am. J. Surg. Pathol. 1986, 10, 382–393. [Google Scholar] [CrossRef]
- Brisken, C.; Hess, K.; Jeitziner, R. Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis. Endocrinology 2015, 156, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Gierach, G.L.; Sandhu, R.; Williams, T.; Midkiff, B.R.; Lissowska, J.; Wesolowska, E.; Boyd, N.F.; Johnson, N.B.; Figueroa, J.D.; et al. Relationship of mammographic density and gene expression: Analysis of normal breast tissue surrounding breast cancer. Clin. Cancer Res. 2013, 19, 4972–4982. [Google Scholar] [CrossRef] [Green Version]
- Britt, K.; Ingman, W.; Huo, C.; Chew, G.; Thompson, E. The Pathobiology of Mammographic Density. J. Cancer Biol. Res. 2014, 2, 1021. [Google Scholar]
- Macias, H.; Hinck, L. Mammary gland development. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 533–557. [Google Scholar] [CrossRef] [Green Version]
- Haslam, S.Z.; Woodward, T.L. Host microenvironment in breast cancer development: Epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 2003, 5, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Hartmann, L.C.; Reynolds, C.; Visscher, D.W.; Brandt, K.R.; Vierkant, R.A.; Scott, C.G.; Radisky, D.C.; Sellers, T.A.; Pankratz, V.S.; et al. Association between mammographic density and age-related lobular involution of the breast. J. Clin. Oncol. 2010, 28, 2207–2212. [Google Scholar] [CrossRef]
- Jensen, H.M.; Wellings, S.R. On the Origin and Progression of Ductal Carcinoma in the Human Breast2. JNCI J. Natl. Cancer Inst. 1973, 50, 1111–1118. [Google Scholar] [CrossRef]
- Lange, C.A.; Yee, D. Progesterone and breast cancer. Women’s Health 2008, 4, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Abul-Hajj, Y.J.; Iverson, R.; Kiang, D.T. Metabolism of pregnenolone by human breast cancer. Evidence for 17 alpha-hydroxylase and 17,20-lyase. Steroids 1979, 34, 817–827. [Google Scholar] [CrossRef]
- Hennig, K.; Antignac, J.P.; Bichon, E.; Morvan, M.-L.; Miran, I.; Delaloge, S.; Feunteun, J.; Le Bizec, B. Steroid hormone profiling in human breast adipose tissue using semi-automated purification and highly sensitive determination of estrogens by GC-APCI-MS/MS. Anal. Bioanal. Chem. 2018, 410, 259–275. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Luteal (N = 65) | Follicular (N = 88) | Postmenopausal (N = 103) | |||
---|---|---|---|---|---|---|
n 1 | % | n 1 | % | n 1 | % | |
Age at biopsy among premenopausal women (years) | ||||||
<45 | 27 | 41.5 | 23 | 26.1 | NA | NA |
45–49 | 26 | 40.0 | 43 | 48.9 | NA | NA |
≥50 | 12 | 18.5 | 22 | 25.0 | NA | NA |
Age at biopsy among postmenopausal women (years) | ||||||
<55 | NA | NA | NA | NA | 30 | 29.1 |
55–59 | NA | NA | NA | NA | 38 | 36.9 |
≥60 | NA | NA | NA | NA | 35 | 34.0 |
Age at Menarche | ||||||
≤12 | 21 | 33.9 | 28 | 31.8 | 42 | 41.2 |
13 | 27 | 43.6 | 35 | 39.8 | 34 | 33.3 |
≥14 | 14 | 22.6 | 25 | 28.4 | 26 | 25.5 |
Race and ethnicity | ||||||
White, Non-Hispanic | 63 | 96.9 | 82 | 93.2 | 95 | 92.2 |
Other | 2 | 3.1 | 6 | 6.8 | 8 | 7.8 |
Body mass index (kg/m2) | ||||||
<25 | 36 | 55.4 | 43 | 48.9 | 41 | 39.8 |
25.0–29.9 | 15 | 23.1 | 21 | 23.9 | 31 | 30.1 |
