DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration. Results from the 2018 National Survey on Drug Use and Health: Detailed tables; Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2019. Available online: https://www.samhsa.gov/data/ (accessed on 5 November 2020).
- Teesson, M.; Slade, T.; Swift, W.; Mills, K.; Memedovic, S.; Mewton, L.; Grove, R.; Newton, N.; Hall, W. Prevalence, correlates and comorbidity of DSM-IV cannabis use and cannabis use disorders in Australia. Aust. N. Z. J. Psychiatry 2012, 6, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Guest, C.; Holland, M. Co-existing mental health and substance use and alcohol difficulties–why do we persist with the term “dual diagnosis” within mental health services? Adv. Dual Diagn. 2011, 4, 162–172. [Google Scholar] [CrossRef]
- Regier, D.A.; Farmer, M.E.; Rae, D.S.; Locke, B.Z.; Keith, S.J.; Judd, L.L.; Goodwin, F.K. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 1990, 264, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
- Marel, C.; Sunderland, M.; Mills, K.L.; Slade, T.; Teesson, M.; Chapman, C. Conditional probabilities of substance use disorders and associated risk factors: Progression from first use to use disorder on alcohol, cannabis, stimulants, sedatives and opioids. Drug Alcohol Depend. 2019, 194, 136–142. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs, & Drug Addiction. Two Thousand and Two Annual Report on the State of the Drugs Problem in the European Union and Norway; Office for Official Publications of the European Communities: Luxembourg, 2002. [Google Scholar]
- Delgadillo, J.; Kay-Lambkin, F. Closing the science-practice gap: Introduction to the special issue on psychological interventions for comorbid addictions and mental health problems. Adv. Dual Diagn. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, I.P.; Rosenheck, R.A. A change in perspective: From dual diagnosis to multimorbidity. Psychiatr. Serv. 2018, 69, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Torrens, M.; Mestre-Pintó, J.I.; Domingo-Salvany, A. Comorbidity of Substance Use and Mental Disorders in Europe; Publication Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Petrakis, M.; Robinson, R.; Myers, K.; Kroes, S.; O’Connor, S. Dual diagnosis competencies: A systematic review of staff training literature. Addict. Behav. Rep. 2018, 7, 53–57. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration. The DAWN Report: Emergency Department Visits Involving Methamphet- Amine: 2007 to 2011; Center for Behavioral Health Statistics and Quality: Rockville, MD, USA, 2014.
- Kroll, S.L.; Wunderli, M.D.; Vonmoos, M.; Hulka, L.M.; Preller, K.H.; Bosch, O.G.; Quednow, B.B. Socio-cognitive functioning in stimulant polysubstance users. Drug Alcohol Depend. 2018, 190, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sartor, C.E.; Kranzler, H.R.; Gelernter, J. Rate of progression from first use to dependence on cocaine or opioids: A cross-substance examination of associated demographic, psychiatric, and childhood risk factors. Addict. Behav. 2014, 39, 473–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, L.E.; Ostacher, M.; Ballon, J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology 2019, 44, 1518–1523. [Google Scholar] [CrossRef]
- Uhl, G.R. Molecular genetic underpinnings of human substance abuse vulnerability: Likely contributions to understanding addiction as a mnemonic process. Neuropharmacology 2004, 47, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Suchanecka, A.; Chmielowiec, J.; Chmielowiec, K.; Masiak, J.; Sipak-Szmigiel, O.; Sznabowicz, M.; Czarny, W.; Michałowska-Sawczyn, M.; Trybek, G.; Grzywacz, A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci. 2020, 10, 262. [Google Scholar] [CrossRef]
