Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment Protocols and L-PRF Preparation
2.2. PBM Parameters
2.3. Assessment of Treatment Outcome
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AAOMS. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J. Oral Maxillofac. Surg. 2007, 65, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Assael, L.A.; Landesberg, R.; Marx, R.E.; Mehrotra, B.; AAOMS. American Association of Oral and Maxillofacial Surgeons Position Paper on Bisphosphonate-Related Osteonecrosis of the Jaws—2009 Update. J. Oral Maxillofac. Surg. 2009, 67, 2–12. [Google Scholar] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F.; AAOMS. American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw—2014 Update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef]
- Marx, R.E. Pamidronate (Aredia) and zoledronate (Zometa) induced avas-cular necrosis of the jaws: A growing epidemic. J. Oral Maxillofac. Surg. 2003, 61, 1115–1117. [Google Scholar] [CrossRef]
- Aghaloo, T.L.; Felsenfeld, A.L.; Tetradis, S. Osteonecrosis of the jaw in a patient on Denosumab. J. Oral Maxillofac. Surg. 2010, 68, 959–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Dodson, T.B. The Frequency of Medication-related Osteonecrosis of the Jaw and its Associated Risk Factors. Oral Maxillofac. Surg. Clin. North Am. 2015, 27, 509–516. [Google Scholar] [CrossRef]
- Miksad, R.A.; Lai, K.C.; Dodson, T.B.; Woo, S.B.; Treister, N.S.; Akinyemi, O.; Bihrle, M.; Maytal, G.; August, M.; Gazelle, G.S.; et al. Quality of life implications of bisphosphonate-associated osteonecrosis of the jaw. Oncologist 2011, 16, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.; Mohsen, A.; Rossi, A.F.; Palaia, G.; Rocchetti, F.; Cassoni, A.; Valentini, V.; Ottolenghi, L.; Polimeni, A.; Romeo, U. Does Medication-Related Osteonecrosis of the Jaw Influence the Quality of Life of Cancer Patients? Biomedicines 2020, 8, 95. [Google Scholar] [CrossRef]
- AlDhalaan, N.A.; BaQais, A.; Al-Omar, A. Medication-related Osteonecrosis of the Jaw: A Review. Cureus 2020, 10, e6944. [Google Scholar] [CrossRef] [Green Version]
- Comas-Calonge, A.; Figueiredo, R.; Gay-Escoda, C. Surgical treatment vs. conservative treatment in intravenous bisphosphonate-related osteonecrosis of the jaws. Systematic review. J. Clin. Exp. Dent. 2017, 9, e302–e307. [Google Scholar] [CrossRef] [PubMed]
- Migliorati, C.A.; Woo, S.B.; Hewson, I.; Barasch, A.; Elting, L.S.; Spijkervet, F.K.; Brennan, M.T.; Bisphosphonate Osteonecrosis Section, Oral Care Study Group, Multinational Association of Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A systematic review of bisphosphonate osteonecrosis (BON) in cancer. Support. Care Cancer 2010, 18, 1099–1106. [Google Scholar] [CrossRef]
- Edwards, B.J.; Hellstein, J.W.; Jacobsen, P.L.; Kaltman, S.; Mariotti, A.; Migliorati, C.A.; American Dental Association Council on Scientific Affairs Expert Panel on Bisphosphonate-Associated Osteonecrosis of the Jaw. Updated recommendations for managing the care of patients receiving oral bisphosphonate therapy: An advisory statement from the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 2008, 139, 1674–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Lozano, F.J.; Oñate-Sánchez, R.E. Treatment of osteonecrosis of the jaw related to bisphosphonates and other antiresorptive agents. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e595–e600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus. J. Bone. Minr. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, P.; Merigo, E.; Meleti, M.; Manfredi, M.; Fornaini, C.; Nammour, S.; Mergoni, G.; Sarraj, A.; Bagan, J.V. Conservative surgical management of stage I bisphosphonate-related osteonecrosis of the jaw. Int. J. Dent. 2014, 2014, 107690. [Google Scholar] [CrossRef] [Green Version]
- Raccomandazioni Clinico-Terapeutiche su Osteonecrosi Delle Ossa Mascellari Associata a Bifosfonati e Sua Prevenzione. Available online: https://www.sipmo.it/wp-content/uploads/2014/07/RaccomandazioniPrevenzCuraOsteonecrosiMascellari.pdf (accessed on 26 October 2020).