≥30 | 14 | 21.5 | 24 | 27.3 | 31 | 30.1 |
Cigarette smoking | ||||||
Never | 34 | 54.8 | 52 | 60.5 | 37 | 39.0 |
Former | 24 | 38.7 | 26 | 30.2 | 47 | 50.0 |
Current | 4 | 6.5 | 8 | 9.3 | 11 | 11.6 |
Oral contraceptive use | ||||||
Never | 10 | 15.4 | 11 | 12.5 | 15 | 14.6 |
Former | 55 | 84.6 | 77 | 87.5 | 88 | 85.4 |
Menopausal hormone use | ||||||
Never | 59 | 92.2 | 80 | 90.9 | 67 | 65.1 |
Former | 5 | 7.8 | 8 | 9.1 | 36 | 35.0 |
Age at menopause | ||||||
<45 | NA | NA | NA | NA | 17 | 18.7 |
45–49 | NA | NA | NA | NA | 26 | 28.6 |
≥50 | NA | NA | NA | NA | 48 | 52.8 |
Family history of breast cancer in a first-degree relative | ||||||
None | 52 | 80.0 | 64 | 72.7 | 75 | 73.5 |
1 or more | 13 | 20.0 | 24 | 27.3 | 27 | 26.5 |
Breast biopsy prior to enrollment | ||||||
Never | 45 | 69.2 | 61 | 69.3 | 62 | 61.4 |
Ever | 20 | 30.8 | 27 | 30.7 | 39 | 38.6 |
Biopsy diagnosis | ||||||
Benign non-proliferative | 29 | 44.6 | 29 | 33.0 | 31 | 30.1 |
Benign proliferative with or without atypia 2 | 29 | 44.6 | 47 | 53.4 | 47 | 45.6 |
In-situ/Invasive | 7 | 10.7 | 12 | 13.6 | 25 | 24.3 |
Luteal (N = 65) | Follicular (N = 88) | Postmenopausal (N = 103) | ||||
---|---|---|---|---|---|---|
Median | (IDR) | Median | (IDR) | Median | (IDR) | |
Hormones (pmol/L) | ||||||
Pregnenolone | 3955 | 2334–6988 | 2474 | 1313–5572 | 1796 | 908–3151 |
17α-hydroxypregnenolone | 3632 | 2353–8492 | 3414 | 1858–10064 | 2625 | 1569–6078 |
Progesterone | 14405 | 2058–40437 | 278 | 123–1547 | 110 | 77–181 |
17α-hydroxyprogesterone | 2169 | 796–3775 | 565 | 285–1658 | 361 | 195–819 |
3α-dihydroprogesterone (3αHP) | 83.3 | 30–209 | 42.5 | 23–93 | 45.5 | 25–102 |
5α-dihydroprogesterone (5αP) | 1990 | 769–5172 | 807 | 300–1985 | 797 | 287–1914 |
20α-Dihydroprogesterone (20αHP) | 4211 | 545–10612 | 216 | 116–581 | 111 | 65–186 |
5αP/3αHP Ratio | 23.2 | 8.5–55 | 18.2 | 4.85–57 | 15.9 | 4.3–70.6 |
Unconjugated estradiol (E2) | 237 | 98–717 | 220 | 23–605 | 8.1 | 2.5–42.9 |
Progesterone/E2 ratio | 84.8 | 4.1–190 | 1.8 | 0.40–17 | 13.5 | 2.4–40 |
Mean | SD | Mean | SD | Mean | SD | |
MBD measures | ||||||
Percent MBD-V | 43.3 | 20.2 | 45.3 | 23.0 | 30.3 | 17.2 |
Percent MBD-A | 30.9 | 18.9 | 34.6 | 21.5 | 20.1 | 16.7 |
Absolute MBD-V | 208.7 | 110.6 | 213.3 | 108.9 | 184 | 87.9 |
Absolute MBD-A | 37.5 | 25.7 | 42.3 | 28.7 | 27.9 | 21.8 |
TDLU involution measures | ||||||
TDLU count/100 mm2 | 28.7 | 39.0 | 21.6 | 29.6 | 13.3 | 23.2 |
Median TDLU span, μ | 317.4 | 112.1 | 304.0 | 93.9 | 227 | 90.1 |
Median acini count per TDLU | 16.2 | 9.5 | 17.2 | 11.2 | 9.5 | 5.0 |
Pregnenolone | 17a-Hydroxypregnenolone | Progesterone | 17α-Hydroxyprogesterone | 3αHP | 5αP | 20αHP | 5αP/3αHP | E2 | Progesterone/E2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | |
MBD measures | |||||||||||
Percent MBD-V | |||||||||||
T1 | 29 | 3710 (2987–4607) | 4069 (3177–5211) | 8260 (4464–15,284) | 1714 (1307–2248) | 89 (63–126) | 1682 (1165–2428) | 2729 (1612–4620) | 19 (13–28) | 229 (152–343) | 41 (18–92) |
T2 | 30 | 3726 (3092–4492) | 3999 (3231–4950) | 10,688 (6286–18,172) | 1845 (1460–2332) | 69 (51–93) | 1637 (1192–2247) | 3453 (2193–5436) | 24 (17–33) | 202 (143–284) | 49 (25–96) |
