Allogeneic Hematopoietic Transplantation for Multiple Myeloma in the New Drugs Era: A Platform to Cure
Abstract
:1. Introduction
2. Methods and Methods
3. First-Line Allogeneic Hematopoietic Cell Transplantation
4. Allogeneic Hematopoietic Cell Transplantation in the Relapsed Setting
5. Current Anti-Relapse Strategies after Allogeneic Stem Cell Transplant
6. Consolidation and Maintenance
7. Therapy at Relapse
8. Current Recommendations and Patient Selection
9. Future Perspectives
10. Summary Keypoints
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.G.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.C.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2013, 28, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Callander, N.; Ganguly, S.; Gul, Z.; Hamadani, M.; Costa, L.; Sengsayadeth, S.; Abidi, M.; Hari, P.; Mohty, M.; et al. Hematopoietic Stem Cell Transplantation for Multiple Myeloma: Guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- For the European Society for Blood and Marrow Transplantation (EBMT); Duarte, R.F.; Labopin, M.; Bader, P.; Basak, G.W.; Bonini, C.; Chabannon, C.; Corbacioglu, S.; Dreger, P.; Dufour, C.; et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2019. Bone Marrow Transplant. 2019, 54, 1525–1552. [Google Scholar]
- Kanate, A.S.; Majhail, N.S.; Savani, B.N.; Bredeson, C.; Champlin, R.E.; Crawford, S.; Giralt, S.A.; Lemaistre, C.F.; Marks, D.I.; Omel, J.L.; et al. Indications for Hematopoietic Cell Transplantation and Immune Effector Cell Therapy: Guidelines from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2020, 26, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- On behalf of the Plasma Cell Disorders Subcommittee of the European Society for Blood and Marrow Transplantation (EBMT); Auner, H.W.; Szydlo, R.; Hoek, J.; Goldschmidt, H.; Stoppa, A.M.; Morgan, G.J.; Moreau, P.; Attal, M.; Marit, G.; et al. Chronic Malignancies Working Party. Trends in autologous hematopoietic cell transplantation for multiple myeloma in Europe: Increased use and improved outcomes in elderly patients in recent years. Bone Marrow Transplant. 2015, 50, 209–215. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, A.; Fretham, C.; Lee, S.J.; Aurora, M.; Brunner, J.; Chhabra, S.; Devine, S.; Eapen, M.; Hamadani, M.; Hari, P.; et al. Current Use of and Trends in Hematopoietic Cell Transplantation in the United States. Biol. Blood Marrow Transplant. 2020, 26, e177–e182. [Google Scholar] [CrossRef] [PubMed]
- For the European Society for Blood and Marrow Transplantation (EBMT); Passweg, J.R.; Baldomero, H.; Basak, G.W.; Chabannon, C.; Corbacioglu, S.; Duarte, R.; Kuball, J.; Lankester, A.; Montoto, S.; et al. The EBMT activity survey report 2017: A focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transplant. 2019, 54, 1575–1585. [Google Scholar] [CrossRef] [Green Version]
- Gahrton, G.; Tura, S.; Ljungman, P.; Belanger, C.; Brandt, L.; Cavo, M.; Facon, T.; Grańena, A.; Gore, M.; Gratwohl, A.; et al. Allogeneic Bone Marrow Transplantation in Multiple Myeloma. N. Engl. J. Med. 1991, 325, 1267–1273. [Google Scholar] [CrossRef] [Green Version]
- Ringdén, O.; Shrestha, S.; Da Silva, P.P.S.; Zhang, M.-J.; Dispenzieri, A.; Remberger, M.; Kamble, R.; Freytes, C.O.; Gale, R.P.; Gibson, J.; et al. Effect of acute and chronic GVHD on relapse and survival after reduced-intensity conditioning allogeneic transplantation for myeloma. Bone Marrow Transplant. 2011, 47, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, M.L.; Siegel, D.S.; Vesole, D.H.; McKiernan, P.; Nyirenda, T.; Pecora, A.L.; Baker, M.; Goldberg, S.L.; Mato, A.; Goy, A.; et al. The Graft-Versus-Myeloma Effect: Chronic Graft-Versus-Host Disease but Not Acute Graft-Versus-Host Disease Prolongs Survival in Patients with Multiple Myeloma Receiving Allogeneic Transplantation. Biol. Blood Marrow Transplant. 2014, 20, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Mandigers, C.M.P.W.; Verdonck, L.F.; Meijerink, J.P.P.; Dekker, A.W.; Schattenberg, A.V.M.B.; Raemaekers, J.M.M. Graft-versus-lymphoma effect of donor lymphocyte infusion in indolent lymphomas relapsed after allogeneic stem cell transplantation. Bone Marrow Transplant. 