Changes in Metabolic Profile in the Women with a History of PCOS—A Long-Term Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Baseline Study
2.3. Ethical Approval
2.4. Follow-Up Study
2.4.1. Protocol of the Study
2.4.2. Clinical Evaluation and Anthropometric Measurements
2.4.3. Image Tests
2.4.4. Biochemical Analyses
2.4.5. Calculations
2.4.6. Statistical Analysis
2.4.7. Definitions
3. Results
3.1. Anthropometric Parameters
3.2. Blood Pressure
3.3. Lipids
3.4. Glycaemic Status and Insulin Resistance
3.4.1. OGTT and IR
3.4.2. Incident Prediabetes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Engmann, L.L.; Jin, S.; Sun, F.; Legro, R.S.; Polotsky, A.J.; Hansen, K.R.; Coutifaris, C.; Diamond, M.P.; Eisenberg, E.; Zhang, H.; et al. Racial and ethnic differences in the polycystic ovary syndrome metabolic phenotype. Am. J. Obstet. Gynecol. 2017, 216, 493.e1–493.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, T.; Hardiman, P.J.; Petersen, I.; Wang, F.F.; Qu, F.; Baio, G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: A systematic review and meta-analysis. Oncotarget 2017, 8, 96351–96358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef] [PubMed]
- De Melo, A.S.; Dias, S.V.; Cavalli, R.D.C.; Cardoso, V.C.; Bettiol, H.; Barbieri, M.A.; Ferriani, R.A.; Vieira, C.S.; Melo, A.S. Pathogenesis of polycystic ovary syndrome: Multifactorial assessment from the foetal stage to menopause. Reproduction 2015, 150, R11–R24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajmal, N.; Khan, S.Z.; Shaikh, R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 3, 100060. [Google Scholar] [CrossRef] [PubMed]
- Day, F.; Karaderi, T.; Jones, M.R.; Meun, C.; He, C.; Drong, A.; Kraft, P.; Lin, N.; Huang, H.; Broer, L.; et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018, 14, e1007813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; di Somma, C.; Scacchi, M.; Orio, F.; Aimaretti, G.; Colao, A.; Savastano, S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef] [PubMed]
- Legro, R.S.; Castracane, V.D.; Kauffman, R.P. Detecting Insulin Resistance in Polycystic Ovary Syndrome: Purposes and Pitfalls. Obstet. Gynecol. Surv. 2004, 59, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.J.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum. Reprod. 2016, 31, 2619–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhill, C. Mechanisms of insulin resistance. Nat. Rev. Endocrinol. 2018, 14, 565. [Google Scholar] [CrossRef] [PubMed]
- Obermayer-Pietsch, B.; Trummer, C.; Schwetz, V.; Schweighofer, N.; Pieber, T. Genetics of insulin resistance in polycystic ovary syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermúdez, V. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth. Int. J. Reprod. Med. 2014, 2014, e719050. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Tarlatzis, B.C.; Kauffman, R.P. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism 2018, 86, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Davies, M.; Norman, R.J.; Moran, L. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Updat. 2012, 18, 618–637. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Norman, R.J.; Davies, M.J.; Moran, L.J. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes. Rev. 2012, 14, 95–109. [Google Scholar] [PubMed]
- Kakoly, N.S.; Earnest, A.; Teede, H.J.; Moran, L.J.; Joham, A.E. The Impact of Obesity on the Incidence of Type 2 Diabetes among Women with Polycystic Ovary Syndrome. Diabetes Care 2019, 42, 560–567. [Google Scholar] [PubMed] [Green Version]