T3 | 29 | 4548 (3647–5671) | 3771 (2931–4852) | 14,036 (7496–26,280) | 2024 (1535–2669) | 89 (62–126) | 2169 (1492–3154) | 4017 (2349–6868) | 24 (17–36) | 280 (197–398) | 55 (27–113) |
P-trend 2 | 0.24 | 0.70 | 0.28 | 0.44 | 0.99 | 0.39 | 0.36 | 0.40 | 0.44 | 0.61 | |
Corr 1 (rho, p 2) | (0.12, 0.36) | (−0.09, 0.51) | (0.15, 0.25) | (0.08, 0.53) | (0.06, 0.67) | (0.17, 0.21) | (0.16, 0.23) | (0.20, 0.15) | (0.06, 0.67) | (0.07, 0.65) | |
Percent MBD-A | |||||||||||
T1 | 29 | 3438 (2868–4120) | 3844 (3086–4789) | 10,050 (6095–16,574) | 1816 (1446–2281) | 96 (72–129) | 1578 (1147–2171) | 3231 (2125–4913) | 16 (12–23) | 203 (143–288) | 50 (25–98) |
T2 | 30 | 3672 (3091–4362) | 3873 (3143–4773) | 6227 (3870–10,020) | 1532 (1234–1903) | 61 (46–81) | 1609 (1187–2179) | 2015 (1353–3001) | 26 (19–36) | 217 (158–297) | 30 (16–56) |
T3 | 29 | 5095 (4201–6178) | 4164 (3295–5262) | 22,175 (13,017–37,776) | 2394 (1878–3052) | 96 (70–132) | 2415 (1719–3393) | 6485 (4151–10,131) | 25 (18–35) | 295 (214–406) | 75 (40–140) |
P-trend 2 | 0.01 | 0.64 | 0.07 | 0.15 | 0.91 | 0.09 | 0.06 | 0.08 | 0.13 | 0.36 | |
Corr 1 (rho, p 2) | (0.30, 0.02) | (0.07, 0.59) | (0.26, 0.06) | (0.21, 0.12) | (0.04, 0.79) | (0.24, 0.08) | (0.27, 0.04) | (0.29, 0.03) | (0.16, 0.29) | (0.15, 0.33) | |
Absolute MBD-V | |||||||||||
T1 | 29 | 3758 (3096–4561) | 4618 (3737–5708) | 7791 (4559–13,314) | 1700 (1339–2159) | 76 (56–103) | 1504 (1090–2077) | 2535 (1612–3987) | 20 (14–28) | 222 (163–303) | 35 (20–63) |
T2 | 30 | 4124 (3384–5025) | 3513 (2830–4360) | 10,507 (6083–18,149) | 1894 (1484–2416) | 77 (56–105) | 2006 (1444–2787) | 3068 (1933–4870) | 26 (19–37) | 265 (191–367) | 41 (22–75) |
T3 | 29 | 4031 (3252–4997) | 3755 (2969–4749) | 15,451 (8531–27,986) | 1995 (1531–2600) | 94 (67–131) | 1978 (1383–2828) | 4996 (3024–8253) | 21 (15–31) | 225 (150–335) | 101 (47–214) |
P-trend 2 | 0.61 | 0.17 | 0.11 | 0.38 | 0.42 | 0.25 | 0.07 | 0.70 | 0.85 | 0.05 | |
Corr 1 (rho, p 2) | (−0.03, 0.81) | (−0.22, 0.11) | (0.14, 0.29) | (0.15, 0.28) | (0.15, 0.26) | (0.13, 0.34) | (0.18, 0.17) | (−0.04, 0.78) | (0.04, 0.81) | (0.21, 0.16) | |
Absolute MBD-A | |||||||||||
T1 | 29 | 3332 (2751–4037) | 4020 (3232–5001) | 7443 (4303–12,876) | 1675 (1312–2139) | 77 (56–105) | 1480 (1068–2052) | 2421 (1520–3858) | 19 (14–27) | 189 (137–260) | 45 (24–85) |
T2 | 30 | 4403 (3683–5264) | 4427 (3612–5424) | 11,000 (6603–18,323) | 2019 (1608–2536) | 92 (68–123) | 1754 (1294–2378) | 3413 (2212–5267) | 19 (14–26) | 270 (195–374) | 35 (19–67) |
T3 | 29 | 4225 (3454–5166) | 3365 (2676–4231) | 15,445 (8689–27,455) | 1869 (1446–2417) | 75 (54–104) | 2333 (1656–3287) | 4692 (2877–7649) | 31 (22–44) | 267 (190–375) | 73 (37–144) |
P-trend 2 | 0.10 | 0.30 | 0.08 | 0.54 | 0.93 | 0.07 | 0.06 | 0.06 | 0.15 | 0.33 | |
Corr 1 (rho, p 2) | (0.13, 0.34) | (−0.13, 0.35) | (0.20, 0.13) | (0.09, 0.49) | (0.03, 0.82) | (0.23, 0.09) | (0.23, 0.09) | (0.21, 0.12) | (0.14, 0.35) | (0.16, 0.29) | |
TDLU involution measures | |||||||||||
TDLU count/100 mm2 | |||||||||||
