Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Data Collection
2.3. Outcome Measures
2.4. Urinary mtDNA Copy Number Quantification
2.5. Statistical Analyses
3. Results
3.1. Comparison of Long-Term Kidney Function Among the Three Groups in the Retrospective Study
3.1.1. Long-Term Kidney Function in MGA Group Was Worse than in MHC Group
3.1.2. Long-Term Kidney Function in MGA Group was Comparable to that in IgAN Group
3.2. Comparison of Urinary mtDNA Copy Numbers in the Three Groups in the Prospective Study
3.2.1. Urinary mtDNA Copy Numbers Were Higher in the MGA Group Than in MHC Group
3.2.2. Urinary mtDNA Copy Numbers Did Not Differ between the MGA and IgAN Groups
3.3. Analysis of All Patients with MGAs Included in the Retrospective and Prospective Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Perkowska-Ptasinska, A.; Bartczak, A.; Wagrowska-Danilewicz, M.; Halon, A.; Okon, K.; Wozniak, A.; Danilewicz, M.; Karkoszka, H.; Marszalek, A.; Kowalewska, J.; et al. Clinicopathologic correlations of renal pathology in the adult population of Poland. Nephrol. Dial. Transplant. 2017, 32, ii209–ii218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.S.; Kim, Y.K.; Shin, Y.S.; Kim, Y.O.; Song, H.C.; Kim, Y.S.; Choi, E.J. Natural history and renal pathology in patients with isolated microscopic hematuria. Korean J. Intern. Med. 2009, 24, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Takashima, T.; Onozawa, K.; Rikitake, S.; Kishi, T.; Miyazono, M.; Aoki, S.; Sakemi, T.; Ikeda, Y. Two cases of minor glomerular abnormalities with proteinuria disproportionate to the degree of hypoproteinemia. CEN Case Rep. 2014, 3, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, M.O.; Choi, S.J.; Choi, E.S.; Shin, H.J.; Park, M.Y.; Kim, J.K.; Hwang, S.D.; Park, S.J. Clinical features of nutcracker syndrome in the adult. Korean J. Nephrol. 2007, 26, 167–173. [Google Scholar]
- Slugen, I.; Danis, D.; Nyitrayová, O.; Nyulassy, S.; Pavlovic, M.; Furková, K.; Slováková, A.; Hlavcák, P. Minor glomerular abnormalities in chronic tubulointerstitial nephritis. Vnitr. Lek. 1994, 40, 757–759. [Google Scholar]
- Tran, M.; Tam, D.; Bardia, A.; Bhasin, M.; Rowe, G.C.; Kher, A.; Zsengeller, Z.K.; Akhavan-Sharif, M.R.; Khankin, E.V.; Saintgeniez, M.; et al. PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Investig. 2011, 121, 4003–4014. [Google Scholar] [CrossRef] [Green Version]
- Granata, S.; Zaza, G.; Simone, S.; Villani, G.; Latorre, D.; Pontrelli, P.; Carella, M.; Schena, F.P.; Grandaliano, G.; Pertosa, G. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genom. 2009, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.Z.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Luk, C.C.; Lai, K.B.; Li, P.K.; Szeto, C.C. Urinary mitochondrial DNA level in non-diabetic chronic kidney diseases. Clin. Chim. Acta 2018, 484, 36–39. [Google Scholar] [CrossRef]
- Fazzini, F.; Lamina, C.; Fendt, L.; Schultheiss, U.T.; Kotsis, F.; Hicks, A.A.; Meiselbach, H.; Weissensteiner, H.; Forer, L.; Krane, V.; et al. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int. 2019, 96, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Chiu, P.F.; Wu, C.L.; Kuo, C.L.; Huang, C.S.; Liu, C.S.; Huang, C.H. Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases. BMC Nephrol. 2019, 20, 391. [Google Scholar] [CrossRef]
- Lee, H.; Oh, S.; Yang, W.; Park, R.; Kim, H.; Jeon, J.S.; Noh, H.; Han, D.C.; Cho, K.W.; Kim, Y.J.; et al. Bariatric surgery reduces elevated urinary mitochondrial DNA copy number in patients with obesity. J. Clin. Endocrinol. Metab. 2019, 104, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.P.; Vance, D.R.; Kenny, E.M.; Morris, D.W.; Maxwell, A.P.; McKnight, A.J. Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population. Sci. Rep. 2014, 4, 7379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, A.; Goto, Y.; Nagata, M.; Yamaguchi, Y. Granular swollen epithelial cells: A histologic and diagnostic marker for mitochondrial nephropathy. Am. J. Surg. Pathol. 2010, 34, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Morimoto, M.; Ohno, K.; Hamaoka, K. IgA nephropathy in a girl with mitochondrial disease. Pediatr. Int. 2015, 57, e50–e52. [Google Scholar] [CrossRef]