- Capozzi, A.; Scambia, G.; Lello, S. Polycystic ovary syndrome (PCOS) and adolescence: How can we manage it? Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 250, 235–240. [Google Scholar] [PubMed]
- Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol. 2018, 182, 27–36. [Google Scholar] [PubMed]
- Legro, R.S.; Kunselman, A.R.; Dodson, W.C.; Dunaif, A. Prevalence and Predictors of Risk for Type 2 Diabetes Mellitus and Impaired Glucose Tolerance in Polycystic Ovary Syndrome: A Prospective, Controlled Study in 254 Affected Women1. J. Clin. Endocrinol. Metab. 1999, 84, 165–169. [Google Scholar] [PubMed] [Green Version]
- Kakoly, N.S.; Khomami, M.B.; E Joham, A.; Cooray, S.D.; Misso, M.L.; Norman, R.J.; Harrison, C.L.; Ranasinha, S.; Teede, H.J.; Moran, L.J. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: A systematic review and meta-regression. Hum. Reprod. Updat. 2018, 24, 455–467. [Google Scholar] [PubMed]
- Wild, R.A.; Rizzo, M.; Clifton, S.; Carmina, E. Lipid levels in polycystic ovary syndrome: Systematic review and meta-analysis. Fertil. Steril. 2011, 95, 1073–1079. [Google Scholar] [PubMed]
- Legro, R.S.; Kunselman, A.R.; Dunaif, A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am. J. Med. 2001, 111, 607–613. [Google Scholar] [PubMed]
- Wild, R.A.; Painter, P.C.; Coulson, P.B.; Carruth, K.B.; Ranney, G.B. Lipoprotein Lipid Concentrations and Cardiovascular Risk in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 1985, 61, 946–951. [Google Scholar] [PubMed]
- Joham, A.E.; Boyle, J.A.; Zoungas, S.; Teede, H.J. Hypertension in Reproductive-Aged Women with Polycystic Ovary Syndrome and Association with Obesity. Am. J. Hypertens. 2014, 28, 847–851. [Google Scholar] [PubMed] [Green Version]
- Shi, Y.; Cui, Y.; Sun, X.; Ma, G.; Ma, Z.; Gao, Q.; Chen, Z.J. Hypertension in women with polycystic ovary syndrome: Prevalence and associated cardiovascular risk factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 173, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.; Misso, M.L.; Wild, R.A.; Norman, R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Updat. 2010, 16, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Coviello, A.D.; Legro, R.S.; Dunaif, A. Adolescent Girls with Polycystic Ovary Syndrome Have an Increased Risk of the Metabolic Syndrome Associated with Increasing Androgen Levels Independent of Obesity and Insulin Resistance. J. Clin. Endocrinol. Metab. 2006, 91, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Berneis, K.; Spinas, G.; Rini, G.B.; Carmina, E. Long-term consequences of polycystic ovary syndrome on cardiovascular risk. Fertil. Steril. 2009, 91, 1563–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacewicz-Święcka, M.; Kowalska, I. Polycystic ovary syndrome and the risk of cardiometabolic complications in longitudinal studies. Diabetes/Metabolism Res. Rev. 2018, 34, e3054. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Straczkowski, M.; Nikołajuk, A.; Adamska, A.; Karczewska-Kupczewska, M.; Otziomek, E.; Wolczyński, S.; Gorska, M. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Hum. Reprod. 2007, 22, 1824–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Metab. 1979, 237, E214–E223. [Google Scholar] [CrossRef] [PubMed]