T1 | 28 | 3543 (2915–4307) | 3853 (3084–4813) | 10,814 (6192–18,886) | 1828 (1430–2335) | 88 (64–120) | 1567 (1126–2180) | 3533 (2210–5649) | 18 (13–25) | 194 (138–273) | 51 (25–104) |
T2 | 29 | 4094 (3379–4961) | 3865 (3105–4811) | 12,161 (7025–21,052) | 1949 (1532–2481) | 81 (60–111) | 2100 (1518–2907) | 4092 (2579–6495) | 26 (19–36) | 315 (234–423) | 38 (20–70) |
T3 | 29 | 4291 (3538–5204) | 4133 (3317–5150) | 9295 (5355–16,132) | 1788 (1404–2279) | 75 (55–103) | 1788 (1290–2479) | 2598 (1633–4132) | 24 (17–33) | 206 (150–282) | 60 (31–116) |
P-trend 2 | 0.18 | 0.66 | 0.70 | 0.90 | 0.50 | 0.60 | 0.36 | 0.25 | 0.90 | 0.71 | |
Corr 1 (rho, p 2) | (0.12, 0.39) | (0.08, 0.56) | (−0.07, 0.60) | (−0.07, 0.62) | (−0.04, 0.76) | (0.03, 0.82) | (−0.11, 0.40) | (0.11, 0.43) | (−0.01, 0.95) | (0.04, 0.82) | |
Median TDLU span, μ | |||||||||||
T1 | 19 | 4606 (3756–5649) | 4350 (3369–5616) | 12,282 (7052–21,393) | 2009 (1592–2537) | 79 (58–108) | 1796 (1244–2595) | 3858 (2370–6283) | 23 (16–33) | 328 (224–481) | 37 (18–74) |
T2 | 20 | 3691 (3029–4498) | 3554 (2775–4553) | 8942 (5224–15,306) | 1735 (1384–2174) | 77 (57–104) | 2103 (1473–3004) | 2630 (1640–4217) | 27 (19–39) | 218 (151–315) | 53 (27–103) |
T3 | 20 | 4358 (3551–5347) | 4109 (3180–5309) | 11,030 (6323–19,239) | 1754 (1389–2216) | 83 (61–114) | 1674 (1158–2420) | 3267 (2004–5326) | 20 (14–29) | 210 (141–312) | 54 (26–112) |
P-trend 2 | 0.71 | 0.76 | 0.79 | 0.42 | 0.81 | 0.79 | 0.64 | 0.64 | 0.11 | 0.45 | |
Corr 1 (rho, p 2) | (−0.05, 0.77) | (−0.05, 0.76) | (−0.03, 0.85) | (−0.12, 0.44) | (0.04, 0.81) | (−0.06, 0.70) | (−0.10, 0.51) | (−0.15, 0.34) | (−0.22, 0.19) | (0.11, 0.52) | |
Median acini count per TDLU | |||||||||||
T1 | 18 | 4606 (3756–5649) | 4350 (3369–5616) | 12,282 (7052–21,393) | 2009 (1592–2537) | 79 (58–108) | 1796 (1244–2595) | 3858 (2370–6283) | 23 (16–33) | 328 (224–481) | 37 (18–74) |
T2 | 19 | 3691 (3029–4498) | 3554 (2775–4553) | 8942 (5224–15,306) | 1735 (1384–2174) | 77 (57–104) | 2103 (1473–3004) | 2630 (1640–4217) | 27 (19–39) | 218 (151–315) | 53 (27–103) |
T3 | 18 | 4358 (3551–5347) | 4109 (3180–5309) | 11,030 (6323–19,239) | 1754 (1389–2216) | 83 (61–114) | 1674 (1158–2420) | 3267 (2004–5326) | 20 (14–29) | 210 (141–312) | 54 (26–112) |
P-trend 2 | 0.71 | 0.76 | 0.79 | 0.42 | 0.81 | 0.79 | 0.64 | 0.64 | 0.11 | 0.45 | |
Corr 1 (rho, p 2) | (−0.05, 0.77) | (−0.05, 0.76) | (−0.03, 0.85) | (−0.12, 0.44) | (0.04, 0.81) | (−0.06, 0.70) | (−0.10, 0.51) | (−0.15, 0.34) | (−0.22, 0.19) | (0.11, 0.52) |
Pregnenolone | 17a-Hydroxypregnenolone | Progesterone | 17α-Hydroxyprogesterone | 3αHP | 5αP | 20αHP | 5αP/3αHP | E2 | Progesterone/E2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | |
MBD measures | |||||||||||
Percent MBD-V | |||||||||||
T1 | 29 | 2319 (1860–2891) | 3276 (2566–4182) | 252 (174–367) | 547 (429–697) | 46 (38–56) | 844 (629–1133) | 218 (167–284) | 18 (13–26) | 140 (69–283) | 2 (1–4) |
T2 | 30 | 2835 (2325–3457) | 3892 (3125–4848) | 474 (339–664) | 729 (586–906) | 51 (43–61) | 755 (579–983) | 288 (227–366) | 15 (11–20) | 219 (112–429) | 3 (1–7) |