2003, 32, 1159–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copelan, E.A. Hematopoietic Stem-Cell Transplantation. N. Engl. J. Med. 2006, 354, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Maloney, D.G.; Molina, A.J.; Sahebi, F.; Stockerl-Goldstein, K.E.; Sandmaier, B.M.; Bensinger, W.; Storer, B.; Hegenbart, U.; Somlo, G.; Chauncey, T.; et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003, 102, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Kroger, N.; Shimoni, A.; Schilling, G.; Schwerdtfeger, R.; Bornhauser, M.; Nagler, A.; Zander, A.R.; Heinzelmann, M.; Brand, R.; Gahrton, G.; et al. Unrelated stem cell transplantation after reduced intensity conditioning for patients with multiple myeloma relapsing after autologous transplantation. Br. J. Haematol. 2010, 148, 323–331. [Google Scholar] [CrossRef]
- Dhakal, B.; Vesole, D.H.; Hari, P.N. Allogeneic stem cell transplantation for multiple myeloma: Is there a future? Bone Marrow Transplant. 2016, 51, 492–500. [Google Scholar] [CrossRef]
- Mina, R.; Lonial, S. Is there still a role for stem cell transplantation in multiple myeloma? Cancer 2019, 125, 2534–2543. [Google Scholar] [CrossRef]
- Green, D.J.; Bensinger, W.I. A View from the Plateau: Is There a Role for Allogeneic Stem Cell Transplantation in the Era of Highly Effective Therapies for Multiple Myeloma? Curr. Hematol. Malign. Rep. 2017, 12, 61–67. [Google Scholar] [CrossRef]
- Barlogie, B.; Kyle, R.A.; Anderson, K.C.; Greipp, P.R.; Lazarus, H.M.; Hurd, D.D.; McCoy, J.; Moore, D.F., Jr.; Dakhil, S.R.; Lanier, K.S.; et al. Standard Chemotherapy Compared With High-Dose Chemoradiotherapy for Multiple Myeloma: Final Results of Phase III US Intergroup Trial S9321. J. Clin. Oncol. 2006, 24, 929–936. [Google Scholar] [CrossRef]
- Lokhorst, H.M.; Segeren, C.M.; Verdonck, L.F.; Van Der Holt, B.; Raymakers, R.; Van Oers, M.H.; Barge, R.M.; Schouten, H.C.; Westveer, P.H.; Steijaert, M.M.; et al. Partially T-Cell–Depleted Allogeneic Stem-Cell Transplantation for First-Line Treatment of Multiple Myeloma: A Prospective Evaluation of Patients Treated in the Phase III Study HOVON 24 MM. J. Clin. Oncol. 2003, 21, 1728–1733. [Google Scholar] [CrossRef]
- Giralt, S.; Aleman, A.; Anagnostopoulos, A.; Weber, D.; Khouri, I.; Anderlini, P.; Molldrem, J.; Ueno, N.T.; Donato, M.; Körbling, M.; et al. Fludarabine/melphalan conditioning for allogeneic transplantation in patients with multiple myeloma. Bone Marrow Transplant. 2002, 30, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröger, N.; Schwerdtfeger, R.; Kiehl, M.; Sayer, H.G.; Renges, H.; Zabelina, T.; Fehse, B.; Tögel, F.; Wittkowsky, G.; Kuse, R.; et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002, 100, 755–760. [Google Scholar] [CrossRef]
- Bruno, B.; Rotta, M.; Patriarca, F.; Mordini, N.; Allione, B.; Carnevale-Schianca, F.; Giaccone, L.; Sorasio, R.; Omedè, P.; Baldi, I.; et al. A Comparison of Allografting with Autografting for Newly Diagnosed Myeloma. N. Engl. J. Med. 2007, 356, 1110–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaccone, L.; Storer, B.; Patriarca, F.; Rotta, M.; Sorasio, R.; Allione, B.; Carnevale-Schianca, F.; Festuccia, M.; Brunello, L.; Omedè, P.; et al. Long-term follow-up of a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma. Blood 2011, 117, 6721–6727. [Google Scholar] [CrossRef] [Green Version]
- Rosiñol, L.; Perez-Simón, J.A.; Sureda, A.; De La Rubia, J.; De Arriba, F.; Lahuerta, J.J.; González, J.D.; Diaz-Mediavilla, J.; Hernández, B.; García-Frade, J.; et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood 2008, 112, 3591–3593. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Pasquini, M.C.; Logan, B.R.; Stadtmauer, E.A.; Vesole, D.H.; Alyea, E.P.; Antin, J.H.; Comenzo, R.L.; Goodman, S.; Hari, P.; et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): A phase 3 biological assignment trial. Lancet Oncol. 2011, 12, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Björkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Ebeksac, M.; Bosi, A.; et al. Tandem Autologous/Reduced-Intensity Conditioning Allogeneic Stem-Cell Transplantation Versus Autologous Transplantation in Myeloma: Long-Term Follow-Up. J. Clin. Oncol. 2011, 29, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Lokhorst, H.; Van Der Holt, B.; Cornelissen, J.; Kersten, M.; Van Oers, M.; Raymakers, R.; Minnema, M.; Zweegman, S.; Janssen, J.; Zijlmans, J.; et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood 2012, 119, 6219–6225. [Google Scholar] [CrossRef] [Green Version]