- Straczkowski, M.; Kowalska, I.; Nikolajuk, A.; Dzienis-Straczkowska, S.; Kinalska, I.; Baranowski, M.; Zendzian-Piotrowska, M.; Brzezinska, Z.; Gorski, J. Relationship Between Insulin Sensitivity and Sphingomyelin Signaling Pathway in Human Skeletal Muscle. Diabetes 2004, 53, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.Y.; Yang, C.Y.; Shih, S.R.; Hsieh, H.J.; Hung, C.S.; Chiu, F.C.; Lin, M.S.; Liu, P.H.; Hua, C.H.; Hsein, Y.C.; et al. Measurement of Waist Circumference. Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda index. Available online: http://mmatsuda.diabetes-smc.jp/english.htm/ (accessed on 18 October 2020).
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A Critical Evaluation of Simple Methods for the Estimation of Free Testosterone in Serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organ Tech Rep Ser. WHO: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar] [PubMed]
- Mellitus, D. American Diabetes Association Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2012, 36, S67–S74. [Google Scholar] [PubMed] [Green Version]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Hudecova, M.; Holte, J.; Moby, L.; Olovsson, M.; Stridsberg, M.; Larsson, A.; Berglund, L.; Berne, C.; Poromaa, I.S. Androgen levels, insulin sensitivity, and early insulin response in women with polycystic ovary syndrome: A long-term follow-up study. Fertil. Steril. 2011, 95, 1146–1148. [Google Scholar] [CrossRef] [PubMed]
- Pesant, M.H.; Baillargeon, J.P. Clinically useful predictors of conversion to abnormal glucose tolerance in women with polycystic ovary syndrome. Fertil. Steril. 2011, 95, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Campagna, A.M.; Lobo, R.A. Emergence of ovulatory cycles with aging in women with polycystic ovary syndrome (PCOS) alters the trajectory of cardiovascular and metabolic risk factors. Hum. Reprod. 2013, 28, 2245–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehrani, F.R.; Montazeri, S.A.; Hosseinpanah, F.; Cheraghi, L.; Erfani, H.; Tohidi, M.; Azizi, F. Trend of Cardio-Metabolic Risk Factors in Polycystic Ovary Syndrome: A Population-Based Prospective Cohort Study. PLoS ONE 2015, 10, e0137609. [Google Scholar] [PubMed] [Green Version]
- Ollila, M.M.; West, S.; Keinänen-Kiukaanniemi, S.; Jokelainen, J.; Auvinen, J.; Puukka, K.; Ruokonen, A.; Järvelin, M.R.; Tapanainen, J.; Franks, S.; et al. Overweight and obese but not normal weight women with PCOS are at increased risk of Type 2 diabetes mellitus—A prospective, population-based cohort study. Hum. Reprod. 2016, 32, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, M.; Wojciechowska, A.; Śmigielski, W.; Drygas, W.; Piwońska, A.; Pająk, A.; Tykarski, A.; Kozakiewicz, K.; Waśniewska, M.K.; Zdrojewski, T. Prevalence of diabetes and impaired fasting glucose in Poland in 2005–2014: Results of the WOBASZ surveys. Diabet. Med. 2020, 37, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Gambineri, A.; Patton, L.; Altieri, P.; Pagotto, U.; Pizzi, C.; Manzoli, L.; Pasquali, R. Polycystic Ovary Syndrome Is a Risk Factor for Type 2 Diabetes: Results From a Long-Term Prospective Study. Diabetes 2012, 61, 2369–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velija-Asimi, Z.; Burekovic, A.; Dujic, T.; Dizdarevic-Bostandzic, A.; Semiz, S. Incidence of prediabetes and risk of developing cardiovascular disease in women with polycystic ovary syndrome. Bosn. J. Basic Med Sci. 2016, 16, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, K.H.; Glintborg, D.; Nybo, M.; Abrahamsen, B.; Andersen, M. Development and Risk Factors of Type 2 Diabetes in a Nationwide Population of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3848–3857. [Google Scholar] [PubMed] [Green Version]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [PubMed] [Green Version]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex Hormone–Binding Globulin and Risk of Type 2 Diabetes in Women and Men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [PubMed] [Green Version]