- Rupel, K.; Ottaviani, G.; Gobbo, M.; Contardo, L.; Tirelli, G.; Vescovi, P.; Di Lenarda, R.; Biasotto, M. A systematic review of therapeutical approaches in bisphosphonates-related osteonecrosis of the jaw (BRONJ). Oral Oncol. 2014, 50, 1049–1057. [Google Scholar] [CrossRef]
- De Souza Tolentino, E.; De Castro, T.F.; Michellon, F.C.; Passoni, A.C.C.; Ortega, L.J.A.; Iwaki, L.C.V.; Da Silva, M.C. Adjuvant therapies in the management of medication-related osteonecrosis of the jaws: Systematic review. Head Neck 2019, 41, 4209–4228. [Google Scholar] [CrossRef]
- Latifyan, S.; Genot, M.T.; Klastersky, J. Bisphosphonate-related osteonecrosis of the jaw: A review of the potential efficacy of low-level laser therapy. Support. Care Cancer 2016, 24, 3687–3693. [Google Scholar] [CrossRef]
- Basso, F.G.; Oliveira, C.F.; Kurachi, C.; Hebling, J.; Costa, C.A. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med. Sci. 2013, 28, 367–374. [Google Scholar] [CrossRef]
- Romeo, U.; Galanakis, A.; Marias, C.; Vecchio, A.D.; Tenore, G.; Palaia, G.; Vescovi, P.; Polimeni, A. Observation of pain control in patients with bisphosphonate-induced osteonecrosis using low level laser therapy: Preliminary results. Photomed. Laser Surg. 2011, 29, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Del Pilar Rodríguez-Sánchez, M.; Statkievicz, C.; De Mello-Neto, J.M.; Toro, L.F.; Bassi, A.P.F.; Garcia, V.G.; Theodoro, L.H.; Ervolino, E. The Effectiveness of the Low-Level Laser, Antibiotic and Surgical Therapy in the Treatment of Medication-Related Osteonecrosis of the Jaws: A Case Report. J. Lasers Med. Sci. 2020, 11, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Caruana, A.; Savina, D.; Macedo, J.P.; Soares, S.C. From Platelet-Rich Plasma to Advanced Platelet-Rich Fibrin: Biological Achievements and Clinical Advances in Modern Surgery. Eur. J. Dent. 2019, 13, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Borie, E.; Oliví, D.G.; Orsi, I.A.; Garlet, K.; Weber, B.; Beltrán, V.; Fuentes, R. Platelet-rich fibrin application in dentistry: A literature review. Int. J. Clin. Exp. Med. 2015, 8, 7922–7929. [Google Scholar]
- Saluja, H.; Dehane, V.; Mahindra, U. Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann. Maxillofac. Surg. 2011, 1, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Tocaciu, S.; Breik, O.; Lim, B.; Angel, C.; Rutherford, N. Diagnostic dilemma between medication-related osteonecrosis and oral squamous cell carcinoma in a mandibular lytic lesion. Br. J. Oral Maxillofac. Surg. 2017, 55, e53–e57. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Pinto, N.R.; Quirynen, M.; Ghanaati, S. Standardization of relative centrifugal forces in studies related to platelet-rich fibrin. J. Periodontol. 2019, 90, 817–820. [Google Scholar] [CrossRef]
- Capocci, M.; Romeo, U.; Guerra, F.; Mannocci, A.; Tenore, G.; Annibali, S.; Ottolenghi, L. Medication-related osteonecrosis of the jaws (MRONJ) and quality of life evaluation: A pilot study. Clin. Ter. 2017, 168, e253–e257. [Google Scholar]
- Campisi, G.; Mauceri, R.; Bertoldo, F.; Bettini, G.; Biasotto, M.; Colella, G.; Consolo, U.; Di Fede, O.; Favia, G.; Fusco, V.; et al. Medication-Related Osteonecrosis of Jaws (MRONJ) Prevention and Diagnosis: Italian Consensus Update 2020. Int. J. Environ. Res. Public Health 2020, 17, 5998. [Google Scholar] [CrossRef]
