Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Monitoring and Management of Infections
2.3. Monitoring and Management of CDI
2.4. CDI Treatment
2.5. Statistical Analyses
3. Results
3.1. Clinical Characteristics of CD Infections
3.2. Risk Factors for CDI Development
3.3. Outcome
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Simor, A.E. Diagnosis, management, and prevention of clostridium difficile infection in long-term care facilities: A review. J. Am. Geriatr. Soc. 2010. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzatti, G.; Ianiro, G.; Gasbarrini, A. Antibiotic and Modulation of Microbiota A New Paradigm? J. Clin. Gastroenterol. 2018. [Google Scholar] [CrossRef]
- Anand, A.; Glatt, A.E. Clostridium difficile infection associated with antineoplastic chemotherapy: A review. Clin. Infect. Dis. 1993, 17, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Willems, L.; Porcher, R.; Lafaurie, M.; Casin, I.; Robin, M.; Xhaard, A.; Andreoli, A.L.; Rodriguez-Otero, P.; Dhedin, N.; Socié, G.; et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: Incidence, risk factors, and outcome. Biol. Blood Marrow Transplant. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, C.D.; Treadway, S.B.; Hanna, D.B.; Huff, C.A.; Neofytos, D.; Carroll, K.C.; Marr, K.A. Epidemiology and outcomes of clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2012, 54, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.D.; Braun, D.A.; Patel, I.; Akbari, M.; Oh, D.J.; Jun, T.; McMasters, M.; Hammond, S.P.; Glotzbecker, B.; Cutler, C.; et al. A multicenter, retrospective, case-cohort study of the epidemiology and risk factors for Clostridium difficile infection among cord blood transplant recipients. Int. J. Lab. Hematol. 2017, 19. [Google Scholar] [CrossRef]
- Trifilio, S.M.; Pi, J.; Mehta, J. Changing epidemiology of clostridium difficile-associated disease during stem cell transplantation. Biol. Blood Marrow Transplant. 2013, 19, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Bruminhent, J.; Wang, Z.X.; Hu, C.; Wagner, J.; Sunday, R.; Bobik, B.; Hegarty, S.; Keith, S.; Alpdogan, S.; Carabasi, M.; et al. Clostridium difficile colonization and disease in patients undergoing hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2014, 20, 1329–1334. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, K.; Takami, A.; Tsuji, M.; Araoka, H.; Ishiwata, K.; Takagi, S.; Yamamoto, H.; Asano-Mori, Y.; Matsuno, N.; Uchida, N.; et al. Relative incidences and outcomes of Clostridium difficile infection following transplantation of unrelated cord blood, unrelated bone marrow, and related peripheral blood in adult patients: A single institute study. Transpl. Infect. Dis. 2014, 16, 412–420. [Google Scholar] [CrossRef]
- Kamboj, M.; Xiao, K.; Kaltsas, A.; Huang, Y.-T.; Sun, J.; Chung, D.; Wu, S.; Sheahan, A.; Sepkowitz, K.; Jakubowski, A.A.; et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplant: Strain diversity and outcomes associated with NAP-1/027. Biol. Blood Marrow Transplant. 2014, 20, 1626–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, T.; Croswell, C.; Urday-Cornejo, V.; Awali, R.; Cutright, J.; Salimnia, H.; Reddy Banavasi, H.V.; Liubakka, A.; Lephart, P.; Chopra, T.; et al. Clostridium difficile colonization in hematopoietic stem cell transplant recipients: A prospective study of the epidemiology and outcomes involving toxigenic and nontoxigenic strains. Biol. Blood Marrow Transplant. 2016, 22, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldrete, S.d.M.; Kraft, C.S.; Magee, M.J.; Chan, A.; Hutcherson, D.; Langston, A.A.; Greenwell, B.I.; Burd, E.M.; Friedman-Moraco, R. Risk factors and epidemiology of Clostridium difficile infection in hematopoietic stem cell transplant recipients during the peritransplant period. Transpl. Infect. Dis. 2017, 19, e12649. [Google Scholar] [CrossRef] [PubMed]
- Scardina, T.L.; Martinez, E.K.; Balasubramanian, N.; Fox-Geiman, M.; Smith, S.E.; Parada, J.P. Evaluation of risk factors for Clostridium difficile Infection in Hematopoietic Stem Cell Transplant Recipients. Int. J. Lab. Hematol. 2017, 37, 420–428. [Google Scholar]
- Ford, C.D.; Lopansri, B.K.; Coombs, J.; Webb, B.J.; Nguyen, A.; Asch, J.; Hoda, D. Clostridioides difficile colonization and infection in patients admitted for a first autologous transplantation: Incidence, risk factors, and patient outcomes. Clin. Transplant. 2019, 33, e13712. [Google Scholar] [CrossRef]
- Amberge, S.; Kramer, M.; Schröttner, P.; Heidrich, K.; Schmelz, R.; Middeke, J.M.; Gunzer, F.; Hampe, J.; Schetelig, J.; Bornhäuser, M.; et al. Clostridium Difficile infections in patients with AML or MDS undergoing allogeneic hematopoietic stem cell transplantation identify high risk for adverse outcome. Bone Marrow Transplant. 2020, 55, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Guddati, A.K.; Kumar, G.; Ahmed, S.; Ali, M.; Kumar, N.; Hari, P.; Venu, N. Incidence and outcomes of Clostridium difficile-associated disease in hematopoietic cell transplant recipients. Int. J. Hematol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995, 15, 825–828. [Google Scholar] [PubMed]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) C. Clin. Infect. Dis. 2008. [Google Scholar] [CrossRef]
- Debast, S.B.; Bauer, M.P.; Kuijper, E.J.; Allerberger, F.; Bouza, E.; Coia, J.E.; Cornely, O.A.; Fitzpatrick, F.; Guery, B.; Wilcox, M.; et al. European society of clinical microbiology and infectious diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2014. [Google Scholar] [CrossRef] [Green Version]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Cancer. Common Terminology Criteria for Adverse Events (CTCAE); NIH Publication; 2009; ISBN # 09-7473. Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5x11.pdf (accessed on 16 November 2020).
