Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition
Abstract
:1. Introduction
2. Material and Methods
2.1. Setting
2.2. Patients
2.3. Data Collection
2.4. Statistical Analyses
2.5. Availability of Data and Materials
3. Results
3.1. Baseline Characteristics
3.2. Outcomes
3.3. Disease Severity
3.4. Microbiological Findings
3.5. Multivariate Cox Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Fleischmann, C.; Thomas–Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. Dtsch. Ärzteblatt Int. 2016, 113, 159–166. [Google Scholar]
- Valles, J.; Fontanals, D.; Oliva, J.C.; Martínez, M.; Navas, A.; Mesquida, J.; Gruartmoner, G.; de Haro, C.; Mestre, J.; Guía, C.; et al. Trends in the incidence and mortality of patients with community-acquired septic shock 2003–2016. J. Crit. Care 2019, 53, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Jones, G.; David, S.; Olariu, E.; Cadwell, K.K. Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit. Care 2019, 23, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedet, A.; Razazi, K.; Boissier, F.; Surenaud, M.; Hue, S.; Giraudier, S.; Brun-Buisson, C.; Mekontso Dessap, A. Mechanisms of Thrombocytopenia During Septic Shock: A Multiplex Cluster Analysis of Endogenous Sepsis Mediators. Shock 2018, 49, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Boissier, F.; Surenaud, M.; Bedet, A.; Seemann, A.; Carteaux, G.; de Prost, N.; Brun-Buisson, C.; Hue, S.; Mekontso Dessap, A. A multiplex analysis of sepsis mediators during human septic shock: A preliminary study on myocardial depression and organ failures. Ann. Intensive Care 2019, 9, 64. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Geske, J.B.; Kumar, M.; Kashyap, R.; Kashani, K.; Jentzer, J.C. Doppler-defined pulmonary hypertension in sepsis and septic shock. J. Crit. Care 2019, 50, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Contou, D.; Roux, D.; Jochmans, S.; Coudroy, R.; Guérot, E.; Grimaldi, D.; Ricome, S.; Maury, E.; Plantefève, G.; Mayaux, J.; et al. Septic shock with no diagnosis at 24 hours: A pragmatic multicenter prospective cohort study. Crit. Care 2016, 20, 360. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Chu, F.; Dunlay, R.; Villar, J.; Fedullo, P.; Wardi, G. Evaluating vancomycin and piperacillin-tazobactam in ED patients with severe sepsis and septic shock. Am. J. Emerg. Med. 2018, 36, 1380–1385. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.; Hinz, J.; Hillebrecht, B.; Bergmann, I.; Popov, A.F.; Ghadimi, M.; Bauer, M.; Beissbarth, T.; Mihm, S. Ninety-Day Survival Rate of Patients with Sepsis Relates to Programmed Cell Death 1 Genetic Polymorphism rs11568821. J. Investig. Med. 2014, 62, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Mewes, C.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.F.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Shen-Orr, S.; Bergmann, I.; et al. The CTLA-4 rs231775 GG genotype is associated with favorable 90-day survival in Caucasian patients with sepsis. Sci. Rep. 2018, 8, 15140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewes, C.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.-F.