T3 | 29 | 2620 (2111–3250) | 4032 (3176–5119) | 297 (206–427) | 585 (461–741) | 39 (32–47) | 687 (515–916) | 216 (167–280) | 18 (12–25) | 153 (83–280) | 2 (1–4) |
P-trend 2 | 0.50 | 0.27 | 0.65 | 0.78 | 0.27 | 0.36 | 0.90 | 0.89 | 0.98 | 0.88 | |
Corr 1 (rho, p 2) | (0.07, 0.50) | (0.14, 0.20) | (0.11, 0.31) | (0.05, 0.68) | (−0.12, 0.29) | (−0.09, 0.42) | (0.07, 0.51) | (−0.04, 0.74) | (−0.01, 0.92) | (−0.02, 0.91) | |
Percent MBD-A | |||||||||||
T1 | 29 | 2425 (1939–3031) | 3295 (2575–4216) | 374 (253–553) | 560 (437–717) | 46 (38–57) | 977 (732–1303) | 280 (213–366) | 21 (15–30) | 120 (58–245) | 4 (2–9) |
T2 | 30 | 2830 (2317–3457) | 3831 (3072–4778) | 320 (225–454) | 697 (559–870) | 47 (39–56) | 773 (597–1001) | 222 (174–282) | 16 (12–23) | 211 (118–380) | 2 (1–4) |
T3 | 29 | 2509 (2026–3108) | 4074 (3217–5159) | 301 (207–438) | 597 (471–757) | 43 (35–52) | 579 (439–763) | 221 (171–286) | 14 (10–19) | 167 (89–313) | 2 (1–4) |
P-trend 2 | 0.90 | 0.26 | 0.47 | 0.81 | 0.57 | 0.02 | 0.27 | 0.11 | 0.64 | 0.25 | |
Corr 1 (rho, p 2) | (0.003, 0.98) | (0.14, 0.19) | (−0.02, 0.87) | (0.03, 0.79) | (−0.03, 0.77) | (−0.24, 0.03) | (0.01, 0.92) | (−0.16, 0.13) | (0.10, 0.46) | (−0.15, 0.29) | |
Absolute MBD-V | |||||||||||
T1 | 29 | 2338 (1899–2880) | 3481 (2762–4388) | 368 (255–530) | 642 (509–810) | 45 (37–54) | 775 (587–1023) | 248 (192–319) | 17 (12–24) | 117 (70–193) | 3 (2–6) |
T2 | 30 | 2762 (2264–3370) | 3800 (3046–4739) | 295 (208–418) | 566 (453–706) | 45 (37–54) | 718 (550–936) | 223 (175–284) | 16 (11–22) | 185 (97–351) | 2 (1–4) |
T3 | 29 | 2668 (2165–3288) | 3889 (3084–4905) | 333 (231–480) | 646 (512–816) | 46 (38–56) | 789 (597–1042) | 247 (192–319) | 17 (12–24) | 242 (129–451) | 1 (1–3) |
P-trend 2 | 0.39 | 0.52 | 0.71 | 0.97 | 0.83 | 0.93 | 0.99 | 0.96 | 0.07 | 0.11 | |
Corr 1 (rho, p 2) | (0.10, 0.38) | (0.14, 0.19) | (0.04, 0.7) | (0.01, 0.93) | (0.04, 0.69) | (−0.03, 0.80) | (0.13, 0.22) | (−0.03, 0.81) | (0.26, 0.06) | (−0.23, 0.09) | |
Absolute MBD-A | |||||||||||
T1 | 29 | 2245 (1831–2753) | 2966 (2378–3700) | 306 (214–438) | 545 (434–684) | 52 (43–62) | 740 (565–970) | 242 (188–311) | 14 (10–20) | 144 (83–249) | 2 (1–4) |
T2 | 30 | 2854 (2337–3485) | 4286 (3451–5323) | 398 (280–566) | 674 (539–842) | 40 (33–47) | 906 (696–1180) | 252 (198–323) | 23 (16–32) | 139 (69–279) | 4 (2–9) |
T3 | 29 | 2687 (2198–3283) | 4030 (3242–5010) | 293 (206–417) | 636 (509–796) | 45 (38–54) | 648 (497–845) | 223 (174–285) | 14 (10–20) | 214 (120–383) | 1 (1–3) |
P-trend 2 | 0.24 | 0.06 | 0.84 | 0.36 | 0.30 | 0.47 | 0.64 | 0.99 | 0.33 | 0.30 | |
Corr 1 (rho, p 2) | (0.12, 0.25) | (0.27, 0.01) | (0.04, 0.71) | (0.11, 0.33) | (−0.09, 0.40) | (−0.06, 0.55) | (0.07, 0.54) | (−0.01, 0.95) | (0.13, 0.35) | (−0.14, 0.31) | |
TDLU involution measures | |||||||||||
TDLU count/100 mm2 | |||||||||||
T1 | 28 | 2408 (1954–2968) | 3261 (2595–4098) | 327 (229–465) | 472 (379–588) | 43 (35–52) | 913 (691–1207) | 275 (215–352) | 21 (15–30) | 79 (42–147) | 4 (2–8) |
T2 | 29 | 2939 (2404–3593) | 4412 (3541–5496) | 492 (350–692) | 756 (612–934) | 50 (42–60) | 693 (530–906) | 282 (223–358) | 14 (10–19) | 166 (94–293) | 4 (2–8) |