- On behalf of Deutsche Studiengruppe Multiples Myelom; Knop, S.; Engelhardt, M.; Liebisch, P.; Meisner, C.; Holler, E.; Metzner, B.; Peest, D.; Kaufmann, M.; Bunjes, D.; et al. Allogeneic transplantation in multiple myeloma: Long-term follow-up and cytogenetic subgroup analysis. Leukemia 2019, 33, 2710–2719. [Google Scholar] [CrossRef]
- Garban, F.; Attal, M.; Michallet, M.; Hulin, C.; Bourhis, J.H.; Yakoub-Agha, I.; Lamy, T.; Marit, G.; Maloisel, F.; Berthou, C.; et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006, 107, 3474–3480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.; Garban, F.; Attal, M.; Michallet, M.; Marit, G.; Hulin, C.; Benboubker, L.; Doyen, C.; Mohty, M.; Yakoub-Agha, I.; et al. Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma. Blood 2008, 112, 3914–3915. [Google Scholar] [CrossRef]
- Giralt, S.; Costa, L.J.; Maloney, D.; Krishnan, A.; Fei, M.; Antin, J.H.; Brunstein, C.; Geller, N.; Goodman, S.; Hari, P.; et al. Tandem Autologous-Autologous versus Autologous-Allogeneic Hematopoietic Stem Cell Transplant for Patients with Multiple Myeloma: Long-Term Follow-Up Results from the Blood and Marrow Transplant Clinical Trials Network 0102 Trial. Biol. Blood Marrow Transplant. 2020, 26, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Gahrton, G.; Iacobelli, S.; Björkstrand, B.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Carella, A.M.; Ebeksac, M.; et al. Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: Long-term results of the EBMT-NMAM2000 study. Blood 2013, 121, 5055–5063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passera, R.; Pollichieni, S.; Brunello, L.; Patriarca, F.; Bonifazi, F.; Montefusco, V.; Falda, M.; Montanari, M.; Guidi, S.; Giaccone, L.; et al. Allogeneic Hematopoietic Cell Transplantation from Unrelated Donors in Multiple Myeloma: Study from the Italian Bone Marrow Donor Registry. Biol. Blood Marrow Transplant. 2013, 19, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Zhang, M.-J.; Li, P.; Dispenzieri, A.; Milone, G.A.; Lonial, S.; Krishnan, A.; Maiolino, A.; Wirk, B.; Weiss, B.; et al. Trends in allogeneic stem cell transplantation for multiple myeloma: A CIBMTR analysis. Blood 2011, 118, 1979–1988. [Google Scholar] [CrossRef]
- Kröger, N.; Sayer, H.G.; Schwerdtfeger, R.; Kiehl, M.; Nagler, A.; Renges, H.; Zabelina, T.; Fehse, B.; Ayuk, F.; Wittkowsky, G.; et al. Unrelated stem cell transplantation in multiple myeloma after a reduced-intensity conditioning with pretransplantation antithymocyte globulin is highly effective with low transplantation-related mortality. Blood 2002, 100, 3919–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freytes, C.O.; Vesole, D.H.; LeRademacher, J.; Zhong, X.; Gale, R.P.; Kyle, R.A.; Reece, N.E.; Gibson, J.; Schouten, H.C.; McCarthy, P.L.; et al. Second transplants for multiple myeloma relapsing after a previous autotransplant—Reduced-intensity allogeneic vs. autologous transplantation. Bone Marrow Transplant. 2014, 49, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, F.; Einsele, H.; Spina, F.; Bruno, B.; Isola, M.; Nozzoli, C.; Nozza, A.; Sperotto, A.; Morabito, F.; Stuhler, G.; et al. Allogeneic Stem Cell Transplantation in Multiple Myeloma Relapsed after Autograft: A Multicenter Retrospective Study Based on Donor Availability. Biol. Blood Marrow Transplant. 2012, 18, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Castagna, L.; Mussetti, A.; DeVillier, R.; Dominietto, A.; Marcatti, M.; Milone, G.; Maura, F.; De Philippis, C.; Bruno, B.; Furst, S.; et al. Haploidentical Allogeneic Hematopoietic Cell Transplantation for Multiple Myeloma Using Post-Transplantation Cyclophosphamide Graft-versus-Host Disease Prophylaxis. Biol. Blood Marrow Transplant. 2017, 23, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Gröger, M.; Gagelmann, N.; Wolschke, C.; Von Pein, U.-M.; Klyuchnikov, E.; Christopeit, M.; Zander, A.; Ayuk, F.; Kröger, N. Long-Term Results of Prophylactic Donor Lymphocyte Infusions for Patients with Multiple Myeloma after Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2018, 24, 1399–1405. [Google Scholar] [CrossRef]