- Suchanecka, A.; Chmielowiec, K.; Chmielowiec, J.; Trybek, G.; Masiak, J.; Michałowska-Sawczyn, M.; Nowicka, R.; Grocholewicz, K.; Grzywacz, A. Vitamin D Receptor Gene Polymorphisms and Cigarette Smoking Impact on Oral Health: A Case-Control Study. Int. J. Environ. Res. Public Health 2020, 17, 3192. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, M.; Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Masiak, J.; Michałowska-Sawczyn, M.; Mroczek, B.; Mierzecki, A.; Ciechanowicz, I.; Grzywacz, A. Significant association of DRD2 and ANKK1 genes with rural heroin dependence and relapse in men. Ann. Agric. Environ. Med. 2020, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Mao, X.; Wei, L. Genes and (common) pathways underlying drug addiction. PLoS Comput. Biol. 2008, 4, e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Van Tol, H.H.; Wu, C.M.; Guan, H.C.; Ohara, K.; Bunzow, J.R.; Civelli, O.; Kennedy, J.; Seeman, P.; Niznik, H.B.; Jovanovic, V. Multiple dopamine D4 receptor variants in the human population. Nature 1992, 358, 149–152. [Google Scholar]
- Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; Van Tol, H.H. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 1995, 65, 1157–1165. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Chmielowiec, K.; Suchanecka, I.; Mroczek, B.; Trybek, G.; Małecka, I.; Grzywacz, A. Associations between the Dopamine D4 Receptor and DAT1 Dopamine Transporter Genes Polymorphisms and Personality Traits in Addicted Patients. Int. J. Environ. Res. Public Health 2018, 15, 2076. [Google Scholar] [CrossRef] [Green Version]
- Ray, L.A.; Bryan, A.; MacKillop, J.; McGeary, J.; Hesterberg, K.; Hutchison, K.E. The dopamine D4 receptor (DRD4) gene exon III polymorphism, problematic alcohol use, and novelty seeking: Direct and mediated genetic effects. Addict. Biol. 2008, 14. [Google Scholar] [CrossRef] [Green Version]
- Al-Eitan, L.N.; Alshudaifat, K.M.; Anani, J.Y. Association of the DRD4 exon III and 5-HTTLPR VNTR polymorphisms with substance abuse in Jordanian Arab population. Gene 2020, 733, 144267. [Google Scholar] [CrossRef]
- Samochowiec, J.; Grzywacz, A. Case-control analysis of DRD2 gene polymorphisms in drug addicted patients. Psychiatr. Pol. 2018, 6, 1013–1022. [Google Scholar]
- Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoact. Drugs 2000, 32 (Suppl. i–iv), 1–112. [Google Scholar] [CrossRef]
- Jung, Y.; Montel, R.A.; Shen, P.H.; Mash, D.C.; Goldman, D. Assessment of the association of D2 dopamine receptor gene and reported allele frequencies with alcohol use disorders: A systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1914940. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.U.; Mrzljak, L.; Gutierrez, A.; De La Calle, A.; Goldman-Rakic, P.S. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. USA 1998, 95, 7731–7736. [Google Scholar] [CrossRef] [Green Version]
- Sasabe, T.; Furukawa, A.; Matsusita, S.; Higuchi, S.; Ishiura, S. Association analysis of the dopamine receptor D2 (DRD2) SNP rs1076560 in alcoholic patients. Neurosci. Lett. 2007, 412, 139–142. [Google Scholar] [CrossRef]
- Moyer, R.A.; Wang, D.; Papp, A.C.; Smith, R.M.; Duque, L.; Mash, D.C.; Sadee, W. Intronic Polymorphisms Affecting Alternative Splicing of Human Dopamine D2 Receptor Are Associated with Cocaine Abuse. Neuropsychopharmacology 2010, 36, 753–762. [Google Scholar] [CrossRef]
- Clarke, T.-K.; Weiss, A.R.D.; Ferarro, T.N.; Kampman, K.M.; Dackis, C.A.; Pettinati, H.M.; O’Brien, C.P.; Oslin, D.W.; Lohoff, F.W.; Berrettini, W.H. The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann. Hum. Genet. 2013, 78, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, A. Comorbidity of Mental Disorders and Substance Use: A Brief Guide for the Primary Care Clinician; Drug and Alcohol Services South Australia (DASSA) Clinical Services and Research: Adelaide, Australia, 2010.