T3 | 29 | 2452 (1998–3010) | 3652 (2919–4570) | 227 (160–321) | 675 (544–837) | 43 (36–52) | 719 (547–945) | 180 (142–230) | 17 (12–23) | 273 (157–475) | 1 (0–2) |
P-trend 2 | 0.92 | 0.52 | 0.17 | 0.03 | 0.95 | 0.25 | 0.02 | 0.34 | 0.01 | 0.01 | |
Corr 1 (rho, p 2) | (−0.02, 0.86) | (0.04, 0.72) | (−0.15, 0.17) | (0.19, 0.09) | (0.01, 0.95) | (−0.15, 0.18) | (−0.22, 0.04) | (−0.14, 0.20) | (0.38, 0.01) | (−0.36, 0.01) | |
Median TDLU span, μ | |||||||||||
T1 | 19 | 2473 (1920–3185) | 3790 (2788–5153) | 302 (184–496) | 734 (547–986) | 45 (36–57) | 779 (548–1106) | 214 (154–298) | 17 (11–26) | 186 (78–445) | 3 (1–8) |
T2 | 20 | 2707 (2138–3428) | 4262 (3200–5677) | 389 (245–618) | 730 (555–961) | 47 (38–58) | 670 (483–930) | 235 (172–320) | 14 (10–21) | 188 (99–355) | 2 (1–6) |
T3 | 20 | 2877 (2268–3650) | 3726 (2792–4973) | 356 (224–567) | 698 (530–921) | 48 (39–60) | 705 (507–981) | 249 (182–339) | 15 (10–22) | 267 (149–478) | 1 (1–3) |
P-trend 2 | 0.41 | 0.90 | 0.68 | 0.81 | 0.68 | 0.72 | 0.53 | 0.61 | 0.43 | 0.25 | |
Corr 1 (rho, p 2) | (0.09, 0.50) | (−0.05, 0.70) | (0.11, 0.42) | (−0.02, 0.86) | (0.10, 0.47) | (−0.12, 0.38) | (0.21, 0.12) | (−0.10, 0.44) | (0.16, 0.34) | (−0.15, 0.37) | |
Median acini count per TDLU | |||||||||||
T1 | 18 | 2566 (1947–3382) | 3940 (2809–5526) | 297 (176–503) | 778 (564–1074) | 40 (31–51) | 652 (445–954) | 195 (137–277) | 16 (10–26) | 156 (66–371) | 3 (1–9) |
T2 | 19 | 3049 (2371–3921) | 4011 (2948–5459) | 557 (345–899) | 802 (598–1076) | 51 (41–65) | 801 (566–1133) | 305 (221–420) | 16 (10–24) | 274 (151–495) | 2 (1–6) |
T3 | 18 | 2638 (2045–3404) | 3987 (2918–5447) | 291 (179–472) | 643 (478–866) | 55 (44–70) | 635 (447–903) | 232 (168–321) | 11 (8–18) | 213 (114–398) | 1 (0–3) |
P-trend 2 | 0.99 | 0.97 | 0.75 | 0.36 | 0.08 | 0.82 | 0.65 | 0.25 | 0.74 | 0.23 | |
Corr 1 (rho, p 2) | (−0.03, 0.80) | (0.02, 0.87) | (−0.11, 0.44) | (−0.10, 0.46) | (0.26, 0.06) | (−0.16, 0.26) | (0.08, 0.56) | (−0.22, 0.12) | (−0.02, 0.90) | (−0.24, 0.16) |
Pregnenolone | 17a-Hydroxypregnenolone | Progesterone | 17α-Hydroxyprogesterone | 3αHP | 5αP | 20αHP | 5αP/3αHP | E2 | Progesterone/E2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | GM 1 (LCI-UCI) | |
MBD measures | |||||||||||
Percent MBD-V | |||||||||||
T1 | 34 | 1700 (1411–2047) | 2929 (2382–3600) | 107 (93–123) | 355 (290–434) | 51 (42–62) | 832 (643–1076) | 105 (91–120) | 16 (12–23) | 11 (8–16) | 9 (6–13) |
T2 | 35 | 1896 (1598–2249) | 2805 (2321–3390) | 124 (109–140) | 376 (313–453) | 48 (40–58) | 877 (693–1111) | 117 (103–133) | 18 (13–25) | 9 (6–13) | 13 (9–19) |
T3 | 34 | 1693 (1397–2052) | 2869 (2318–3550) | 120 (104–138) | 417 (339–514) | 44 (36–54) | 655 (502–854) | 115 (99–132) | 15 (10–21) | 8 (6–12) | 15 (10–22) |
P-trend 2 | 0.97 | 0.89 | 0.28 | 0.31 | 0.37 | 0.27 | 0.4 | 0.76 | 0.26 | 0.08 | |
Corr 1 (rho, p 2) | (0.03, 0.80) | (0.06, 0.57) | (0.17, 0.10) | (0.14, 0.15) | (−0.07, 0.47) | (−0.12, 0.24) | (0.08, 0.42) | (−0.04, 0.67) | (−0.13, 0.23) | (0.19, 0.08) | |
Percent MBD-A | |||||||||||
T1 | 34 | 1513 (1264–1811) | 2719 (2222–3327) | 104 (91–119) | 353 (289–430) | 44 (36–54) | 979 (761–1259) | 103 (90–118) | 22 (16–31) | 12 (8–17) | 9 (6–12) |