- Deol, A.; Lum, L.G. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treat. Rev. 2010, 36, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Donk, N.W.C.J.; Kröger, N.; Hegenbart, U.; Corradini, P.; San-Miguel, J.F.; Goldschmidt, H.; Perez-Simon, J.A.; Zijlmans, M.; Raymakers, R.A.; Montefusco, V.; et al. Prognostic factors for donor lymphocyte infusions following non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant. 2006, 37, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montefusco, V.; Spina, F.; Patriarca, F.; Offidani, M.; Bruno, B.; Montanari, M.; Mussetti, A.; Sperotto, A.; Scortechini, I.; Dodero, A.; et al. Bortezomib Plus Dexamethasone Followed by Escalating Donor Lymphocyte Infusions for Patients with Multiple Myeloma Relapsing or Progressing after Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2013, 19, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Palombella, V.J.; Sausville, E.A.; Johnson, J.; Destree, A.; Lazarus, D.D.; Maas, J.; Pien, C.S.; Prakash, S.; Elliott, P.J. Proteasome inhibitors: A novel class of potent and effective antitumor agents. Cancer Res. 1999, 59, 2615–2622. [Google Scholar]
- Al-Homsi, A.S.; Feng, Y.; Duffner, U.; Al Malki, M.M.; Goodyke, A.; Cole, K.; Muilenburg, M.; Abdel-Mageed, A. Bortezomib for the prevention and treatment of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Exp. Hematol. 2016, 44, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Mohty, M.; Brissot, E.; Savani, B.N.; Gaugler, B. Effects of Bortezomib on the Immune System: A Focus on Immune Regulation. Biol. Blood Marrow Transplant. 2013, 19, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J.; Maloney, D.G.; Storer, B.E.; Sandmaier, B.M.; Holmberg, L.A.; Becker, P.S.; Fang, M.; Martin, P.J.; Georges, G.E.; Bouvier, M.E.; et al. Tandem autologous/allogeneic hematopoietic cell transplantation with bortezomib maintenance therapy for high-risk myeloma. Blood Adv. 2017, 1, 2247–2256. [Google Scholar] [CrossRef]
- Leblanc, R.; Ahmad, I.; Terra, R.; Landais, S.; Nkoué, C.; Sebag, M.; Lemieux-Blanchard, É.; Bambace, N.; Bernard, L.; Cohen, S.; et al. Profound MRD negativity rates after frontline tandem autologous-allogeneic stem cell transplantation followed by bortezomib maintenance in high-risk or young myeloma patients. Clin. Lymphoma Myeloma Leuk. 2019, 19, e41–e42. [Google Scholar] [CrossRef]
- Segura, M.R.; Martin, J.; Jiménez, J.L. Phase II Clinical Trial (EMN-ALLORIC 2010) of Allogeneic Stem Cell Transplantation for High-risk Multiple Myeloma. In Proceedings of the 25th EHA Congress, Frankfurt, Germany, 11–21 June 2020. Abstract #2676. [Google Scholar]
- El-Cheikh, J.; Michallet, M.; Nagler, A.; De Lavallade, H.; Nicolini, F.E.; Shimoni, A.; Faucher, C.; Sobh, M.; Revesz, D.; Hardan, I.; et al. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica 2008, 93, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azab, A.K.; Muz, B.; Ghazarian, R.N.; Ou, M.; Luderer, M.J.; Kusdono, H.D. Spotlight on ixazomib: Potential in the treatment of multiple myeloma. Drug Des. Dev. Ther. 2016, 217, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Fink, E.C.; Ebert, B.L. The novel mechanism of lenalidomide activity. Blood 2015, 126, 2366–2369. [Google Scholar] [CrossRef] [Green Version]
- Kneppers, E.; Van Der Holt, B.; Kersten, M.-J.; Zweegman, S.; Meijer, E.; Huls, G.; Cornelissen, J.J.; Janssen, J.J.; Huisman, C.; Cornelisse, P.B.; et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: Results of the HOVON 76 Trial. Blood 2011, 118, 2413–2419. [Google Scholar] [CrossRef] [PubMed]