- Di Fede, O.; Panzarella, V.; Mauceri, R.; Fusco, V.; Bedogni, A.; Lo Muzio, L.; Board, S.O.; Campisi, G. The Dental Management of Patients at Risk of Medication-Related Osteonecrosis of the Jaw: New Paradigm of Primary Prevention. Biomed. Res. Int. 2018, 2018, 2684924. [Google Scholar] [CrossRef]
- Ristow, O.; Rückschloß, T.; Müller, M.; Berger, M.; Kargus, S.; Pautke, C.; Engel, M.; Hoffmann, J.; Freudlsperger, C. Is the conservative non-surgical management of medication-related osteonecrosis of the jaw an appropriate treatment option for early stages? A long-term single-center cohort study. J. Craniomaxillofac. Surg. 2019, 47, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Ristow, O.; Otto, S.; Troeltzsch, M.; Hohlweg-Majert, B.; Pautke, C. Treatment perspectives for medication-related osteonecrosis of the jaw (MRONJ). J. Craniomaxillofac. Surg. 2015, 43, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.N.; Rabelo, G.D.; Rocha, A.C.; Carvalho, P.A.; Alves, F.A. Surgical Therapy for Bisphosphonate-Related Osteonecrosis of the Jaw: Six-Year Experience of a Single Institution. J. Oral Maxillofac. Surg. 2015, 73, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Mehrotra, B.; Rosenberg, T.J.; Engroff, S.L. Osteonecrosis of the jaws associated with the use of bisphosphonates: A review of 63 cases. J. Oral Maxillofac. Surg. 2004, 62, 527–534. [Google Scholar] [CrossRef]
- Wutzl, A.; Biedermann, E.; Wanschitz, F.; Seemann, R.; Klug, C.; Baumann, A.; Watzinger, F.; Schicho, K.; Ewers, R.; Millesi, G. Treatment results of bisphosphonate-related osteonecrosis of the jaws. Head Neck 2008, 30, 1224–1230. [Google Scholar] [CrossRef]
- Schwarz, F.; Bieling, K.; Bonsmann, M.; Latz, T.; Becker, J. Nonsurgical treatment of moderate and advanced periimplantitis lesions: A controlled clinical study. Clin. Oral Investig. 2006, 10, 279–288. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Meleti, M.; Manfredi, M.; Fornaini, C.; Nammour, S. Surgical Approach and Laser Applications in BRONJ Osteoporotic and Cancer Patients. J. Osteoporos. 2012, 2012, 585434. [Google Scholar] [CrossRef]
- Vescovi, P.; Manfredi, M.; Merigo, E.; Guidotti, R.; Meleti, M.; Pedrazzi, G.; Fornaini, C.; Bonanini, M.; Ferri, T.; Nammour, S. Early surgical laser-assisted management of bisphosphonate-related osteonecrosis of the jaws (BRONJ): A retrospective analysis of 101 treated sites with long-term follow-up. Photomed. Laser Surg. 2012, 30, 5–13. [Google Scholar] [CrossRef]
- Atalay, B.; Yalcin, S.; Emes, Y.; Aktas, I.; Aybar, B.; Issever, H.; Mandel, N.M.; Cetin, O.; Oncu, B. Bisphosphonate-related osteonecrosis: Laser-assisted surgical treatment or conventional surgery? Lasers Med. Sci. 2011, 26, 815–823. [Google Scholar] [CrossRef]
- Stübinger, S.; Dissmann, J.P.; Pinho, N.C.; Saldamli, B.; Seitz, O.; Sader, R. A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er: YAG laser ablation. Lasers Surg Med. 2009, 41, 26–30. [Google Scholar] [CrossRef]