- Lerchbaum, E.; Schwetz, V.; Giuliani, A.; Pieber, T.; Obermayer-Pietsch, B. Opposing effects of dehydroepiandrosterone sulfate and free testosterone on metabolic phenotype in women with polycystic ovary syndrome. Fertil. Steril. 2012, 98, 1318–1325.e1. [Google Scholar] [PubMed]
- Brennan, K.; Huang, A.; Azziz, R. Dehydroepiandrosterone sulfate and insulin resistance in patients with polycystic ovary syndrome. Fertil. Steril. 2009, 91, 1848–1852. [Google Scholar] [PubMed] [Green Version]
- Chen, M.J.; Chen, C.D.; Yang, J.H.; Ho, H.N.; Yang, W.S.; Yang, Y.S.; Chen, C.D.; Chen, C.L. High serum dehydroepiandrosterone sulfate is associated with phenotypic acne and a reduced risk of abdominal obesity in women with polycystic ovary syndrome. Hum. Reprod. 2010, 26, 227–234. [Google Scholar] [PubMed]
- Carmina, E.; Campagna, A.M.; Lobo, R.A. A 20-Year Follow-up of Young Women with Polycystic Ovary Syndrome. Obstet. Gynecol. 2012, 119, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.; Landin-Wilhelmsen, K.; Brännström, M.; Dahlgren, E. Cardiovascular Disease and Risk Factors in PCOS Women of Postmenopausal Age: A 21-Year Controlled Follow-Up Study. J. Clin. Endocrinol. Metab. 2011, 96, 3794–3803. [Google Scholar] [PubMed] [Green Version]
- Ezeh, U.; Chen, Y.I.; Azziz, R. Racial and ethnic differences in the metabolic response of polycystic ovary syndrome. Clin. Endocrinol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Gambineri, A.; Anconetani, B.; Vicennati, V.; Colitta, D.; Caramelli, E.; Casimirri, F.; Morselli-Labate, A.M. The natural history of the metabolic syndrome in young women with the polycystic ovary syndrome and the effect of long-term oestrogen-progestagen treatment. Clin. Endocrinol. 1999, 50, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Dovom, M.R.; Tehrani, F.R.; Djalalinia, S.; Cheraghi, L.; Gandavani, S.B.; Azizi, F. Menstrual Cycle Irregularity and Metabolic Disorders: A Population-Based Prospective Study. PLoS ONE 2016, 11, e0168402. [Google Scholar] [PubMed] [Green Version]
- Andries, M.; Glintborg, D.; Andersen, M. Risk of impaired glucose tolerance in normal weight hirsute women during four years observation. Acta Obstet. Gynecol. Scand. 2010, 89, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Baseline | Follow-Up | p-Value |
---|---|---|---|
Age (years) | 25.53 (21.51–29.22) | 35.00 (31.20–39.80) | <0.00001 |
Body mass (kg) | 70.0 (58.0–90.0) | 72.2 (59.7–92.6) | 0.002 |
BMI (kg/m2) | 25.61 (21.48–31.42) | 26.60 (21.76–34.29) | 0.001 |
Waist Circumference (cm) | 79.0 (71.0–97.0) | 90.0 (77.0–110.0) | <0.00001 |
Waist to Hip Ratio | 0.81 (0.77–0.85) | 0.89 (0.85–0.95) | 0.00006 |
Fat Mass (kg) | 24.15 (15.96–35.15) | 24.30 (16.44–37.50) | 0.04 |
Fat Mass (%) | 34.0 (27.5–44.0) | 32.7 (26.47–45.0) | NS |
Free Fat Mass (kg) | 45.15 (42.24–50.76) | 46.10 (44.0–55.5) | 0.002 |
Triglycerides (mg/dL) | 82 (61–135) | 71 (57–119) | NS |
Total Cholesterol (mg/dL) | 179 (158–208) | 196 (180–214) | NS |
LDL-c (mg/dL) | 93 (78.2–134.2) | 104 (98.4–113.6) | NS |
HDL-c (mg/dL) | 58.2 (51–69) | 68.0 (48–79) | 0.07 |
Systolic Blood Pressure (mmHg) | 120 (110–125) | 124 (111–130) | 0.08 |
Diastolic Blood Pressure (mmHg) | 80 (70–80) | 78 (72–82) | NS |