- Alsina, M.; Becker, P.S.; Zhong, X.; Adams, A.; Hari, P.; Rowley, S.; Stadtmauer, E.A.; Vesole, D.H.; Logan, B.; Weisdorf, D.; et al. Lenalidomide Maintenance for High-Risk Multiple Myeloma after Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2014, 20, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Wolschke, C.; Stübig, T.; Hegenbart, U.; Schönland, S.; Heinzelmann, M.; Hildebrandt, Y.; Ayuk, F.; Atanackovic, D.; Dreger, P.; Zander, A.; et al. Postallograft lenalidomide induces strong NK cell–mediated antimyeloma activity and risk for T cell–mediated GvHD: Results from a phase I/II dose-finding study. Exp. Hematol. 2013, 41, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Montefusco, V.; Crippa, C.; Citro, A.; Sammassimo, S.; Olivero, B.; Gentili, S.; Galli, M.; Guglielmelli, T.; Rossi, D.; et al. Lenalidomide can induce long-term responses in patients with multiple myeloma relapsing after multiple chemotherapy lines, in particular after allogeneic transplant. Leuk. Lymphoma 2011, 52, 1262–1270. [Google Scholar] [CrossRef]
- Giaccone, L.; Evangelista, A.; Patriarca, F.; Sorasio, R.; Pini, M.; Carnevale-Schianca, F.; Festuccia, M.; Brunello, L.; Zallio, F.; Maffini, E.; et al. Impact of New Drugs on the Long-Term Follow-Up of Upfront Tandem Autograft–Allograft in Multiple Myeloma. Biol. Blood Marrow Transplant. 2018, 24, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Coman, T.; Bachy, E.; Michallet, M.; Socié, G.; Uzunov, M.; Bourhis, J.H.; Lapusan, S.; Brebion, A.; Vigouroux, S.; Maury, S.; et al. Lenalidomide as salvage treatment for multiple myeloma relapsing after allogeneic hematopoietic stem cell transplantation: A report from the French Society of Bone Marrow and Cellular Therapy. Haematologica 2013, 98, 776–783. [Google Scholar] [CrossRef]
- Bensinger, W.I.; Green, D.J.; Burwick, N.; Becker, P.S. A prospective study of lenalidomide monotherapy for relapse after Allo-SCT for multiple myeloma. Bone Marrow Transplant. 2014, 49, 492–495. [Google Scholar] [CrossRef]
- Ritchie, D.; Colonna, M. Mechanisms of Action and Clinical Development of Elotuzumab: Development of Elotuzumab in Myeloma. Clin. Transl. Sci. 2018, 11, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S.; Cohen, A.D.; Pazina, T. Mechanisms of NK Cell Activation and Clinical Activity of the Therapeutic SLAMF7 Antibody, Elotuzumab in Multiple Myeloma. Front. Immunol. 2018, 9, 2551. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Tsukada, N.; Nashimoto, J.; Uto, Y.; Miyazaki, K.; Ogura, M.; Yoshiki, Y.; Abe, Y.; Okazuka, K.; Ishida, T.; et al. [Elotuzumab treatment for a multiple myeloma patient relapsing after allogenic stem cell transplantation]. Rinsho Ketsueki 2019, 60, 1635–1640. [Google Scholar] [PubMed]
- Van De Donk, N.W.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018, 9, 2134. [Google Scholar] [CrossRef] [PubMed]
- Klyuchnikov, E.; Von Pein, U.E.; Ayuk, F. Daratumumab Is an Effective and Safe Salvage Therapy in Relapsed/Refractory Patients with Multiple Myeloma After Allogeneic Stem Cell Transplantation. In Proceedings of the 23rd EHA Congress, Stockholm, Sweden, 14–17 June 2017. [Google Scholar]
- Gonzalez-Rodriguez, A.P.; Lopez-Corral, L.; Bermudez, A. Efficacy and Tolerability of Daratumumab After Allogeneic Transplantation for Heavily Treated Multiple Myeloma. In Proceedings of the 23rd EHA Congress, Stockholm, Sweden, 14–17 June 2017. Abstract #E1286. [Google Scholar]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef]
- Smith, M.; Zakrzewski, J.; James, S.; Sadelain, M. Posttransplant chimeric antigen receptor therapy. Blood 2018, 131, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Sedykh, S.E.; Prinz, V.V.; Buneva, V.N.; Nevinsky, G.A. Bispecific antibodies: Design, therapy, perspectives. Drug Des. Dev. Ther. 2018, 12, 195–208. [Google Scholar] [CrossRef] [Green Version]
- De Koning, C.; Plantinga, M.; Besseling, P.; Boelens, J.J.; Nierkens, S. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children. Biol. Blood Marrow Transplant. 2016, 22, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Smaglo, B.G.; Aldeghaither, D.; Weiner, L.M. The development of immunoconjugates for targeted cancer therapy. Nat. Rev. Clin. Oncol. 2014, 11, 637–648. [Google Scholar] [CrossRef] [Green Version]
- BMT CTN. Protocol 1302. 2020. Available online: https://web.emmes.com/study/bmt2/protocol/1302_protocol/BMT%20CTN%201302%20MM%20Synopsis%20v3.0.pdf (accessed on 3 September 2020).