- El-Rabbany, M.; Sgro, A.; Lam, D.K.; Shah, P.S.; Azarpazhooh, A. Effectiveness of treatments for medication-related osteonecrosis of the jaw: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2017, 148, 584–594.e2. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, D.; Piccart, F.; Ockerman, A.; Coropciuc, R.; Politis, C.; Jacobs, R. Adjuvant therapies for MRONJ: A systematic review. Bone 2020, 141, 115676. [Google Scholar] [CrossRef] [PubMed]
- Calvani, F.; Cutone, A.; Lepanto, M.S.; Rosa, L.; Valentini, V.; Valenti, P. Efficacy of bovine lactoferrin in the post-surgical treatment of patients suffering from bisphosphonate-related osteonecrosis of the jaws: An open-label study. Biometals 2018, 31, 445–455. [Google Scholar] [CrossRef]
- Romeo, U.; Palaia, G.; Tenore, G.; Del Vecchio, A.; Nammour, S. Excision of oral mucocele by different wavelength lasers. Indian J. Dent. Res. 2013, 24, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Garavello-Freitas, I.; Baranauskas, V.; Joazeiro, P.P.; Padovani, C.R.; Dal Pai-Silva, M.; Da Cruz-Höfling, M.A. Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J. Photochem. Photobiol. B. 2003, 70, 81–89. [Google Scholar] [CrossRef]
- Yamamoto, M.; Tamura, K.; Hiratsuka, K.; Abiko, Y. Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Lasers Med. Sci. 2001, 16, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, I.R.; Park, B.S.; Kim, Y.D.; Chung, I.K.; Song, J.M.; Shin, S.H. Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med. Sci. 2015, 30, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.; Mohsen, A.; Vecchio, D.A.; Palaia, G.; Migliau, G.; Capocci, M.; Gaimari, G.; Rocchetti, F.; Galanakis, A.; Romeo, U. Supportive pain management with super-pulsed low-level laser therapy of patients with medication related osteonecrosis of the jaw: Clinical trial. Senses Sci. 2017, 4, 386–394. [Google Scholar]
- Del Fabbro, M.; Bucchi, C.; Lolato, A.; Corbella, S.; Testori, T.; Taschieri, S. Healing of Postextraction Sockets Preserved with Autologous Platelet Concentrates. A Systematic Review and Meta-Analysis. J. Oral Maxillofac. Surg. 2017, 75, 1601–1615. [Google Scholar] [CrossRef]
- Mauceri, R.; Panzarella, V.; Maniscalco, L.; Bedogni, A.; Licata, M.E.; Albanese, A.; Toia, F.; Cumbo, E.M.G.; Mazzola, G.; Di Fede, O.; et al. Conservative Surgical Treatment of Bisphosphonate-Related Osteonecrosis of the Jaw with Er, Cr: YSGG Laser and Platelet-Rich Plasma: A Longitudinal Study. Biomed. Res. Int. 2018, 2018, 3982540. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Lin, Y.; Hu, X.; Zhang, Y.; Wu, H. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Cantore, S.; Dipalma, G.; Georgakopoulos, I.; Almasri, M.; Gheno, E.; Motta, A.; Marrelli, M.; Farronato, D.; Ballini, A.; et al. Platelet rich fibrin in the management of medication-related osteonecrosis of the jaw: A clinical and histopathological evaluation. J. Biol. Regul. Homeost. Agents 2017, 31, 811–816. [Google Scholar] [PubMed]
- Kim, J.W.; Kim, J.S.; Kim, M.R. Leucocyte-rich and platelet-rich fibrin for the treatment of bisphosphonate-related osteonecrosis of the jaw: A prospective feasibility study. Br. J. Oral Maxillofac. Surg. 2014, 52, 854–859. [Google Scholar] [CrossRef]
- Maluf, G.; Caldas, R.J.; Silva Santos, P.S. Use of Leukocyte- and Platelet-Rich Fibrin in the Treatment of Medication-Related Osteonecrosis of the Jaws. J. Oral Maxillofac. Surg. 2018, 76, 88–96. [Google Scholar] [CrossRef]