- Scaglia, F.; Vogel, H.; Hawkins, E.P.; Vladutiu, G.D.; Liu, L.L.; Wong, L.J. Novel homoplasmic mutation in the mitochondrial tRNATyr gene associated with atypical mitochondrial cytopathy presenting with focal segmental glomerulosclerosis. Am. J. Med. Genet. A 2003, 123, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Niedzwiecka, K.; Zhao, W.; Xu, S.; Liang, S.; Zhu, X.; Xie, H.; Tribouillard-Tanvier, D.; Giraud, M.F.; Zeng, C.; et al. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci. Rep. 2016, 6, 36313. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.C.; Cho, N.J.; Park, S.; Kim, H.; Choi, S.J.; Kim, J.K.; Hwang, S.D.; Gil, H.W.; Lee, E.Y.; Jeon, J.S.; et al. IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Eirin, A.; Saad, A.; Tang, H.; Herrmann, S.M.; Woollard, J.R.; Lerman, A.; Textor, S.C.; Lerman, L.O. Urinary mitochondrial DNA copy number identifies chronic renal injury in hypertensive patients. Hypertension 2016, 68, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.Z.; Kwan, B.C.; Chow, K.M.; Cheng, P.M.; Luk, C.C.; Li, P.K.; Szeto, C.C. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol. Dial. Transplant. 2018, 33, 784–788. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.M.; Stallons, L.J.; Kneff, J.E.; Alge, J.L.; Harmon, J.L.; Rahn, J.J.; Arthur, J.M.; Beeson, C.C.; Chan, S.L.; Schnellmann, R.G. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney Int. 2015, 88, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiku, A.; Badve, S.V.; Johnson, D.W. Urate-lowering therapy for preventing kidney disease progression: Are we there yet? Am. J. Kidney Dis. 2018, 72, 776–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, S.J.; Espino-Hernandez, G.; Reich, H.N.; Coppo, R.; Roberts, I.S.; Feehally, J.; Herzenberg, A.M.; Cattran, D.C. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016, 89, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppo, R.; Troyanov, S.; Bellur, S.; Cattran, D.; Cook, H.T.; Feehally, J.; Roberts, I.S.; Morando, L.; Camilla, R.; Tesar, V.; et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014, 86, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.; Verhave, J.C.; Liu, Z.H.; Alpers, C.E.; Barratt, J.; Becker, J.U.; Cattran, D.; Cook, H.T.; Coppo, R.; Feehally, J.; et al. A Multicenter Study of the Predictive Value of Crescents in IgA Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 691–701. [Google Scholar] [CrossRef]
- Lv, J.; Shi, S.; Xu, D.; Zhang, H.; Troyanov, S.; Cattran, D.C.; Wang, H. Evaluation of the Oxford Classification of IgA nephropathy: A systematic review and meta-analysis. Am. J. Kidney Dis. 2013, 62, 891–899. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef]
- Su, M.; Dhoopun, A.R.; Yuan, Y.; Huang, S.; Zhu, C.; Ding, G.; Liu, B.; Yang, T.; Zhang, A. Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury. Am. J. Physiol. Ren. Physiol. 2013, 305, F520–F531. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Huang, S.; Yuan, Y.; Ding, G.; Chen, R.; Liu, B.; Yang, T.; Zhang, A. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: A therapeutic target of PPARgamma. Am. J. Pathol. 2011, 178, 2020–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Ren, J.; Ren, H.; Wu, J.; Wu, X.; Liu, S.; Wang, G.; Gu, G.; Guo, K.; Li, J. Urinary mitochondrial DNA identifies renal dysfunction and mitochondrial damage in sepsis-induced acute kidney injury. Oxid. Med. Cell. Longev. 2018, 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.P.B.; Pulskens, W.P.; Butter, L.M.; Florquin, S.; Juffermans, N.P.; Roelofs, J.; Leemans, J.C. Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock 2018, 49, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Wilmer, W.A.; Rovin, B.H.; Hebert, C.J.; Rao, S.V.; Kumor, K.; Hebert, L.A. Management of glomerular proteinuria: A commentary. J. Am. Soc. Nephrol. 2003, 14, 3217–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | MHC Group (n = 49) | MGA Group (n = 49) | p Value a | IgAN Group (n = 49) | p Value b |