- Montefusco, V.; Mussetti, A.; Rezzonico, F.; Maura, F.; Pennisi, M.; De Philippis, C.; Capecchi, M.; Corradini, P. Allogeneic stem cell transplantation and subsequent treatments as a comprehensive strategy for long-term survival of multiple myeloma patients. Bone Marrow Transplant. 2017, 52, 1602–1608. [Google Scholar] [CrossRef]
- Chhabra, S.; Szabo, A.; Glisch, C.; George, G.; Narra, R.K.; Harrington, A.; Jerkins, J.H.; D’Souza, A.; Dhakal, B.; Pasquini, M.C.; et al. Relapse after Allogeneic Hematopoietic Cell Transplantation for Multiple Myeloma: Survival Outcomes and Factors Influencing Them. Biol. Blood Marrow Transplant. 2020, 26, 1288–1297. [Google Scholar] [CrossRef]
- Giralt, S.; Garderet, L.; Durie, B.G.M.; Cook, G.; Gahrton, G.; Bruno, B.; Hari, P.; Lokhorst, H.; McCarthy, P.; Krishnan, A.; et al. American Society of Blood and Marrow Transplantation, European Society of Blood and Marrow Transplantation, Blood and Marrow Transplant Clinical Trials Network, and International Myeloma Working Group Consensus Conference on Salvage Hematopoietic Cell Transplantation in Patients with Relapsed Multiple Myeloma. Biol. Blood Marrow Transplant. 2015, 21, 2039–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, P.L.; Holstein, S.A.; Petrucci, M.T.; Richardson, P.G.; Hulin, C.; Tosi, P.; Bringhen, S.; Musto, P.; Anderson, K.C.; Caillot, D.; et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3279–3289. [Google Scholar] [CrossRef] [PubMed]
- Sahebi, F.; Garderet, L.; Kanate, A.S.; Eikema, D.-J.; Knelange, N.S.; Alvelo, O.F.D.; Koc, Y.; Blaise, D.; Bashir, Q.; Moraleda, J.M.; et al. Outcomes of Haploidentical Transplantation in Patients with Relapsed Multiple Myeloma: An EBMT/CIBMTR Report. Biol. Blood Marrow Transplant. 2019, 25, 335–342. [Google Scholar] [CrossRef] [Green Version]
Main Prospective Studies Conducted to Evaluate the Effectiveness of First-Line alloHCT in MM Patients. | ||||||||
---|---|---|---|---|---|---|---|---|
Reference | Timing | N Total Number of Patients | Study Design | Conditioning | OS | RFS | NRM | Conclusion |
Bruno et al., 2007 [24]. | 1994–2004 | 245 | Intermediate and high-risk MM patients Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | TBI 2 Gy vs. MEL 100–200 mg/m2 | Median 80 vs. 54 months (p = 0.01) | Median 35 vs. 29 months (p = 0.02) | 2y NRM 6% vs 1% (p = 0.09) | PFS and OS were superior in patients undergoing alloHCT. TRM did not differ between both groups. Long-term analysis was published by Giaccone et al. in 2001 confirming results published in 2007. |
58 | ||||||||
Garban et al., 2006 [25]. | 2000–2004 | 284 | Intermediate and high-risk MM patients Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | Flu-Bu-ATG vs. MEL 220 mg/m2 +/− antiIL-6 | Median 34 vs. 48 months (p = 0.07) | Median 19 vs. 22 months (p = 0.58) | 11% | No benefit to alloHCT Long-term results published by Mureau et al. in 2008 supporting results published in 2006. |
65 | ||||||||
Rosiñol et al., 2008 [26]. | 1999–2004 | 110 | Patients failing to achieve near CR Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | Flu-MEL vs. MEL 200 mg/m2 | Median NR vs. 58 months (p = 0.9) | Median 20 vs. 26 months (p = 0.4) | NRM 16% vs. 5% (p = 0.07) | Higher CR rate after allotransplant but no survival benefit |
25 | ||||||||
Krishnan et al., 2011 [27]. | 2003–2007 | 710 | Intermediate/high-risk MM patients Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | TBI 2 Gy vs. MEL 200 mg/m2 | 3 years OS 77% vs. 80% (p = 0.191) | 3 yr PFS 43% vs. 46% (p = 0.671) | 3years NRM 11% vs. 4%(p < 0.001) | No benefit to allotransplant in this study Long-term results published by Giralt et al. in 2020 showed a significant durable reduction in risk of relapse and better 6-year PFS for alloHCT patients. |
226 | ||||||||
Björkstrand et al., 2011 [28]. | 2001–2005 | 357 | Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | Flu–TBI 2 Gy vs. MEL 200 mg/m2 | 8years OS 49% vs. 39% (p = 0.03) | 8years PFS 22% vs. 12% (p = 0.02) | 13% vs. 3% (p = 0.02) | Allotransplant correlated with lower risk of relapse and improved PFS. Long-term analysis was conducted and published by Gahrton et al. in 2013. |
108 | ||||||||
Lokhorst et al. [29]. | 2003–2005 | 260 | Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | TBI 2 Gy vs. MEL 200 mg/m2 | 6years 55% vs. 55% (p = 0.19) | 6years 28% vs. 22% (p = 0.68) | 6years NRM 16% vs. 3% (p < 0.01) | No benefit to having a related donor but allotransplant was by center preference. Relapse lower for those with donors |