- Russell, R.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, J.W.; Kim, S.J. Does the Addition of Bone Morphogenetic Protein 2 to Platelet-Rich Fibrin Improve Healing after Treatment for Medication-Related Osteonecrosis of the Jaw? J Oral Maxillofac. Surg. 2017, 75, 1176–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, M.A.; Martins, M.D.; Lascala, C.A.; Curi, M.M.; Migliorati, C.A.; Tenis, C.A.; Marques, M.M. Association of laser phototherapy with PRP improves healing of bisphosphonate-related osteonecrosis of the jaws in cancer patients: A preliminary study. Oral Oncol. 2012, 48, 79–84. [Google Scholar] [CrossRef]
- Posten, W.; Wrone, D.A.; Dover, J.S.; Arndt, K.A.; Silapunt, S.; Alam, M. Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol. Surg. 2006, 31, 334–340. [Google Scholar] [CrossRef]
- Vescovi, P.; Merigo, E.; Meleti, M.; Fornaini, C.; Nammour, S.; Manfredi, M. Nd: YAG laser biostimulation of bisphosphonate-associated necrosis of the jawbone with and without surgical treatment. Br. J. Oral Maxillofac. Surg. 2007, 45, 628–632. [Google Scholar] [CrossRef]
Treatment Protocols | |||
---|---|---|---|
Preoperative | Intraoperative | Postoperative | |
Study Group (G1) |
|
|
|
Control Group (G2) |
|
|
|
Control Group (G3) |
|
|
|
Laser PBM Settings | Study Group (G1) | Control Group (G3) |
---|---|---|
Manufacturer | FISIOLINE | |
Model identifier | Lumix® C.P.S. ® Dental (Multidiodic laser) | |
Number and type of emitters | Three wavelengths, visible and infrared GaAs | |
Wavelengths | 650 nm, 810 nm, and 910 nm | |
Pulse mode | For visible 650 nm: continuous mode, for 810 nm: continuous modulating, and for 910 nm: 30 kHz | For visible 650 nm: continuous mode, for 810 nm: continuous modulating, and for 910 nm: 80 kHz |
Spot size | ~0.5 cm2 | |
Exposure duration | 15 minutes | |
Application technique | Scanning in a defocused mode | |
Total irradiation energy per session | 577.4 J | 531.4 J |
Number and frequency of treatment sessions | Two sessions per week starting five days before the surgery and continued for four weeks (total of eight sessions) | Two sessions per week and continued for four weeks (total of eight sessions) |
Patients | Age | Gender | Underlying Disease | Antiresorptive or Antiangiogenic | Admin. Method | Duration of Drug (Months) | Cort. | CT | Diabetes | Smoking | MRONJ Stage * | MRONJ Localization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study Group (G1) | ||||||||||||
1 | 73 | M | Lung cancer | Denosumab | I.M | 29 | No | Yes | No | Yes | II | Mand |
2 | 74 | M | Bladder cancer | Zoledronate | I.V | 21 | Yes | Yes | No | Yes | II | Mand |
3 | 78 | M | Prostate cancer | Zoledronate | I.V | 39 | Yes | Yes | Yes | Yes | II | Max |
4 | 77 | M | Prostate cancer | Denosumab | I.M | 36 | No | Yes | No | Yes | II | Mand |
5 | 74 | F | Multiple myeloma | Zoledronate | I.V | 22 | No | Yes | No | No | II | Max |
6 | 58 | F | Breast cancer | Denosumab | I.M | 12 | Yes | Yes | No | No | II | Mand |
7 | 82 | M | Prostate cancer | Zoledronate | I.V | 30 | No | Yes | No | No | II | Mand |
8 | 68 | F | Breast cancer | Denosumab | I.M | 72 | No | Yes | No | No | I | Mand |