- Simonienko, K.; Wygnał, N.; Cwalina, U.; Kwiatkowski, M.; Szulc, A.; Waszkiewicz, N. The reasons for use of cannabinoids and stimulants in patients with schizophrenia. Psychiatr. Pol. 2018, 52, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.D.; Gicas, K.M.; Cheng, A.; Lang, D.J.; Procyshyn, R.M.; Vertinsky, A.T.; Chan, T. A comparison of regional brain volumes and white matter connectivity in subjects with stimulant induced psychosis versus schizophrenia. Psychopharmacology 2019, 236, 3385–3399. [Google Scholar] [CrossRef]
- Chambers, R.A.; Krystal, J.H.; Self, D.W. A neurobiological basis for substance abuse comorbidity in schizophrenia. Biol. Psychiatry 2001, 50, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, J.Y.; Dwiel, L.L.; Henricks, A.M.; Doucette, W.T.; Green, A.I. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr. Res. 2018, 194, 78–85. [Google Scholar] [CrossRef]
- Pacini, M.; Maremmani, I.; Vitali, M.; Santini, P.; Romeo, M.; Ceccanti, M. Affective temperaments in alcoholic patients. Alcohol 2009, 43, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, I.; Pacini, M.; Popovic, D.; Romano, A.; Maremmani, A.G.; Perugi, G.; Deltito, J.; Akiskal, K.; Akiskal, H. Affective temperaments in heroin addiction. J. Affect. Disord. 2009, 117, 186–192. [Google Scholar] [CrossRef]
- Camacho, A.; Akiskal, H.S. Proposal for a bipolar-stimulant spectrum: Temperament, diagnostic validation and therapeutic outcomes with mood stabilizers. J. Affect. Disord. 2005, 85, 217–230. [Google Scholar] [CrossRef]
- Maremmani, I.; Pacini, M.; Perugi, G.; Deltito, J.; Akiskal, H. Cocaine abuse and the bipolar spectrum in 1090 heroin addicts: Clinical observations and a proposed pathophysiologic model. J. Affect. Disord. 2008, 106, 55–61. [Google Scholar] [CrossRef]
- Pacini, M.; Maremmani, I.; Vitali, M.; Romeo, M.; Santini, P.; Vermeil, V.; Ceccanti, M. Cocaine Abuse in 448 Alcoholics: Evidence for a Bipolar Connection. Addict Disord Their Treat. 2010, 9, 164–335. [Google Scholar] [CrossRef]
- Vitali, M.; Pacini, M.; Maremmani, I.; Romeo, M.; Ceccanti, M. Pattern of cocaine consumption in a sample of italian alcoholics. Int. Clin. Psychopharmacol. 2011, 26, e98. [Google Scholar] [CrossRef]
- Maremmani, A.G.I.; Pacini, M.; Bacciardi, S.; Ceccanti, M.; Maremmani, I. Current use of cannabis and past use of heroin as predictors of alcohol and concomitant cocaine use disorder. Alcologia 2015, 22, 36–40. [Google Scholar]
- Maremmani, A.G.I.; Pacini, M.; Pani, P.P.; Ceccanti, M.; Bacciardi, S.; Akiskal, H.S.; Maremmani, I. Possible trajectories of addictions: The role of bipolar spectrum. Heroin Addict. Relat. Clin. Probl. 2016, 18, 23–32. [Google Scholar]
- Maremmani, I.; Shinderman, M.S. Alcohol, benzodiazepines and other drugs use in heroin addicts treated with methadone. Polyabuse or undermedication? Heroin Addict. Relat. Clin. Probl. 1999, 1, 7–13. [Google Scholar]
- Pacini, M.; Maremmani, A.G.I.; Ceccanti, M.; Maremmani, I. Former heroin-dependent alcohol use disorder patients. Prevalence, addiction history and clinical features. Alcohol Alcohol. 2015, 50, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Tochigi, M.; Hibino, H.; Otowa, T.; Kato, C.; Marui, T.; Ohtani, T.; Umekage, T.; Kato, N.; Sasaki, T. Association between dopamine D4 receptor (DRD4) exon III polymorphism and neuroticism in the Japanese population. Neurosci. Lett. 2006, 398, 333–336. [Google Scholar] [CrossRef]