122 | ||||||||
Knop et al., 2019 [30]. | 2001–2007 | 381 | High-risk MM with deletion of del13q Post-induction and autoHCT followed by alloHCT vs. autoHCT based on MRD availability | Flu-MEL vs. MEL 200 mg/m2 | Median 70.2 vs. 71.8 months (p = 0.856) | Median 34.5 vs. 21.8 months (p = 0.003) | 2years 14.3% vs. 4.1%; (p = 0.008) | Largest trial in high-risk patients and with unrelated donors. PFS and OS was superior in patients treated with alloHCT |
135 |
Reference | Timing | N Total n Allo | Study Design | Conditioning | OS | PFS | TRM | Conclusion |
---|---|---|---|---|---|---|---|---|
Kroger et al., 2002 [37]. | 2000–2002 | 21 | Single-arm prospective study AlloHCT using unrelated donors after in relapsed MM patients | Flu-MEL-ATG. | 2 years OS 74% | 2 years PFS 53% | 1 year TRM 26% | Feasibly or alloHCT using unrelated donors in MM patients |
Freytes et al., 2014 [38]. | 1995–2008 | 289 | Retrospective comparative analysis AutoHCT vs. alloHCT in relapsed MM patients after induction treatment | RIC alloHCT Multiple conditioning regimens | 3 years OS 46% vs. 12% (p < 0.001) | 3 years PFS 20% vs. 6% (p = 0.038) | 1 year TRM 2% vs. 13%, (p = 0.07) | AlloHCT was associated with higher TRM and lower survival than autoHCT TRM was higher in patients undergoing alloHCT |
152 | ||||||||
Patriarca et al., 2012 [39]. | 2002–2008 | 169 | Single-arm retrospective descriptive analysis AlloHCT after relapse in patients prior treated with autoHCT | RIC alloHCT Multiple conditioning regimens | 2 years OS 53% vs. 54% (p = 0.329) | 2 years PFS 18% vs. 42% (p < 0.001) | 2 years TRM 22% vs. 1%, (p = 0.07) | PFS benefit of salvage treatment with novel drugs followed by RIC alloHCT in relapsed MM TRM was higher in patients undergoing alloHCT |
169 | ||||||||
Passera et al., 2013 [35]. | 2000–2009 | 196 | Single-arm retrospective analysis. AlloHCT using unrelated donors in relapsed MM Study from the Italian Bone Marrow Donor Registry | RIC alloHCT Multiple conditioning regimens | 3 years OS 40% | 3 years PFS 22% | 5 years TRM 33.2% | TRM was comparable between alloHCT using different intensity of preparative regimens |
196 |
Drugs | Anti-Myeloma Mechanism of Action | Possible Immunological Synergy after alloHCT | Potential Clinical Use |
---|---|---|---|
Donor lymphocyte infusion | DLIs are lymphocytes with polyclonal TCR repertoire. Donor T cells can recognize foreign antigens and different HLA molecules on the recipient tumor and non-tumor cells [42]. | DLIs can be used to boost donor immune system after transplant. An increased GVHD is an expected risk of this therapy. | Maintenance/consolidation: acute GVHD incidence of 33% [41]. Relapse: responses between 30–60%, but GVHD incidence is a concern [43,44]. |
Bortezomib | Induces proteasome 20S inhibition with increased cellular levels of proapoptotic proteins. Additionally, it induces G2-M phase cell cycle arrest and apoptosis [45]. | Impedes degradation of IkB-alpha and its dissociation from NF-kB, blocking NF-kB activation at lymphocytes and dendritic cell level [46,47]. Anti-GVHD effect with possible reduction in alloHCT related mortality. | Maintenance/consolidation: acceptable rate of GVHD [48,49,50]. Relapse Response rate up to 70%, but limited follow-up [44,51]. |
Ixazomib | Same as bortezomib, but oral route of administration [52]. | Same as bortezomib, but oral route of administration [52]. | Anti-GVHD effect, maintenance treatment after alloHCT for high-risk MM high-risk patients. Ongoing phase 2 trial [26]. |
Lenalidomide | Different mechanisms: (1) degradation of IKZF1 and IKZF3 which are essential for B-cell differentiation and MM cells survival; (2) increased IL2 transcription related to IKZF3 (IL2 transcriptional repressor). This could favor proliferation of NK, NKT and CD4+ T cells [53]. | Immunomodulatory properties of lenalidomide could enhance graft-versus-tumor effect. However, at high doses, it could also increase GVHD incidence [54]. | Maintenance/consolidation: acute GVHD induction in 30–40% of cases leading to study discontinuation [54,55,56]. Relapse: response rate between 50–80%, time from alloHCT related to GVHD incidence [57,58,59,60]. |