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Jensen, O.; Runzheimer, J.; et al. CTLA-4 Genetic Variants Predict Survival in Patients with Sepsis. J. Clin. Med. 2019, 8, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheth, M.; Benedum, C.M.; Celi, L.A.; Mark, R.G.; Markuzon, N. The association between autoimmune disease and 30-day mortality among sepsis ICU patients: A cohort study. Crit. Care 2019, 23, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.; Lee, D.; Mamidi, I.S.; Probasco, W.V.; Heyer, J.H.; Pandarinath, R. Patients with Chronic Obstructive Pulmonary Disease Are at Higher Risk for Pneumonia, Septic Shock, and Blood Transfusions After Total Shoulder Arthroplasty. Clin. Orthop. Relat. Res. 2019, 477, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Z.; Yang, T.; Wang, M.; Xi, X. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS ONE 2018, 13, e0198669. [Google Scholar] [CrossRef] [Green Version]
- Gaulton, T.G.; Marshall MacNabb, C.; Mikkelsen, M.E.; Agarwal, A.K.; Cham Sante, S.; Shah, C.V.; Gaieski, D.F. A retrospective cohort study examining the association between body mass index and mortality in severe sepsis. Intern. Emerg. Med. 2015, 10, 471–479. [Google Scholar] [CrossRef]
- Goodwin, P.J.; Stambolic, V. Impact of the obesity epidemic on cancer. Annu. Rev. Med. 2015, 66, 281–296. [Google Scholar] [CrossRef]
- Lohmann, A.E.; Goodwin, P.J.; Chlebowski, R.T.; Pan, K.; Stambolic, V.; Dowling, R.J.O. Association of Obesity-Related Metabolic Disruptions with Cancer Risk and Outcome. J. Clin. Oncol. 2016, 34, 4249–4255. [Google Scholar] [CrossRef]
- Pepper, D.; Demirkale, C.; Sun, J.; Rhee, C.; Fram, D.; Eichacker, P.; Klompas, M.; Suffredini, A.; Kadri, S. Does Obesity Protect Against Death in Sepsis? A Retrospective Cohort Study of 55,038 Adult Patients. Crit. Care Med. 2019, 47, 643–650. [Google Scholar] [CrossRef]
- Li, S.; Hu, X.; Xu, J.; Huang, F.; Guo, Z.; Tong, L.; Lui, K.Y.; Cao, L.; Zhu, Y.; Yao, J.; et al. Increased body mass index linked to greater short- and long-term survival in sepsis patients: A retrospective analysis of a large clinical database. Int. J. Infect. Dis. 2019, 87, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahima, R.S. Adipose tissue as an endocrine organ. Obesity (Silver Spring) 2006, 14 (Suppl. 5), 242S–249S. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.Y.; Eikermann, M. The obesity conundrum in sepsis. BMC Anesthesiol. 2017, 17, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Trivedi, V.; Bavishi, C.; Jean, R. Impact of obesity on sepsis mortality: A systematic review. J. Crit. Care 2015, 30, 518–524. [Google Scholar] [CrossRef]
- Oliveros, H.; Villamor, E. Obesity and mortality in critically ill adults: A systematic review and meta-analysis. Obesity (Silver Spring) 2008, 16, 515–521. [Google Scholar] [CrossRef]
- Hogue, C.W.; Stearns, J.D.; Colantuoni, E.; Robinson, K.A.; Stierer, T.; Mitter, N.; Pronovost, P.J.; Needham, D.M. The impact of obesity on outcomes after critical illness: A meta-analysis. Intensive Care Med. 2009, 35, 1152–1170. [Google Scholar] [CrossRef]
- Landsberg, L.; Aronne, L.J.; Beilin, L.J.; Burke, V.; Igel, L.I.; Lloyd-Jones, D.; Sowers, J. Obesity-Related Hypertension: Pathogenesis, Cardiovascular Risk, and Treatment. J. Clin. Hypertens. 2013, 15, 14–33. [Google Scholar] [CrossRef]