Type of Substance/Addiction Used | All Addicted (n = 300) | Addicted to Stimulants (n = 247) | Addicted to Other Psychoactive Substances (n = 53) | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Behavioral addiction | 128 | 43 | 107 | 43 | 21 | 40 |
Designer drugs | 73 | 24 | 56 | 23 | 17 | 32 |
F10.2-alcohol | 166 | 55 | 134 | 54 | 32 | 60 |
F11.2-opiates | 61 | 20 | 44 | 18 | 17 | 32 |
F12.2-cannabinols | 214 | 71 | 181 | 73 | 33 | 62 |
F13.2-sedatives and hypnotics | 38 | 13 | 22 | 9 | 16 | 30 |
F14.2-cocaine | 31 | 10 | 29 | 12 | 2 | 4 |
F15.2-stimulants | 247 | 82 | 247 | 100 | - | - |
F16.2-hallucinogenic | 31 | 10 | 31 | 13 | 0 | 0 |
F19.2-mixed addictions | 172 | 57 | 156 | 63 | 16 | 30 |
Genotype | Allele | ||||
---|---|---|---|---|---|
DRD2 rs1076560 | |||||
C/C n (%) | A/C n (%) | A/A n (%) | C n (%) | A n (%) | |
Addiction-stimulating substances n = 247 | 160 (64.78%) | 77 (31.17%) | 10 (4.05%) | 397 (80.36%) | 97 (19.64%) |
Control n = 301 | 208 (69.10%) | 82 (27.24%) | 11 (3.65%) | 498 (82.72%) | 104 (17.28%) |
Pearson’s χ2 (p value) | 1.155 (0.561) | 1.010 (0.315) | |||
DRD2 Tag1D rs1800498 | |||||
T/T n (%) | C/T n (%) | C/C n (%) | T n (%) | C n (%) | |
Addiction-stimulating substances n = 247 | 77 (31.17%) | 118 (47.77%) | 52 (21.05%) | 272 (55.06%) | 222 (44.94%) |
Control n = 301 | 108 (35.88%) | 142 (47.18%) | 51 (16.94%) | 358 (59.47%) | 244 (40.53%) |
Pearson’s χ2 p value | 2.119 (0.347) | 2.160 (0.142) | |||
DRD2Tag1B rs1079597 | |||||
G/G n (%) | A/G n (%) | A/A n (%) | G n (%) | A n (%) | |
Addiction-stimulating substances n = 247 | 165 (66.80%) | 74 (29.96%) | 8 (3.24%) | 404 (81.78%) | 90 (18.22%) |
Control n = 301 | 207 (68.77%) | 83 (27.57%) | 11 (3.65%) | 497 (82.56) | 105 (17.44%) |
Pearson’s χ2 p value | 0.414 (0.813) | 0.110 (0.738) | |||
DRD2 Ex8 rs6276 | |||||
A/G n (%) | A/A n (%) | G/G n (%) | A n (%) | G n (%) | |
Addiction-stimulating substances n = 247 | 118 (47.77%) | 100 (40.49%) | 29 (11.74%) | 336 (68.02%) | 158 (31.98) |
Control n = 301 | 129 (42.86%) | 127 (42.19%) | 45 (14.95%) | 385 (63.95%) | 217 (36.05%) |
Pearson’s χ2 p value | 1.857 (0.395) | 1.990 (0.158) | |||
DRD2 PROM. rs1799732 | |||||
del/del n (%) | ins/ins n (%) | ins/del n (%) | del n (%) | ins n (%) | |
Addiction-stimulating substances n = 247 | 9 (3.64%) | 181 (73.28%) | 57 (23.08%) | 75 (15.18%) | 419 (84.82) |
Control n = 301 | 4 (1.33%) | 241 (80.07%) | 56 (18.60%) | 64 (10.63%) | 538 (89.37%) |
Pearson’s χ2 p value | 5.192 (0.074) | 5.07* (0.024) | |||
ANKK1 Tag1A rs1800497 | |||||
C/C n (%) | C/T n (%) | T/T n (%) | C n (%) | T n (%) | |
Addiction-stimulating substances n = 247 | 154 (62.35%) | 82 (33.20%) | 11 (4.45%) | 390 (78.95%) | 104 (21.05) |
Control n = 301 | 199 (66.33%) | 95 (31.33%) | 7 (2.33%) | 493 (81.89%) | 109 (18.11%) |
Pearson’s χ2 p value | 2.330 (0.312) | 1.500 (0.220) | |||
DAT1 | |||||
9/10 n (%) | 9/9 n (%) | 10/10 n (%) | 9 n (%) | 10 n (%) | |