Normal Weight n (%) | 14 (45%) | 14 (45%) | NS |
Overweight n (%) | 8 (25.86%) | 5 (16.129%) | NS |
Obesity n (%) | 9 (29%) | 12 (38.709%) | NS |
Abdominal Obesity (waist circumference ≥ 80 cm) n (%) | 15 (48%) | 23 (74%) | 0.04 |
Hypertriglyceridaemia n (%) | 5 (16.129%) | 5 (16.129%) | NS |
Hypercholesterolaemia n (%) | 9 (29%) | 7 (22.58%) | NS |
Low HDL-cholesterol n (%) | 7 (22.58%) | 8 (25.8%) | NS |
Metabolic syndrome n (%) | 6 (19.35%) | 11 (35.48%) | NS |
Characteristic | BMI < 25 kg/m2 (n = 14) | BMI ≥ 25 kg/m2 (n = 17) | p-Value |
---|---|---|---|
Age at Follow-up (years) | 34.15 (30.2–35.0) | 38.3 (34.4–43.8) | 0.01 |
BMI at Follow-up (kg/m2) | 21.62 (20.32–22.87) | 33.24 (28.83–39.12) | <0.00001 |
BMI at Baseline (kg/m2) | 21.47 (19.66–21.94) | 31.05 (27.82–36.29) | <0.00001 |
∆BMI (kg/m2) | 0.67 (−0.71–1.18) | 2.88 (1.14–4.04) | 0.01 |
Waist Circumference at Follow-Up (cm) | 77 (72–84) | 109 (95–122) | <0.00001 |
Waist Circumference at Baseline (cm) | 71 (68–74) | 93 (85–103) | <0.00001 |
∆Waist Circumference (cm) | 4.5 (0–10) | 13 (8–19) | 0.01 |
Waist To Hip Ratio at Follow-Up | 0.84 (0.79–0.88) | 0.93 (0.90–0.97) | 0.0001 |
Waist To Hip Ratio at Baseline | 0.78 (0.74–0.81) | 0.85 (0.80–0.88) | 0.006 |
Fat Mass At Follow-Up (%) | 26.14 (22.1–30.5) | 43.4 (37.5–48.4) | <0.00001 |
Fat Mass At Baseline (%) | 27.1 (23.0–29.6) | 42 (37.0–46.5) | <0.00001 |
Glucose 0’ at Follow-up (mg/dL) | 89.5 (85–90) | 102 (96–107) | 0.00008 |
Glucose 0’ at Baseline (mg/dL) | 81.5 (77–86.1) | 86 (81–91) | 0.06 |
Glucose 120’ at Follow-Up (mg/dL) | 91.5 (77–99) | 125 (100–152) | 0.001 |
Glucose 120’ at Baseline (mg/dL) | 72.5 (66–83.9) | 100 (94–123) | 0.006 |
Mean Glucose at Follow-Up (mg/dL) | 100 (94–109.5) | 147 (123.75–150.75) | 0.00009 |
Mean Glucose at Baseline (mg/dL) | 94.79 (86.75–104.5) | 114.75 (102.25–125.75) | 0.005 |
Insulin 0’ at Follow-Up (uIU/mL) | 6.16 (5.09–8.20) | 16.33 (11.54–19.57) | 0.00002 |
Insulin 0’ at Baseline-Up (uIU/mL) | 9.7 (7.07–13.94) | 18.5 (11.70–25.34) | 0.02 |
Insulin 120’ at Follow-Up (uIU/mL) | 27.9 (18.09–31.82) | 75.73 (33.57–149.26) | 0.0009 |
Insulin 120’ at Baseline (uIU/mL) | 27.56 (14.58–53.75) | 84.67 (42.82–117.60) | 0.01 |
Mean Insulin at Follow-Up (uIU/mL) | 35.59 (28.91–45.61) | 88.04 (52.66–107.55) | 0.00006 |
Mean Insulin at Baseline (uIU/mL) | 44.31 (36.27–63.26) | 94.33 (67.47–116.93) | 0.0009 |
M-Clamp Value At Baseline (mg/kgffm/min) | 10.78 (8.71–12.13) | 5.83 (4.17–8.32) | 0.0002 |
Matsuda Index at Follow-Up | 6.27 (5.62–7.32) | 1.99 (1.7–3.06) | <0.00001 |
Matsuda Index at Baseline | 4.93 (4.02–7.15) | 2.45 (1.79–3.4) | 0.0007 |
HOMA-IR Score at Follow-Up | 1.36 (1.08–1.77) | 3.87 (2.71–5.07) | <0.00001 |
HOMA-IR Score at Baseline | 2.15 (1.35–2.66) | 3.98 (2.51–5.54) | 0.006 |
HOMA-%Β at Follow-Up | 86.13 (73.31–115.16) | 137.04 (95.96–192.38) | 0.009 |
HOMA-%Β at Baseline | 212.98 (164.77–288) | 254.01 (175.5–349.2) | NS |
Triglycerides at Follow-Up (mg/dL) | 57 (48–63) | 113 (83–186) | 0.00001 |
Triglycerides at Baseline (mg/dL) | 69.5 (48.6–82) | 118 (76–155) | 0.01 |
LDL-c at Follow-Up (mg/dL) | 99.4 (77.6–110) | 112.4 (103.8–132.2) | 0.006 |
LDL-c at Baseline (mg/dL) | 92.9 (78.2–105.18) | 99 (86–139.8) | NS |
HDL-c at Follow-Up (mg/dL) | 73.5 (69–100) | 50 (43–66) | 0.0007 |
HDL-c at Baseline (mg/dL) | 67.1 (58.2–74) | 53 (42–63) | 0.002 |
Systolic Blood Pressure At Follow-Up (mmHg) | 121 (110–124) | 126 (117–135) | 0.04 |
Systolic Blood Pressure At Baseline (mmHg) | 120 (110–120) | 125 (110–130) | NS |