- Okosun, I.S.; Chandra, K.M.D.; Choi, S.; Christman, J.; Dever, G.E.A.; Prewitt, T.E. Hypertension and Type 2 Diabetes Comorbidity in Adults in the United States: Risk of Overall and Regional Adiposity. Obes. Res. 2001, 9, 1–9. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Dara, S.I.; Tamim, H.M.; Rishu, A.H.; Bouchama, A.; Khedr, M.K.; Feinstein, D.; Parrillo, J.E.; Wood, K.E.; Keenan, S.P.; et al. Clinical characteristics, sepsis interventions and outcomes in the obese patients with septic shock: An international multicenter cohort study. Crit. Care 2013, 17, R72. [Google Scholar] [CrossRef] [Green Version]
- Prescott, H.C.; Chang, V.W.; O’Brien, J.M.; Langa, K.M.; Iwashyna, T.J. Obesity and 1-year outcomes in older Americans with severe sepsis. Crit. Care Med. 2014, 42, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- Wacharasint, P.; Boyd, J.H.; Russell, J.A.; Walley, K.R. One size does not fit all in severe infection: Obesity alters outcome, susceptibility, treatment, and inflammatory response. Crit. Care 2013, 17, R122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedziela, J.; Hudzik, B.; Niedziela, N.; Gąsior, M.; Gierlotka, M.; Wasilewski, J.; Myrda, K.; Lekston, A.; Poloński, L.; Rozentryt, P. The obesity paradox in acute coronary syndrome: A meta-analysis. Eur. J. Epidemiol. 2014, 29, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Zeve, D.; Tang, W.; Graff, J. Fighting fat with fat: The expanding field of adipose stem cells. Cell Stem Cell 2009, 5, 472–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, G.; Kiss, S.; Keszthelyi, L.; Sápi, Z.; Ory, I.; Salamon, F.; Kovács, M.; Vargha, P.; Szekeres, O.; Speer, G.; et al. Expression of tumor necrosis factor (TNF)-alpha protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-alpha, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur. J. Endocrinol. 2003, 149, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef]
- Jacobsson, S.; Larsson, P.; Johansson, G.; Norberg, M.; Wadell, G.; Hallmans, G.; Winsö, O.; Söderberg, S. Leptin independently predicts development of sepsis and its outcome. J. Inflamm. (Lond.) 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Siegl, D.; Annecke, T.; Johnson, B.L.; Schlag, C.; Martignoni, A.; Huber, N.; Conzen, P.; Caldwell, C.C.; Tschöp, J. Obesity-induced hyperleptinemia improves survival and immune response in a murine model of sepsis. Anesthesiology 2014, 121, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Ascherio, A.; Hennekens, C.; Willett, W.C.; Sacks, F.; Rosner, B.; Manson, J.; Witteman, J.; Stampfer, M.J. Prospective study of nutritional factors, blood pressure, and hypertension among US women. Hypertension 1996, 27, 1065–1072. [Google Scholar] [CrossRef]
- Câmara, N.O.S.; Iseki, K.; Kramer, H.; Liu, Z.-H.; Sharma, K. Kidney disease and obesity: Epidemiology, mechanisms and treatment. Nat. Rev. Nephrol. 2017, 13, 181–190. [Google Scholar] [CrossRef]
- Younge, J.O.; Damen, N.L.; van Domburg, R.T.; Pedersen, S.S. Obesity, health status, and 7-year mortality in percutaneous coronary intervention: In search of an explanation for the obesity paradox. Int. J. Cardiol. 2013, 167, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Matarese, G.; La Cava, A.; Sanna, V.; Lord, G.M.; Lechler, R.I.; Fontana, S.; Zappacosta, S. Balancing susceptibility to infection and autoimmunity: A role for leptin? Trends Immunol. 2002, 23, 182–187. [Google Scholar] [CrossRef]
Variable | All (n = 352) | Obese (n = 86) | Non-obese (n = 266) | p Value |
---|---|---|---|---|
Demographics | ||||
• Age (years) | 65 ± 14 | 63 ± 13 | 65 ± 15 | 0.1917 |