Addiction-stimulating substances n = 247 | 101 (40.89%) | 7 (2.83%) | 139 (56.28%) | 115 (23.28) | 379 (76.72) |
Control n = 301 | 114 (37.87%) | 19 (6.31%) | 168 (55.81%) | 152 (25.25%) | 450 (74.75%) |
Pearson’s χ2 p value | 3.779 (0.151) | 0.570 (0.450) | |||
DRD4 Ex3 | |||||
s/l n (%) | s/s n (%) | l/l n (%) | s n (%) | l n (%) | |
Addiction-stimulating substances n = 247 | 77 (31.17%) | 161 (65.18%) | 9 (3.64%) | 399 (80.77%) | 95 (19.23%) |
Control n = 301 | 98 (32.56%) | 177 (58.80%) | 26 (8.64%) | 452 (75.08%) | 150 (24.92%) |
Pearson’s χ2 p value | 6.274* (0.043) | 5.050* (0.025) |
Mental Disorders | Addiction | Not n (%) | Yes n (%) | Pearson’s χ2 p Value |
---|---|---|---|---|
Depressive episode | other addictions n = 54 | 37 (68.52%) | 17 (31.48%) | 0.0002 (0.989) |
addiction-stimulating substances n = 247 | 169 (68.42%) | 78 (31.58%) | ||
Dysthymia | other addictions n = 54 | 47 (87.04%) | 7 (12.96%) | 1.242 (0.265) |
addiction-stimulating substances n = 247 | 199 (80.57%) | 48 (19.43%) | ||
Suicide attempts | other addictions n = 54 | 51 (94.44%) | 3 (5.56%) | 0.001 (0.974) |
addiction-stimulating substances n = 247 | 233 (94.33%) | 14 (5.67%) | ||
Hypomanic or manic episode | other addictions n = 54 | 38 (70.37%) | 16 (29.63%) | 0.0001 (0.991) |
addiction-stimulating substances n = 247 | 174 (70.45%) | 73 (29.55%) | ||
Panic-related disorder | other addictions n = 54 | 49 (90.74%) | 5 (9.26%) | 0.196 (0.658) |
addiction-stimulating substances n = 247 | 219 (88.66%) | 28 (11.34%) | ||
Agoraphobia | other addictions n = 54 | 49 (90.74%) | 5 (9.26%) | 0.078 (0.779) |
addiction-stimulating substances n = 247 | 227 (91.90%) | 20 8.10% () | ||
Social phobia | other addictions n = 54 | 48 (88.89%) | 6 (11.11%) | 1.749 (0.186) |
addiction-stimulating substances n = 247 | 201 (81.38%) | 46 (18.62%) | ||
OCD | other addictions n = 54 | 47 (87.04%) | 7 (12.96%) | 0.856 (0.355) |
addiction-stimulating substances n = 247 | 202 (81.78%) | 45 (18.22%) | ||
PTSD | other addictions n = 54 | 50 (92.59%) | 4 (7.41%) | 0.029 (0.865) |
addiction-stimulating substances n = 247 | 227 (91.90%) | 20 (8.10%) | ||
Psychotic disorders | other addictions n = 54 | 42 (77.78%) | 12 (22.22%) | 13.244*# (0.0003) |
addiction-stimulating substances n = 247 | 125 (50.61%) | 122 (49.39%) | ||
Generalized anxiety | other addictions n = 54 | 44 (81.48%) | 10 (18.52%) | 1.440 (0.230) |
addiction-stimulating substances n = 247 | 182 (73.68%) | 65 (26.32%) |
Genotype | Allele | ||||
---|---|---|---|---|---|
DRD4 Ex3 | |||||
s/l n (%) | s/s n (%) | l/l n (%) | s n (%) | l n (%) | |
Depressive episode - not n = 468 | 153 (32.69%) | 282 (60.26%) | 33 (7.05%) | 717 (76.60) | 219 (23.40%) |
Depressive episode - yes n = 80 | 22 (27.50%) | 56 (70.00%) | 2 (2.50%) | 134 (83.75) | 26 (16.25) |
Pearson’s χ2 p value | 3.844 (0.146) | 4.020* (0.045) | |||
Dysthymia - not n = 500 | 164 (32.80%) | 302 (60.40%) | 34 (6.80%) | 768 (76.80%) | 232 (23.20%) |
Dysthymia - yes n = 48 | 11 (22.92%) | 36 (75.00%) | 1 (2.08%) | 83 (86.46%) | 13 (13.54%) |
Pearson’s χ2 p value | 4.379 (0.112) | 4.710* (0.030) | |||
Suicide attempts - not n = 535 | 171 (31.96%) | 329 (61.50%) | 35 (6.54%) | 829 (77.48%) | 241 (22.52%) |