Diastolic Blood Pressure At Follow-Up (mmHg) | 75 (65–78) | 79 (76–84) | 0.03 |
Diastolic Blood Pressure At Baseline (mmHg) | 72.5 (70–80) | 80 (70–80) | NS |
SHBG at Follow-up (nmol/l) | 56.71 (44.79–105.09) | 35.54 (23.36–66.32) | 0.02 |
SHBG at Baseline (nmol/l) | 60.85 (45.13–64.47) | 27.20 (20.03–38.88) | 0.0009 |
FAI at Follow-Up | 2.20 (1.36–5.98) | 2.80 (2.20–9.50) | NS |
FAI at Baseline | 4.11 (3.44–5.24) | 8.83 (4.05–10.73) | 0.04 |
17-OHP at Follow-Up (ng/mL) | 1.52 (1.25–1.72) | 1.05 (0.75–1.24) | 0.008 |
Parameters at the Baseline Examination | Parameters at the Follow-Up | ||
---|---|---|---|
BMI (kg/m2) | Waist Circumference (cm) | Body Fat (%) | |
BMI (kg/m2) | 0.94 *** | 0.88 *** | 0.85 *** |
Waist Circumference (cm) | 0.88 *** | 0.88 *** | 0.82 *** |
Fat Mass (%) | 0.89 *** | 0.85 *** | 0.87 *** |
Glucose 0’ (mg/dL) | 0.35 p = 0.05 | 0.32 p = 0.08 | 0.40 * |
Mean Glucose (mg/dL) | 0.42 * | 0.45 * | 0.51 ** |
Insulin 0’ (uIU/mL) | 0.51 ** | 0.51 ** | 0.60 *** |
Mean Insulin (uIU/mL) | 0.61 *** | 0.58 *** | 0.72 *** |
M-Clamp Value (mg/kgffm/min) | −0.68 *** | −0.65 *** | −0.70 *** |
Matsuda Index | −0.62 *** | −0.61 *** | −0.75 *** |
HOMA-IR Score | 0.59 *** | 0.59 *** | 0.66 *** |
Triglycerides (mg/dL) | 0.55 ** | 0.46 ** | 0.56 *** |
HDL-c (mg/dL) | −0.55 ** | −0.49 ** | −0.53 ** |
SHBG (nmol/l) | −0.52 ** | −0.43 * | −0.56 ** |
Characteristic | Baseline | Follow-Up | p-Value |
---|---|---|---|
Glucose 0’ (mg/dL) | 85 (80–89) | 94 (89–103) | <0.00001 |
Glucose 30’ (mg/dL) | 131 (123–152) | 144 (125–169) | 0.02 |
Glucose 60’ (mg/dL) | 108 (91.6–137) | 139 (97–166) | 0.003 |
Glucose 120’ (mg/dL) | 89 (70.5–102) | 100 (88–131) | 0.0006 |
Mean Glucose (mg/dL) | 103.25 (91.58–122) | 121.00 (99.75–147.25) | 0.0005 |
Matsuda Index | 3.64 (1.81–4.97) | 3.95 (1.83–5.98) | NS |
HOMA-IR score | 2.65 (1.65–4.57) | 2.12 (1.37–4.29) | NS |
HOMA-%β | 222.56 (169.70–346.50) | 109.31 (82.33–167.74) | <0.00001 |
Insulinogenic Index | 1.81 (1.10–2.65) | 1.15 (0.78–2.2) | 0.02 |
Insulin 0’ (µIU/mL) | 12.51 (8.66–20.80) | 8.64 (6.18–16.75) | 0.003 |
Insulin 30’ (µIU/mL) | 100 (68.16–126.37) | 70.09 (50.37–111.3) | 0.006 |
Insulin 60’ (µIU/mL) | 94 (55.14–159.2) | 88.33 (42.41–118.4) | NS |
Insulin 120’ (µIU/mL) | 48.8 (22.76–103.60) | 33.57 (25.82–94.52) | NS |
Mean Insulin (µIU/mL) | 64.7 (38.75–102.15) | 49.75 (35.62–90.72) | NS |
Matsuda-IR n (%) | 11 (35.4%) | 10 (32.2%) | NS |
HOMA-IR n (%) | 17 (54.8%) | 13 (41.9%) | NS |
Selected Baseline and Final Metabolic and Hormonal Parameters | Final Glucose and Markers of Insulin Resistance | |||||
---|---|---|---|---|---|---|
Glucose 0’ (mg/dL) | Glucose 120’ (mg/dL) | Mean Glucose (mg/dL) | Matsuda Index | HOMA-IR Score | HOMA-%β | |
Glucose 0’ at Baseline (mg/dL) | 0.47 ** | NS | NS | NS | 0.39 * | NS |
Glucose 120’ at Baseline (mg/dL) | 0.45 * | 0.52 ** | 0.49 ** | −0.40 * | 0.37 * | NS |
Mean glucose at Baseline (mg/dL) | 0.48 ** | 0.49 ** | 0.54 ** | −0.41 * | 0.38 * | NS |
Matsuda Index at Baseline | −0.56 ** | −0.53 ** | −0.59 *** | 0.75 *** | −0.71 *** | −0.63 *** |
HOMA-IR Score at Baseline | 0.49 ** | 0.36 * | 0.43 * | −0.67 *** | 0.69 *** | 0.48 ** |
HOMA-%β at Baseline | NS | NS | NS | −0.36 * | NS | 0.41 * |
M-clamp Value at Baseline (mg/kgffm/min) | −0.41 * | −0.66 *** | −0.64 *** | 0.71 *** | −0.68 *** | −0.63 *** |
BMI at Follow-Up (kg/m2) | 0.67 *** | 0.48 ** | 0.60 *** | −0.80 *** | 0.85 *** | 0.57 *** |
BMI at Baseline (kg/m2) | 0.53 ** | 0.41 * | 0.51 ** | −0.73 *** | 0.81 *** | 0.62 *** |