• Male (%) | 64 | 63 | 64 | 0.8018 |
Severity at enrollment | ||||
• Sequential Organ Failure Assessment (SOFA) | 11.2 ± 3.7 | 11.9 ± 3.7 | 11 ± 3.7 | 0.023 |
• Acute Physiology and Chronic Health Evaluation (APACHE II) | 24 ± 7 | 24 ± 7 | 24 ± 7 | 0.3451 |
• Procalcitonin [ng/dL] | 2.1 (0.7–12.1) (n = 197) | 3.25 (0.9–12.9) (n = 48) | 1.9 (0.6–10.2) (n = 149) | 0.3124 |
Comorbidities (%) | ||||
• Art. hypertension | 53 | 64 | 50 | 0.0206 |
• History of myocardial infarction | 8 | 9 | 7 | 0.513 |
• COPD | 16 | 21 | 14 | 0.1191 |
• Bronchial asthma | 3 | 3 | 3 | 0.6776 |
• Renal dysfunction | 11 | 12 | 11 | 0.7748 |
• Insulin-dependent diabetes mellitus (IDDM) | 12 | 16 | 10 | 0.1856 |
• Non-insulin-dependent diabetes mellitus (NIDDM) | 9 | 10 | 8 | 0.5325 |
• Chronic liver disease | 7 | 9 | 7 | 0.4345 |
• History of cancer | 16 | 13 | 18 | 0.2891 |
• History of stroke | 5 | 5 | 5 | 0.9293 |
• Dementia | 2 | 0 | 2 | 0.1038 |
Recent surgical history [%] | ||||
• Elective surgery | 29 | 30 | 28 | |
• Emergency surgery | 21 | 26 | 20 | 0.3771 |
• No surgery | 50 | 44 | 52 | |
Organ support at baseline [%] | ||||
• Mechanical ventilation | 89 | 92 | 88 | 0.3177 |
• Use of catecholamines | 88 | 87 | 88 | 0.9253 |
• Renal replacement therapy | 15 | 22 | 13 | 0.0358 |
Organ support during the observation period [%] | ||||
• Mechanical ventilation | 96 | 95 | 96 | 0.713 |
• Use of catecholamines | 100 | 100 | 100 | 1 |
• Renal replacement therapy | 37 | 47 | 34 | 0.0342 |
Parameter | All (n = 352) | Obese (n = 86) | Non-Obese (n = 266) | p Value |
---|---|---|---|---|
SOFA scores and SOFA subscores during observation | ||||
• SOFA | 8.7 ± 3.7 | 9 ± 3.9 | 8.7 ± 3.7 | 0.6074 |
• SOFA respiratory score | 2.2 ± 0.7 | 2.3 ± 0.7 | 2.2 ± 0.7 | 0.3778 |
• SOFA cardiovascular score | 2.0 ± 1 | 2.0 ± 1 | 2.1 ± 1 | 0.3208 |
• SOFA CNS score | 2.3 ± 1 | 2.1 ± 1 | 2.3 ± 1 | 0.0743 |
• SOFA renal score | 1.1 ± 1.3 | 1.4 ± 1.4 | 1.0 ± 1.3 | 0.0047 |
• SOFA coagulation score | 0.6 ± 0.7 | 0.5 ± 0.7 | 0.6 ± 0.8 | 0.7871 |
• SOFA hepatic score | 0.6 ± 0.8 | 0.7 ± 1 | 0.5 ± 0.8 | 0.1241 |
Organ support | ||||
• Days with ventilation | 13 ± 9 | 13 ± 8 | 13 ± 9 | 0.6476 |
• Days with catecholamines | 8 ± 6 | 8 ± 6 | 8 ± 6 | 0.4037 |
• Days with dialysis | 0 (0-4) | 0 (0-7) | 0 (0-3) | 0.0264 |
• Days with ventilation/observation days [%] | 73 ± 30 | 73 ± 29 | 73 ± 30 | 0.7834 |
• Days with catecholamines/observation days [%] | 49 ± 29 | 49 ± 29 | 49 ± 29 | 0.9635 |
• Days with dialysis/observation days [%] | 0 (0–25) | 0 (0–39) | 0 (0–21) | 0.0723 |
Inflammatory values | ||||
• Leukocytes [1000/µL] | 14 ± 6 | 13 ± 6 | 14 ± 5 | 0.0738 |
• CRP [mg/L] | 156 ± 80 | 149 ± 70 | 159 ± 83 | 0.6046 |
• Procalcitonin [ng/Dl] | 7 ± 13 | 7 ± 13 | 7 ± 13 | 0.1565 |
Kidney values | ||||
• Urine output [mL/day] | 2722 ± 1536 | 2883 ± 1770 | 2670 ± 1452 | 0.3166 |
• Urine output [mL/kg/h] | 1.4 ± 0.8 | 1.2 ± 0.8 | 1.5 ± 0.8 | 0.0014 |
• Creatinine [mg/dL] | 1.4 ± 1 | 1.7 ± 1 | 1.3 ± 0.9 | 0.0002 |
Liver values | ||||
• AST (GOT) [IU/L] | 66 (39–128) | 83 (44–181) | 63 (38–123) | 0.107 |
• ALT (GPT) [IU/L] | 43 (22–97) | 48 (25–108) | 43 (22–93) | 0.5006 |
• Bilirubin [mg/dL] | 0.8 (0.5–1.6) | 0.9 (0.5–1.9) | 0.7 (0.5–1.5) | 0.0732 |
Central nervous system | ||||
• Glasgow Coma Score | 9 ± 3 | 10 ± 3 | 9 ± 3 | 0.1229 |
Coagulation | ||||