Suicide attempts - yes n = 13 | 4 (30.77%) | 9 (69.23%) | 0 (0.00%) | 22 (84.62%) | 4 (15.38%) |
Pearson’s χ2 p value | 0.979 (0.612) | 0.750 (0.388) | |||
Hypo or manic episode - not n = 477 | 154 (32.29%) | 290 (60.80%) | 33 (6.92%) | 734 (76.94%) | 220 (23.06%) |
Hypo or manic episode - yes n = 71 | 21 (29.58%) | 48 (67.61%) | 2 (2.82%) | 117 (82.39%) | 25 (17.61%) |
Pearson’s χ2 p value | 2.234 (0.327) | 2.120 (0.145) | |||
Hypo or manic episode - not n = 520 | 167 (32.12%) | 318 (61.15%) | 35 (6.73%) | 802 (77.21%) | 237 (22.79%) |
Hypo or manic episode - yes n = 28 | 8 (28.57%) | 20 (71.43%) | 0 (0.00%) | 48 (85.71%) | 8 (14.29%) |
Pearson’s χ2 p value | 2.444 (0.295) | 2.220 (0.136) | |||
Agoraphobia - not n = 527 | 168 (31.88%) | 324 (61.48%) | 35 (6.64%) | 816 (77.42%) | 238 (22.58) |
Agoraphobia - yes n = 21 | 7 (33.33%) | 14 (66.67%) | 0 (0.00%) | 35 (83.33%) | 7 (16.67%) |
Pearson’s χ2 p value | 1.496 (0.473) | 0.810 (0.367) | |||
Social phobia - not n = 502 | 158 (31.47%) | 309 (61.55%) | 35 (6.97%) | 776 (77.29%) | 228 (22.71%) |
Social phobia - yes n = 46 | 17 (36.96%) | 29 (63.04%) | 0 (0.00%) | 75 (81.52%) | 17 (18.48%) |
Pearson’s χ2 p value | 3.618 (0.163) | 0.870 (0.351) | |||
OCD -not n = 503 | 164 (32.60%) | 305 (60.64%) | 34 (6.76%) | 774 (76.94%) | 232 (23.06%) |
OCD - yes n = 45 | 11 (24.44%) | 33 (73.33%) | 1 (2.22%) | 77 (85.56%) | 13 (14.44%) |
Pearson’s χ2 p value | 3.272 (0.195) | 3.530 (0.060) | |||
PTSD -not n = 528 | 169 (32.01%) | 325 (61.55%) | 34 (6.44%) | 819 (77.56%) | 237 (22.44%) |
PTSD - yes n = 20 | 6 (30.00%) | 13 (65.00%) | 1 (5.00%) | 32 (80.00%) | 8 (20.00%) |
Pearson’s χ2 p value | 0.123 (0.939) | 0.130 (0.716) | |||
Psychotic disorder - not n = 425 | 144 (33.88%) | 250 (58.82%) | 31 (7.29%) | 644 (75.76%) | 206 (24.23%) |
Psychotic disorder - yes n = 123 | 31 (25.20%) | 88 (71.54%) | 4 (3.25%) | 207 (84.15%) | 39 (15.85%) |
Pearson’s χ2 p value | 7.193* (0.027) | 7.720* (0.006) | |||
Generalized anxiety - not n = 483 | 161 (33.33%) | 287 (59.42%) | 35 (7.25%) | 735 (76.09%) | 231 (23.91%) |
Generalized anxiety - yes n = 65 | 14 (21.54%) | 51 (78.46%) | 0 (0.00%) | 116 (89.23%) | 14 (10.77%) |
Pearson’s χ2 p value | 10.573* (0.005) | 11.400*# (0.0007) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiak, J.; Chmielowiec, J.; Chmielowiec, K.; Grzywacz, A. DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions. J. Clin. Med. 2020, 9, 3593. https://doi.org/10.3390/jcm9113593
Masiak J, Chmielowiec J, Chmielowiec K, Grzywacz A. DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions. Journal of Clinical Medicine. 2020; 9(11):3593. https://doi.org/10.3390/jcm9113593
Chicago/Turabian StyleMasiak, Jolanta, Jolanta Chmielowiec, Krzysztof Chmielowiec, and Anna Grzywacz. 2020. "DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions" Journal of Clinical Medicine 9, no. 11: 3593. https://doi.org/10.3390/jcm9113593
APA StyleMasiak, J., Chmielowiec, J., Chmielowiec, K., & Grzywacz, A. (2020). DRD4, DRD2, DAT1, and ANKK1 Genes Polymorphisms in Patients with Dual Diagnosis of Polysubstance Addictions. Journal of Clinical Medicine, 9(11), 3593. https://doi.org/10.3390/jcm9113593