9 | 82 | F | Multiple myeloma | Zoledronate-denosumab | I.V/I.M | 97 | No | Yes | No | No | II | Max |
10 | 58 | F | Osteoporosis | Alendronate | Oral | 6 | No | No | No | Yes | I | Mand |
11 | 67 | F | Osteoporosis | Zoledronate-alendronate | I.V/Oral | 60 | No | No | No | Yes | I | Mand |
12 | 69 | F | Osteoporosis | Alendronate | Oral | 60 | No | No | No | No | II | Max |
13 | 79 | F | Multiple myeloma | Zoledronate | I.V | 10 | Yes | Yes | No | No | II | Mand |
Control Group (G2) | ||||||||||||
14 | 45 | F | Breast cancer | Zoledronate | I.V | 24 | No | Yes | No | No | II | Mand |
15 | 84 | F | Osteoporosis | Ibandronate | Oral | 96 | No | No | Yes | No | II | Mand |
16 | 51 | F | Breast cancer | Zoledronate- denosumab | I.V/I.M | 31 | No | Yes | No | No | II | Mand |
17 | 56 | F | Breast cancer | Zoledronate- denosumab | I.V | 62 | No | Yes | No | No | II | Max |
18 | 61 | F | Breast cancer | Zoledronate- denosumab | I.V | 30 | No | Yes | No | No | II | Max |
19 | 60 | F | Breast cancer | Denosumab | I.V | 36 | No | Yes | No | No | I | Max |
20 | 65 | F | Breast cancer | Denosumab | I.M | 23 | No | Yes | No | No | II | Max |
21 | 74 | F | Breast cancer | Zoledronate | I.V | 24 | No | Yes | No | No | I | Mand |
Control Group (G3) | ||||||||||||
22 | 72 | M | Prostate cancer | Zoledronate | I.V | 33 | Yes | Yes | No | No | I | Max |
23 | 74 | F | Multiple myeloma | Zoledronate | I.V | 30 | Yes | Yes | No | No | II | Max |
24 | 59 | F | Breast cancer | Zoledronate | I.V | 24 | Yes | Yes | No | No | II | Max |
25 | 81 | M | Multiple myeloma | Zoledronate | I.V | 6 | Yes | Yes | Yes | No | II | Mand |
26 | 84 | F | Osteoporosis | Alendronate | Oral | 84 | No | No | No | No | II | Max |
27 | 92 | M | Prostate cancer | Zoledronate-denosumab | I.V/I.M | 48 | No | Yes | No | No | II | Max |
28 | 65 | F | Lung cancer | Zoledronate | I.V | 21 | No | Yes | No | Yes | II | Max |
29 | 61 | F | Breast cancer | Zoledronate | I.V | 24 | No | Yes | No | No | I | Mand |
30 | 81 | F | Osteoporosis | Denosumab | I.M | 48 | Yes | No | No | No | I | Mand |
31 | 62 | F | Breast cancer | Denosumab | I.M | 24 | Yes | Yes | Yes | No | I | Mand |
32 | 55 | F | Breast cancer | Zoledronate | I.V | 24 | Yes | Yes | No | No | II | Max |
33 | 78 | F | Breast cancer | Denosumab | I.M | 15 | No | Yes | No | No | I | Mand |
34 | 71 | F | Breast cancer | Denosumab | I.M | 24 | No | Yes | No | No | I | Mand |
Variables | Groups | Total | p | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
Median Age (IQR) | 74 (67.5–78.5) | 60.5 (52.25–71.75) | 72 (61.5–81) | 71.5 (60.75–78.25) | 0.136 * |
Gender | |||||
Female | 8 | 8 | 10 | 26 | 0.13 |
61.50% | 100.00% | 76.90% | 76.50% | ||
Male | 5 | 0 | 3 | 8 | |
38.50% | 0.00% | 23.10% | 23.50% | ||
Neoplastic diseases | 10 | 7 | 11 | 28 | 0.796 |
76.90% | 87.50% | 84.60% | 82.40% | ||
Osteoporosis | 3 | 1 | 2 | 6 | 0.796 |
23.10% | 12.50% | 15.40% | 17.60% | ||
Antiresorptive and/or antiangiogenic medications | |||||
Bisphosphonate | 7 | 3 | 8 | 18 | 0.53 |
53.80% | 37.50% | 61.50% | 52.90% | ||
both | 2 | 3 | 1 | 6 | |
15.40% | 37.50% | 7.70% | 17.60% | ||
Denosumab | 4 | 2 | 4 | 10 | |
30.80% | 25.00% | 30.80% | 29.40% | ||
Median MRONJ-related drugs therapy duration (months—IQR) | 30 (16.5–60) | 30.5 (24–55.5) | 24 (22.5–40.5) | 29.5 (22.75–48) | 0.599 * |