Waist Circumference at Follow-Up (cm) | 0.66 *** | 0.50 ** | 0.62 *** | −0.82 *** | 0.84 *** | 0.59 *** |
Waist Circumference at Baseline (cm) | 0.62 *** | 0.48 ** | 0.66 *** | −0.83 *** | 0.88 *** | 0.61 *** |
Fat Mass at Follow-Up (%) | 0.67 *** | 0.55 ** | 0.67 *** | −0.79 *** | 0.82 *** | 0.54 ** |
Fat mass at Baseline (%) | 0.62 *** | 0.48 ** | 0.63 *** | −0.73 *** | 0.78 *** | 0.50 ** |
Triglycerides at Follow-Up (mg/dL) | 0.68 *** | 0.52 p = 0.06 | 0.67 *** | −0.79 *** | 0.83 *** | 0.52 ** |
Triglycerides at Baseline (mg/dL) | 0.40 * | 0.33 p = 0.07 | 0.43 * | −0.46 ** | 0.59 *** | 0.43 * |
HDL-c at Follow-Up (mg/dL) | −0.61 *** | −0.35 p = 0.06 | −0.39 * | 0.55 ** | −0.65 *** | NS |
HDL-c at Baseline (mg/dL) | −0.48 ** | −0.34 p = 0.06 | −0.35 p = 0.05 | 0.50 ** | −0.62 *** | NS |
SHBG at Follow-Up (nmol/l) | −0.48 ** | NS | NS | 0.56 *** | −0.58 *** | −0.35 p = 0.06 |
SHBG at Baseline (nmol/l) | −0.42 * | −0.44 * | −0.51 ** | 0.55 ** | −0.60 *** | −0.44 * |
FAI at Follow-Up | 0.44 * | NS | NS | −0.45 * | 0.47 ** | NS |
FAI at Baseline | 0.39 * | 0.52 ** | 0.56 ** | NS | 0.36 p = 0.07 | NS |
Selected Baseline and Final Metabolic and Hormonal Parameters | Final Insulin | ||
---|---|---|---|
Insulin 0’ (µIU/mL) | Insulin 120’ (µIU/mL) | Mean Insulin (µIU/mL) | |
Insulin 0’ at Baseline (µIU/mL) | 0.62 *** | 0.52 ** | 0.61 *** |
Insulin 120’ at Baseline (µIU/mL) | 0.46 ** | 0.60 *** | 0.38 * |
Mean insulin at Baseline (µIU/mL) | 0.62 *** | 0.62 *** | 0.74 *** |
M-clamp Value at Baseline (mg/kgffm/min) | −0.71 *** | −0.67 *** | −0.67 *** |
BMI at Follow-Up (kg/m2) | 0.83 *** | 0.52 ** | 0.73 *** |
BMI at Baseline (kg/m2) | 0.80 *** | 0.45 * | 0.66 *** |
Waist circumference at Follow-Up (cm) | 0.83 *** | 0.57 *** | 0.75 *** |
Waist circumference at Baseline (cm) | 0.87 *** | 0.60 *** | 0.74 *** |
Fat mass at Follow-Up (%) | 0.78 *** | 0.61 *** | 0.71 *** |
Fat mass at Baseline (%) | 0.74 *** | 0.51 ** | 0.66 *** |
Triglycerides at Follow-Up (mg/dL) | 0.79 *** | 0.62 *** | 0.70 *** |
Triglycerides at Baseline (mg/dL) | 0.56 ** | 0.39 * | 0.38 * |
HDL-c at Follow-Up (mg/dL) | −0.56 ** | −0.45 * | −0.52 ** |
HDL-c at Baseline (mg/dL) | −0.56 ** | −0.39 * | −0.41 * |
SHBG at Follow-Up (nmol/l) | −0.51 ** | −0.50 ** | −0.57 *** |
SHBG at Baseline (nmol/l) | −0.57 *** | −0.46 ** | −0.46 ** |
FAI at Follow-Up | 0.42 * | 0.46 ** | 0.46 ** |
FAI at Baseline | 0.32 p = 0.08 | NS | NS |
Characteristic | Normal Glucose Tolerance (n = 17) | Prediabetes (n = 14) | p-Value |
---|---|---|---|
Age (years) | 34.7 (30.2–37.3) | 38.2 (34.4–43.8) | 0.07 |
BMI at Follow-Up (kg/m2) | 22.14 (20.83–24.8) | 32.58 (27.13–39.12) | 0.003 |
BMI at Baseline (kg/m2) | 21.86 (20.59–25.78) | 28.75 (25.61–36.29) | 0.007 |
Waist circumference at Follow-Up (cm) | 80 (75–90) | 107 (94–122) | 0.002 |
Waist circumference at Baseline (cm) | 71 (68–78) | 92.5 (80–103) | 0.0007 |
Fat mass at Follow-Up (%) | 27.7 (22.7–32.7) | 44.2 (33.9–48.4) | 0.002 |
Fat mass at Baseline (%) | 28 (24–32) | 41 (34.5–46.5) | 0.002 |
Glucose 0′ at Follow-Up (mg/dL) | 90 (87–91) | 103 (101–108) | <0.0001 |
Glucose 0′ at Baseline (mg/dL) | 80 (77–86) | 87 (83–91.7) | 0.006 |
Glucose 120′ at Follow-Up (mg/dL) | 95 (77–98) | 135 (118–159) | <0.0001 |
Glucose 120′ at Baseline (mg/dL) | 74 (69–88) | 101.5 (94–124) | 0.003 |
Mean glucose at Follow-Up (mg/dL) | 100.25 (95–109.5) | 147.88 (134.75–152) | <0.0001 |
Mean glucose at Baseline (mg/dL) | 98 (89.75–102.25) | 120.46 (110.50–126.75) | 0.002 |