---|---|---|---|---|---|
Age (years) | 29.63 ± 12.95 | 29.18 ± 13.22 | 0.866 | 29.08 ± 11.35 | 0.967 |
Sex (male) | 31 (63.3%) | 31 (63.3%) | >0.999 | 31 (63.3%) | >0.999 |
Body mass index (kg/m2) | 22.86 ± 4.43 | 24.24 ± 4.33 | 0.139 | 23.23 ± 3.82 | 0.222 |
Diabetes | 0 (0.0%) | 0 (0.0%) | - | 1 (2.0%) | >0.999 |
Hypertension | 0 (0.0%) | 3 (6.1%) | 0.242 | 8 (16.3%) | 0.110 |
Systolic blood pressure (mmHg) | 119.24 ± 9.12 | 125.10 ± 11.20 | 0.006 | 126.12 ± 12.68 | 0.674 |
Diastolic blood pressure (mmHg) | 75.37 ± 6.93 | 77.96 ± 10.60 | 0.160 | 82.43 ± 8.42 | 0.076 |
Mean arterial pressure (mmHg) | 88.08 ± 14.83 | 93.67 ± 9.91 | 0.032 | 96.33 ± 8.99 | 0.168 |
Baseline SCr levels (mg/dL) | 0.98 ± 0.19 | 0.97 ± 0.21 | 0.881 | 0.97 ± 0.21 | >0.999 |
Baseline eGFR (mL/min/1.73 m2) | 97.04 ± 17.41 | 98.13 ± 18.30 | 0.761 | 98.48 ± 17.31 | 0.924 |
Baseline proteinuria (mg/day) | ND | 858.3 ± 799.3 | ND | 856.8 ± 689.3 | 0.993 |
Use of ARB or ACE inhibitors | ND | 23 (46.9%) | ND | 39 (79.6%) | 0.001 |
Use of immunosuppressant | ND | 12 (24.5%) | ND | 11 (22.4%) | 0.812 |
Variable | MHC Group (n = 49) | MGA Group (n = 49) | p Value a | IgAN Group (n = 49) | p Value b |
---|---|---|---|---|---|
Mean follow-up duration (months) | 110.69 ± 20.82 | 64.40 ± 44.27 | <0.001 | 107.80 ± 57.68 | <0.001 |
Mean annual rate of eGFR decline (mL/min/1.73 m2/year) | 0.64 ± 1.10 | 3.89 ± 5.95 | <0.001 | 3.09 ± 6.13 | 0.570 |
Variable | MHC Group (n = 15) | MGA Group (n = 15) | p Value a | IgAN Group (n = 15) | p Value b |
---|---|---|---|---|---|
Age (years) | 35.80 ± 11.82 | 35.80 ± 17.37 | 0.775 | 35.80 ± 12.55 | 0.683 |
Sex (male) | 12 (80.0%) | 12 (80.0%) | >0.999 | 12 (80.0%) | >0.999 |
Body mass index (kg/m2) | 22.90 ± 1.54 | 25.91 ± 5.32 | 0.142 | 26.67 ± 4.80 | 0.892 |
Diabetes | 0 (0.0%) | 1 (6.7%) | >0.999 | 1 (6.7%) | >0.999 |
Hypertension | 0 (0.0%) | 4 (26.7%) | 0.100 | 4 (26.7%) | >0.999 |
Systolic blood pressure (mmHg) | 108.67 ± 9.15 | 119.73 ± 16.73 | 0.061 | 129.80 ± 15.13 | 0.116 |
Diastolic blood pressure (mmHg) | 72.40 ± 8.98 | 69.07 ± 10.02 | 0.345 | 77.80 ± 13.02 | 0.067 |
Mean arterial pressure (mmHg) | 84.49 ± 8.42 | 85.96 ± 10.87 | 0.683 | 95.13 ± 12.90 | 0.050 |
Baseline SCr levels (mg/dL) | 0.92 ± 0.13 | 0.91 ± 0.14 | 0.902 | 1.21 ± 0.32 | 0.009 |
Baseline eGFR (mL/min/1.73 m2) | 100.42 ± 11.76 | 103.77 ± 12.86 | 0.389 | 77.59 ± 19.02 | <0.001 |
Baseline proteinuria (mg/day) | 67.47 ± 22.53 | 563.41 ± 774.3 | <0.001 | 2021.6 ± 1636.4 | <0.001 |
Use of ARB or ACE inhibitors | ND | 6 (40.0%) | ND | 15 (100.0%) | 0.001 |
Use of immunosuppressant | ND | 1 (6.7%) | ND | 5 (33.3%) | 0.169 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.C.; Cho, N.-J.; Park, S.; Kim, H.; Gil, H.-W.; Lee, E.Y.; Kwon, S.H.; Jeon, J.S.; Noh, H.; Han, D.C.; et al. Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. J. Clin. Med. 2020, 9, 33. https://doi.org/10.3390/jcm9010033
Yu BC, Cho N-J, Park S, Kim H, Gil H-W, Lee EY, Kwon SH, Jeon JS, Noh H, Han DC, et al. Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. Journal of Clinical Medicine. 2020; 9(1):33. https://doi.org/10.3390/jcm9010033
Chicago/Turabian StyleYu, Byung Chul, Nam-Jun Cho, Samel Park, Hyoungnae Kim, Hyo-Wook Gil, Eun Young Lee, Soon Hyo Kwon, Jin Seok Jeon, Hyunjin Noh, Dong Cheol Han, and et al. 2020. "Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury" Journal of Clinical Medicine 9, no. 1: 33. https://doi.org/10.3390/jcm9010033
APA StyleYu, B. C., Cho, N. -J., Park, S., Kim, H., Gil, H. -W., Lee, E. Y., Kwon, S. H., Jeon, J. S., Noh, H., Han, D. C., Moon, A., Park, S. J., Kim, J. K., Hwang, S. D., Choi, S. J., & Park, M. Y. (2020). Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. Journal of Clinical Medicine, 9(1), 33. https://doi.org/10.3390/jcm9010033