T2 | 35 | 2037 (1723–2408) | 2659 (2203–3209) | 119 (105–135) | 381 (316–459) | 50 (42–61) | 764 (604–966) | 117 (103–133) | 15 (11–21) | 8 (6–12) | 14 (9–20) |
T3 | 34 | 1766 (1469–2124) | 3265 (2654–4015) | 128 (112–147) | 415 (338–509) | 48 (39–59) | 642 (496–831) | 117 (102–135) | 13 (9–19) | 8 (5–11) | 16 (11–23) |
P-trend 2 | 0.24 | 0.26 | 0.04 | 0.29 | 0.58 | 0.03 | 0.2 | 0.06 | 0.12 | 0.03 | |
Corr 1 (rho, p 2) | (0.09, 0.38) | (0.05, 0.61) | (0.17, 0.09) | (0.08, 0.44) | (0.06, 0.56) | (−0.23, 0.02) | (0.13, 0.20) | (−0.21, 0.04) | (−0.18, 0.10) | (0.24, 0.02) | |
Absolute MBD-V | |||||||||||
T1 | 34 | 1593 (1339–1895) | 2568 (2112–3122) | 105 (92–120) | 326 (269–394) | 54 (44–65) | 817 (638–1046) | 108 (95–124) | 15 (11–21) | 8 (5–11) | 14 (10–20) |
T2 | 35 | 2098 (1773–2482) | 3167 (2622–3826) | 123 (109–140) | 403 (335–484) | 42 (35–51) | 859 (676–1091) | 113 (100–129) | 20 (15–28) | 10 (7–15) | 11 (8–16) |
T3 | 34 | 1627 (1371–1931) | 2887 (2381–3500) | 122 (108–139) | 425 (352–512) | 48 (39–57) | 682 (535–871) | 115 (100–131) | 14 (10–20) | 10 (7–15) | 12 (8–17) |
P-trend 2 | 0.92 | 0.43 | 0.12 | 0.06 | 0.42 | 0.31 | 0.57 | 0.78 | 0.21 | 0.54 | |
Corr 1 (rho, p 2) | (−0.01, 0.91) | (0.07, 0.50) | (0.19, 0.06) | (0.20, 0.04) | (−0.08, 0.41) | (−0.11, 0.29) | (0.06, 0.54) | (−0.05, 0.62) | (0.16, 0.13) | (−0.09, 0.39) | |
Absolute MBD-A | |||||||||||
T1 | 34 | 1569 (1319–1868) | 2710 (2228–3296) | 107 (94–122) | 378 (312–458) | 44 (36–53) | 987 (776–1255) | 104 (91–119) | 23 (16–31) | 10 (7–15) | 10 (7–15) |
T2 | 35 | 2021 (1709–2391) | 2886 (2389–3486) | 116 (102–131) | 350 (291–421) | 51 (42–61) | 753 (597–950) | 117 (103–133) | 15 (11–20) | 8 (5–11) | 15 (10–21) |
T3 | 34 | 1716 (1445–2038) | 3011 (2482–3652) | 128 (112–145) | 422 (350–510) | 48 (40–58) | 647 (510–820) | 115 (101–131) | 13 (10–18) | 10 (7–14) | 12 (9–18) |
P-trend 2 | 0.52 | 0.46 | 0.07 | 0.42 | 0.49 | 0.02 | 0.29 | 0.03 | 0.85 | 0.48 | |
Corr 1 (rho, p 2) | (0.04, 0.68) | (0.02, 0.83) | (0.15, 0.13) | (0.07, 0.47) | (0.07, 0.50) | (−0.25, 0.01) | (0.12, 0.24) | (−0.23, 0.02) | (−0.02, 0.84) | (0.07, 0.51) | |
TDLU involution measures | |||||||||||
TDLU count/100 mm2 | |||||||||||
T1 | 37 | 1637 (1383–1937) | 2886 (2393–3480) | 113 (100–128) | 114 (100–128) | 44 (37–52) | 989 (786–1245) | 109 (96–123) | 23 (17–31) | 11 (8–16) | 10 (7–14) |
T2 | 32 | 1725 (1442–2064) | 2989 (2448–3648) | 113 (99–129) | 367 (302–447) | 57 (47–69) | 666 (521–850) | 103 (90–118) | 12 (8–16) | 7 (5–11) | 14 (10–21) |
T3 | 34 | 1946 (1628–2326) | 2736 (2244–3335) | 124 (109–142) | 398 (328–484) | 44 (36–53) | 707 (555–902) | 125 (109–142) | 16 (12–22) | 9 (7–13) | 13 (10–19) |
P-trend 2 | 0.18 | 0.72 | 0.33 | 0.76 | 0.89 | 0.05 | 0.18 | 0.13 | 0.42 | 0.22 | |
Corr 1 (rho, p 2) | (0.15, 0.15) | (−0.01, 0.89) | (0.08, 0.44) | (0.04, 0.70) | (0.04, 0.69) | (−0.19, 0.06) | (0.07, 0.49) | (−0.12, 0.22) | (−0.07, 0.50) | (0.11, 0.32) | |
Median TDLU span, μ | |||||||||||
T1 | 22 | 1831 (1487–2253) | 2980 (2372–3743) | 121 (104–142) | 406 (326–505) | 46 (37–58) | 807 (626–1041) | 118 (101–138) | 17 (12–24) | 7 (5–11) | 16 (10–26) |