Corticosteroids | 4 | 0 | 7 | 11 | 0.037 |
30.80% | 0.00% | 53.80% | 32.40% | ||
Chemotherapy | 10 | 7 | 11 | 28 | 0.796 |
76.90% | 87.50% | 84.60% | 82.40% | ||
Diabetes | 1 | 1 | 2 | 4 | 0.829 |
7.70% | 12.50% | 15.40% | 11,80% | ||
Smoking habit | 6 | 0 | 1 | 7 | 0.014 |
46.20% | 0.00% | 7.70% | 20.60% | ||
MRONJ Stage | |||||
1 | 3 | 2 | 6 | 11 | 0.399 |
23.10% | 25.00% | 46.20% | 32.40% | ||
2 | 10 | 6 | 7 | 23 | |
76.90% | 75.00% | 53.80% | 67.60% | ||
MRONJ localization | |||||
mandible | 9 | 4 | 6 | 19 | 0.461 |
69.20% | 50.00% | 46.20% | 55.90% | ||
maxilla | 4 | 4 | 7 | 15 | |
30,80% | 50.00% | 53.80% | 44.10% | ||
Total | 13 | 8 | 13 | 34 | |
100.00% | 100.00% | 100.00% | 100.00% |
Groups | Treatment Outcome | |||||
---|---|---|---|---|---|---|
At 3 Months Follow-Up n (%) | At 6 Months Follow-Up n (%) | |||||
Healing | Improvement | Recurrence | Healing | Improvement | Recurrence | |
Study Group (G1) | 13 (100) | 0 | 0 | 13 (100) | 0 | 0 |
Control Group (G2) | 8 (100) | 0 | 0 | 4 (50) | 1 (12.5) | 3 (37.5) |
Control Group (G3) | 6 (46.2) | 5 (38.5) | 2 (15.4) | 5 (38.5) | 6 (46.2) | 2 (15.4) |
Variables | Treatment Outcome | |||||
---|---|---|---|---|---|---|
At 3 Months Follow-Up | At 6 Months Follow-Up | |||||
Df | X2 | p | Df | X2 | p | |
Type of MRONJ treatment | 4 | 14.239 | 0.001 | 4 | 15.954 | 0.002 |
MRONJ localization | 2 | 0.069 | 1 | 2 | 1.1 | 0.617 |
MRONJ stage | 2 | 0.51 | 1 | 2 | 0.182 | 1 |
Duration of drug treatment | 2 | 1.086 | 0.737 | 2 | 0.277 | 1 |
Gender | 2 | 1.584 | 0.537 | 2 | 1.809 | 0.515 |
Diabetes | 2 | 0.604 | 1 | 2 | 0.521 | 1 |
Corticosteroid therapy | 2 | 1.576 | 0.523 | 2 | 3.173 | 0.177 |
Smoking habit | 2 | 2.399 | 0.256 | 2 | 2.417 | 0.334 |
Underlying disease | 2 | 0.742 | 1 | 2 | 0.078 | 1 |
History of chemotherapy | 2 | 0.742 | 1 | 2 | 0.078 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenore, G.; Zimbalatti, A.; Rocchetti, F.; Graniero, F.; Gaglioti, D.; Mohsen, A.; Caputo, M.; Lollobrigida, M.; Lamazza, L.; De Biase, A.; et al. Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. J. Clin. Med. 2020, 9, 3505. https://doi.org/10.3390/jcm9113505
Tenore G, Zimbalatti A, Rocchetti F, Graniero F, Gaglioti D, Mohsen A, Caputo M, Lollobrigida M, Lamazza L, De Biase A, et al. Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. Journal of Clinical Medicine. 2020; 9(11):3505. https://doi.org/10.3390/jcm9113505
Chicago/Turabian StyleTenore, Gianluca, Angela Zimbalatti, Federica Rocchetti, Francesca Graniero, Domenico Gaglioti, Ahmed Mohsen, Martina Caputo, Marco Lollobrigida, Luca Lamazza, Alberto De Biase, and et al. 2020. "Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study" Journal of Clinical Medicine 9, no. 11: 3505. https://doi.org/10.3390/jcm9113505
APA StyleTenore, G., Zimbalatti, A., Rocchetti, F., Graniero, F., Gaglioti, D., Mohsen, A., Caputo, M., Lollobrigida, M., Lamazza, L., De Biase, A., Barbato, E., & Romeo, U. (2020). Management of Medication-Related Osteonecrosis of the Jaw (MRONJ) Using Leukocyte- and Platelet-Rich Fibrin (L-PRF) and Photobiomodulation: A Retrospective Study. Journal of Clinical Medicine, 9(11), 3505. https://doi.org/10.3390/jcm9113505