Insulin 0′ at Follow-Up (uIU/mL) | 6.83 (5.52–8.45) | 16.22 (9.72–18.49) | 0.002 |
Insulin 0′ at Baseline (uIU/mL) | 10.53 (7.4–14.54) | 16.18 (11.7–24.48) | NS |
Insulin 120′ at Follow-Up (uIU/mL) | 26.85 (18.09–31.82) | 85.12 (45.86–149.26) | 0.0002 |
Insulin 120′ at Baseline (uIU/mL) | 29.21 (22.76–63.59) | 85.76 (42.82–120.06) | 0.04 |
Mean insulin at Follow-Up (uIU/mL) | 35.68 (33.24–49.75) | 71.44 (52.66–105.37) | 0.005 |
Mean insulin at Baseline (uIU/mL) | 52.93 (37.55–64.7) | 88.79 (66.63–111.23) | 0.03 |
M-clamp value at Baseline (mg/kgffm/min) | 9.61 (8.4–11.62) | 5.68 (4.15–8.44) | 0.01 |
Matsuda index at follow-up | 5.78 (5.2–7.19) | 2.07 (1.72–3.17) | 0.0004 |
Matsuda index at Baseline | 4.77 (3.64–7.1) | 2.47 (1.79–3.4) | 0.008 |
HOMA-IR score at follow-up | 1.48 (1.11–1.82) | 3.87 (2.42–5.06) | 0.0004 |
HOMA-IR score at Baseline | 2.24 (1.36–2.86) | 3.49 (2.51–5.07) | 0.04 |
HOMA-%β at follow-up | 95.96 (75.56–138.34) | 129.67 (90.31–178.16) | NS |
HOMA-%β at Baseline | 250.87 (169.7–346.5) | 201.54 (171–298.59) | NS |
HbA1c at Follow-Up (%) | 5.2 (5–5.4) | 5.3 (5.1–5.5) | NS |
Triglycerides at Follow-Up (mg/dL) | 58 (50–64) | 122 (74–210) | 0.0002 |
Triglycerides at Baseline (mg/dL) | 74 (51–86) | 126.5 (76–172) | 0.02 |
LDL-c at Follow-Up (mg/dL) | 103.2 (86–111.4) | 111.2 (103.8–132.2) | 0.04 |
LDL-c at Baseline (mg/dL) | 91.8 (78.2–100.8) | 109.7 (86.0–139.8) | NS |
HDL-c at Follow-Up (mg/dL) | 70 (66–85) | 47.5 (42–69) | 0.005 |
HDL-c at Baseline (mg/dL) | 59 (56–72) | 53 (42–66) | 0.04 |
SHBG at Follow-Up (nmol/l) | 55.93 (37.66–87.35) | 38.72 (23.36–66.32) | 0.08 |
SHBG at Baseline (nmol/l) | 54.09 (38.88–61.64) | 26.64 (18.40–42.90) | 0.02 |
FAI at Follow-up | 2.23 (1.36–3.90) | 5.4 (2.20–9.50) | 0.08 |
FAI at Baseline | 3.87 (3.44–5.24) | 9.84 (4.63–11.66) | 0.003 |
Covariates—Parameters Stated at the Beginning of the Follow-Up | OR | 95% CI for OR | p-Value | |
---|---|---|---|---|
Lower | Upper | |||
BMI (kg/m2) | 1.17 | 1.02 | 1.34 | 0.02 |
Waist Circumference (cm) | 1.09 | 1.02 | 1.16 | 0.01 |
Glucose 0’ (mg/dL) | 1.20 | 1.03 | 1.39 | 0.02 |
Glucose 120’ (mg/dL) | 1.07 | 1.02 | 1.13 | 0.008 |
Glucose 120’-0’ (mg/dL) | 1.06 | 1.01 | 1.11 | 0.02 |
Mean Glucose (mg/dL) | 1.10 | 1.03 | 1.18 | 0.005 |
Insulin 120’ (uIU/mL) | 1.02 | 1.003 | 1.04 | 0.02 |
Insulin 120’-0’ (uIU/mL) | 1.03 | 1.004 | 1.05 | 0.02 |
M-clamp Value (mg/kgffm/min) | 0.73 | 0.56 | 0.95 | 0.02 |
Triglycerides (mg/dL) | 1.02 | 1.004 | 1.05 | 0.02 |
HDL-c (mg/dL) | 0.94 | 0.88 | 0.99 | 0.04 |
FAI | 1.42 | 1.09 | 1.86 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacewicz-Święcka, M.; Kowalska, I. Changes in Metabolic Profile in the Women with a History of PCOS—A Long-Term Follow-Up Study. J. Clin. Med. 2020, 9, 3367. https://doi.org/10.3390/jcm9103367
Jacewicz-Święcka M, Kowalska I. Changes in Metabolic Profile in the Women with a History of PCOS—A Long-Term Follow-Up Study. Journal of Clinical Medicine. 2020; 9(10):3367. https://doi.org/10.3390/jcm9103367
Chicago/Turabian StyleJacewicz-Święcka, Małgorzata, and Irina Kowalska. 2020. "Changes in Metabolic Profile in the Women with a History of PCOS—A Long-Term Follow-Up Study" Journal of Clinical Medicine 9, no. 10: 3367. https://doi.org/10.3390/jcm9103367
APA StyleJacewicz-Święcka, M., & Kowalska, I. (2020). Changes in Metabolic Profile in the Women with a History of PCOS—A Long-Term Follow-Up Study. Journal of Clinical Medicine, 9(10), 3367. https://doi.org/10.3390/jcm9103367