T2 | 22 | 1779 (1446–2189) | 2503 (1994–3143) | 109 (93–127) | 322 (259–400) | 49 (39–61) | 648 (503–835) | 110 (94–129) | 13 (10–19) | 7 (5–11) | 15 (10–24) |
T3 | 22 | 1981 (1608–2440) | 3118 (2480–3920) | 129 (110–151) | 419 (337–521) | 53 (42–67) | 617 (478–797) | 115 (99–135) | 12 (8–16) | 10 (6–17) | 12 (7–19) |
P-trend 2 | 0.60 | 0.79 | 0.62 | 0.85 | 0.42 | 0.15 | 0.83 | 0.1 | 0.32 | 0.34 | |
Corr 1 (rho, p 2) | (0.02, 0.88) | (−0.01, 0.92) | (0.06, 0.63) | (−0.002, 0.99) | (0.10, 0.41) | (−0.18, 0.15) | (−0.01, 0.94) | (−0.24, 0.06) | (0.09, 0.49) | (−0.08, 0.56) | |
Median acini count per TDLU | |||||||||||
T1 | 23 | 1859 (1516–2279) | 3077 (2456–3855) | 124 (106–145) | 376 (302–467) | 48 (38–60) | 631 (491–811) | 124 (106–144) | 13 (9–18) | 8 (5–12) | 16 (10–24) |
T2 | 21 | 1902 (1530–2366) | 2770 (2177–3525) | 115 (97–136) | 397 (314–501) | 50 (39–63) | 770 (589–1008) | 106 (90–125) | 15 (11–22) | 6 (4–10) | 18 (11–30) |
T3 | 22 | 1826 (1482–2251) | 2715 (2155–3420) | 119 (101–139) | 368 (294–460) | 50 (40–63) | 670 (518–867) | 113 (97–132) | 13 (10–19) | 11 (7–17) | 11 (7–17) |
P-trend 2 | 0.91 | 0.44 | 0.68 | 0.9 | 0.81 | 0.73 | 0.42 | 0.92 | 0.34 | 0.28 | |
Corr 1 (rho, p 2) | (−0.03, 0.80) | (−0.15, 0.23) | (−0.03, 0.80) | (−0.02, 0.85) | (0.03, 0.83) | (0.04, 0.75) | (−0.11, 0.37) | (0.01, 0.96) | (0.11, 0.42) | (−0.13, 0.35) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hada, M.; Oh, H.; Fan, S.; Falk, R.T.; Geller, B.; Vacek, P.; Weaver, D.; Shepherd, J.; Wang, J.; Fan, B.; et al. Relationship of Serum Progesterone and Progesterone Metabolites with Mammographic Breast Density and Terminal Ductal Lobular Unit Involution among Women Undergoing Diagnostic Breast Biopsy. J. Clin. Med. 2020, 9, 245. https://doi.org/10.3390/jcm9010245
Hada M, Oh H, Fan S, Falk RT, Geller B, Vacek P, Weaver D, Shepherd J, Wang J, Fan B, et al. Relationship of Serum Progesterone and Progesterone Metabolites with Mammographic Breast Density and Terminal Ductal Lobular Unit Involution among Women Undergoing Diagnostic Breast Biopsy. Journal of Clinical Medicine. 2020; 9(1):245. https://doi.org/10.3390/jcm9010245
Chicago/Turabian StyleHada, Manila, Hannah Oh, Shaoqi Fan, Roni T. Falk, Berta Geller, Pamela Vacek, Donald Weaver, John Shepherd, Jeff Wang, Bo Fan, and et al. 2020. "Relationship of Serum Progesterone and Progesterone Metabolites with Mammographic Breast Density and Terminal Ductal Lobular Unit Involution among Women Undergoing Diagnostic Breast Biopsy" Journal of Clinical Medicine 9, no. 1: 245. https://doi.org/10.3390/jcm9010245
APA StyleHada, M., Oh, H., Fan, S., Falk, R. T., Geller, B., Vacek, P., Weaver, D., Shepherd, J., Wang, J., Fan, B., Herschorn, S., Brinton, L. A., Xu, X., Sherman, M. E., Trabert, B., & Gierach, G. L. (2020). Relationship of Serum Progesterone and Progesterone Metabolites with Mammographic Breast Density and Terminal Ductal Lobular Unit Involution among Women Undergoing Diagnostic Breast Biopsy. Journal of Clinical Medicine, 9(1), 245. https://doi.org/10.3390/jcm9010245