• Thrombocytes [1000/µL] | 255 ± 142 | 248 ± 121 | 257 ± 148 | 0.9951 |
Length of Stay (LOS) [days] | ||||
• ICU-LOS | 19 (10–30) | 18 (11–33) | 19 (10–30) | 0.6082 |
• Hospital-LOS | 33 (20–57) | 35 (21–60) | 33 (20–56) | 0.7073 |
• Days in septic shock | 2 (1–4) | 2 (2–4) | 2 (1–4) | 0.4197 |
All (n = 352) | Obese (n = 86) | Non–Obese (n = 266) | p Value | |
---|---|---|---|---|
Site of infection [%] | ||||
• Lung | 53 | 52 | 53 | 0.3155 |
• Abdomen | 26 | 23 | 27 | |
• Bone or soft tissue | 5 | 9 | 3 | |
• Surgical wound | 2 | 2 | 2 | |
• Urogenital | 3 | 1 | 3 | |
• Primary bacteraemia | 8 | 9 | 7 | |
• Other | 4 | 2 | 5 | |
Type of infection [%] | ||||
• Bacterial (gram-positive) | 79 | 78 | 80 | 0.7216 |
• Bacterial (gram-negative) | 66 | 63 | 67 | 0.4828 |
• Fungal | 64 | 71 | 62 | 0.1194 |
• Viral | 15 | 15 | 15 | 0.947 |
Spectrum of pathogenic agents [%] | ||||
• Staphylococcus aureus | 21 | 20 | 21 | 0.7424 |
• Staphylococcus epidermidis | 36 | 37 | 35 | 0.7531 |
• Enterococcus faecalis | 24 | 15 | 27 | 0.0286 |
• Enterococcus faecium | 20 | 21 | 19 | 0.7212 |
• Escherichia coli | 30 | 26 | 32 | 0.2919 |
• Klebsiella pneumoniae | 10 | 7 | 11 | 0.2525 |
• Pseudomonas aeruginosa | 17 | 13 | 18 | 0.2274 |
• Candida albicans | 35 | 43 | 32 | 0.0707 |
• Candida glabrata | 16 | 17 | 16 | 0.7177 |
28–Day Mortality | 90–Day Mortality | |||||
---|---|---|---|---|---|---|
Variable | Hazard Ratio | 95% Cl | p Value | Hazard Ratio | 95% Cl | p Value |
• Age | 1.025 | 1.008–1.043 | 0.0039 | 1.024 | 1.009–1.039 | 0.0013 |
• SOFA score at baseline | 1.016 | 0.948–1.089 | 0.6556 | 1.009 | 0.953–1.069 | 0.755 |
• APACHE II score | 1.008 | 0.967–1.051 | 0.7033 | 1.004 | 0.97–1.04 | 0.822 |
• Male gender | 1.01 | 0.661–1.542 | 0.9639 | 0.93 | 0.656–1.318 | 0.6833 |
• Hypertension | 0.993 | 0.651–1.515 | 0.9737 | 1.107 | 0.773–1.583 | 0.5803 |
• Dialysis at baseline | 0.603 | 0.333–1.09 | 0.0937 | 0.611 | 0.37–1.007 | 0.0534 |
• Dialysis during observation | 2.798 | 1.727–4.533 | 0.0001 | 2.769 | 1.841–4.165 | 0.0001 |
• Obesity (BMI ≥ 30 kg/m2) | 0.462 | 0.264–0.808 | 0.0068 | 0.57 | 0.371–0.874 | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mewes, C.; Böhnke, C.; Alexander, T.; Büttner, B.; Hinz, J.; Popov, A.-F.; Ghadimi, M.; Beißbarth, T.; Raddatz, D.; Meissner, K.; et al. Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition. J. Clin. Med. 2020, 9, 46. https://doi.org/10.3390/jcm9010046
Mewes C, Böhnke C, Alexander T, Büttner B, Hinz J, Popov A-F, Ghadimi M, Beißbarth T, Raddatz D, Meissner K, et al. Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition. Journal of Clinical Medicine. 2020; 9(1):46. https://doi.org/10.3390/jcm9010046
Chicago/Turabian StyleMewes, Caspar, Carolin Böhnke, Tessa Alexander, Benedikt Büttner, José Hinz, Aron-Frederik Popov, Michael Ghadimi, Tim Beißbarth, Dirk Raddatz, Konrad Meissner, and et al. 2020. "Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition" Journal of Clinical Medicine 9, no. 1: 46. https://doi.org/10.3390/jcm9010046
APA StyleMewes, C., Böhnke, C., Alexander, T., Büttner, B., Hinz, J., Popov, A. -F., Ghadimi, M., Beißbarth, T., Raddatz, D., Meissner, K., Quintel, M., Bergmann, I., & Mansur, A. (2020). Favorable 90-Day Mortality in Obese Caucasian Patients with Septic Shock According to the Sepsis-3 Definition. Journal of Clinical Medicine, 9(1), 46. https://doi.org/10.3390/jcm9010046