Elotuzumab | Humanized IgG1 anti-SLAMF7 monoclonal antibody. Dual mechanism of action: (1) activation of NK cells and increased granzyme B release, (2) antibody-dependent cellular cytotoxicity. Furthermore, additional SLAMF7 positive immune system cells (CD8+ T cells, monocytes, dendritic cells) are expected to be activated in a antitumor sense [61,62]. | Having a new immune system which has not been inhibited or exhausted from myeloma, could increase the efficacy of elotuzumab in the post-alloHCT setting. NK cells are expected to recover in the first months post-transplant, and their antitumor effect has already been reported for other hematological malignancies in this setting. Theoretical increased GVHD risk | Case reports in association with lenalidomide/dexamethasone [63]. |
Daratumumab and other CD38 monoclonal antibodies | Direct antitumor effect through Fc-dependent immune effector mechanisms (complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis. Indirect antitumor effect through elimination of CD38 expressing immune system cells (Treg cells, Breg cells, myeloid-derived suppressor cells) [64]. | A new marrow microenvironment could favor the effect of daratumumab having less anti-apoptotic molecules such as survinin. This mechanism has been described as a resistance mechanism for daratumumab. Theoretical increased GVHD risk [64]. | Relapse: promising responses (around 50–60%) and acceptable toxicity, but preliminary data [65,66]. |
Chimeric Antigen Receptor T cells | CAR T cells directed against tumor antigen (e.g., B cell maturation antigen, BCMA) enable tumor-killing by means of MHC-unrestricted effect. This is mediated by the binding of a single-chain variable fragment to the tumor target antigen. Since the chimeric receptor contained a costimulation molecule, no other binding s are necessary to activate their effector function [67]. | Activation of CAR T cells is independent from MHC complex and costimulatory molecules. This could be beneficial in the context of an immunesuppressed environment such as the post-transplant setting. However, the concomitant use of immunesuppressors could limit the use of CAR T cells in the early post-transplant period. T-cell depletion strategies which reduce the use of post-transplant immunesuprpessors could be useful when planning post-transplant CART. GVHD risk is low [68]. | No current clinical trials are investigating this strategy |
Bispecific antibodies | Classical bispecific antibodies in oncology are composed by one antigen binding site against CD3 receptor (which activates T lymphocytes), and the other binds monovalently or bivalently to tumor antigens (e.g., BCMA). The union of T lymphocytes with tumor, favors the cytotoxic effect of T cells with subsequent tumor cell destruction [69]. | The advantage of this class of drugs is their off-the shelf use. Contrary to CAR T, they rely on an intact immune system. This could represent an issue in the post-transplant setting where CD8+ T cells are expected to recover after 2-8 months and CD4+ T cells after 4–12 months [70]. | No current clinical trials are investigating this strategy |
Immunoconjugates | Immunoconjugates are constituted by 3 components. (1) a monoclonal antibody which binds to a target antigen (e.g., BCMA); (2) an effector molecule with cytotoxic effect (e.g., mafodotin); (3) a “linker” molecule which release the effector molecule to the cancer cell and not to off-target sites [71]. | The antitumor effect relies mostly on the cytotoxic effector molecule, and not to monoclonal antibodies related cytotoxic effects. This is an advantage in the post-transplant setting where the immune system is generally suppressed for the first months. | No current clinical trials are investigating this strategy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mussetti, A.; Salas, M.Q.; Montefusco, V. Allogeneic Hematopoietic Transplantation for Multiple Myeloma in the New Drugs Era: A Platform to Cure. J. Clin. Med. 2020, 9, 3437. https://doi.org/10.3390/jcm9113437
Mussetti A, Salas MQ, Montefusco V. Allogeneic Hematopoietic Transplantation for Multiple Myeloma in the New Drugs Era: A Platform to Cure. Journal of Clinical Medicine. 2020; 9(11):3437. https://doi.org/10.3390/jcm9113437
Chicago/Turabian StyleMussetti, Alberto, Maria Queralt Salas, and Vittorio Montefusco. 2020. "Allogeneic Hematopoietic Transplantation for Multiple Myeloma in the New Drugs Era: A Platform to Cure" Journal of Clinical Medicine 9, no. 11: 3437. https://doi.org/10.3390/jcm9113437
APA StyleMussetti, A., Salas, M. Q., & Montefusco, V. (2020). Allogeneic Hematopoietic Transplantation for Multiple Myeloma in the New Drugs Era: A Platform to Cure. Journal of Clinical Medicine, 9(11), 3437. https://doi.org/10.3390/jcm9113437