- Robak, K.; Zambonelli, J.; Bilinski, J.; Basak, G.W. Diarrhea after allogeneic stem cell transplantation: Beyond graft-versus-host disease. Eur. J. Gastroenterol. Hepatol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dubberke, E.R.; Reske, K.A.; Olsen, M.A.; Bommarito, K.; Cleveland, A.A.; Silveira, F.P.; Schuster, M.G.; Kauffman, C.A.; Avery, R.K.; Pappas, P.G.; et al. Epidemiology and outcomes of Clostridium difficile infection in allogeneic hematopoietic cell and lung transplant recipients. Transpl. Infect. Dis. 2018, 20, e12855. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl. Microbiol. Biotechnol. 2019. [Google Scholar] [CrossRef]
- Staley, C.; Weingarden, A.R.; Khoruts, A.; Sadowsky, M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ohigashi, S.; Sudo, K.; Kobayashi, D.; Takahashi, T.; Nomoto, K.; Onodera, H. Significant changes in the intestinal environment after surgery in patients with colorectal cancer. J. Gastrointest. Surg. 2013. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, X.; Fan, Y.; Chen, L.; Ma, X.; Yu, H.; Li, J.; Guan, X.; Zhao, P.; Yang, J. Changes of intestinal microbiota in ovarian cancer patients treated with surgery and chemotherapy. Cancer Manag. Res. 2020. [Google Scholar] [CrossRef]
- Childs, C.E.; Röytiö, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M.; et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014. [Google Scholar] [CrossRef] [Green Version]
- Gerbitz, A.; Schultz, M.; Wilke, A.; Linde, H.J.; Schölmerich, J.; Andreesen, R.; Holler, E. Probiotic effects on experimental graft-versus-host disease: Let them eat yogurt. Blood 2004. [Google Scholar] [CrossRef] [Green Version]
Author | Year of Publication | Study Period | Transplant Type | No. of Patients | Patient Features | Incidence of CDI | Diagnostic Methods | GVHD | OS/TRM |
---|---|---|---|---|---|---|---|---|---|
Alonso CD [6] | 2012 | 2003–2008 | Allo-HSCT, Auto-HSCT | 999 | Adults | 92 (9.2%) | GDH Culture | Related | No difference |
Willems L [5] | 2012 | 2004–2007 | Allo-HSCT | 414 | Pediatrics and Adults (4–59) | 53 (13%) | EIA toxin A/B GDH Culture | Related | No difference |
Trifilio SM [8] | 2013 | 2004–2008 | Allo-HSCT, Auto-HSCT | 822 | Adults | 85 (10.3%) | EIA toxin A/B Culture | Related | Increased non-relapse mortality rates in CDI + aGVHD |
Bruminhent J [9] | 2014 | 2011–2012 | Allo-HSCT, Auto-HSCT | 150 | Adults | 37 (24.7%) | EIA toxin A/B GDH | Not related | No difference |
Hosokawa K [10] | 2014 | 2007–2008 | Allo-HSCT | 167 | Adults | 17 (10.2%) | EIA toxin A | Not related | No difference |
Kamboj M [11] | 2014 | 2005–2010 | Allo-HSCT | 793 | 598 Adults, 195 Pediatrics | 94 (11.9%) | EIA toxin A/B GDH | Not related | Not indicated |
Jain T [12] | 2015 | 2010–2012 | Allo-HSCT | 150 | Adults | 25 (16.7%) | Culture PCR | Not related | No difference |
Aldrete SdM [13] | 2017 | 2010–2013 | Allo-HSCT, Auto-HSCT | 650 | Adults | 86 (13.2%) | PCR | Not related | Higher TRM |
Alonso CD [6] | 2017 | 2003–2012 | Allo-HSCT (only UCBT) | 226 | Adults | 30 (13.3%) | EIA toxin A/B PCR | Not related | No difference |
Scardina T [14] | 2017 | 2009–2014 | Allo-HSCT, Auto-HSCT | 550 | Adults | 35 (6%) | EIA toxin A/B PCR | Not Related | No difference |
Ford C [15] | 2019 | 2005–2018 | Auto-HSCT | 472 | Adults | 33 (7%) | EIA toxin A/B GDH PCR | / | No difference |
Amberge S [16] | 2020 | 2004–2015 | Allo-HSCT | 727 | Adults | 96 (13%) + 103 (14%) asymptomatic | EIA toxin A/B GDH | Not Related | No difference |
Characteristic | n (=481) |
---|---|
Median Age | 55 (15–75) |
Sex (male/female) | 273/208 |
Diagnosis | |
Leukemia and MDS | 196 (41%) |
Lymphoma | 118 (24%) |
Multiple myeloma | 145 (30%) |
Other disease | 22 (5%) |
Previous infections | 177 (37%) |
MDR infections | 70 (14%) |
Gastrointestinal and/or urogenital comorbidities HCT-CI | 204 (42%) |
0 | 71 (15%) |
1–2 | 182 (38%) |
≥3 | 228 (47%) |
Previous abdominal surgery | 172 (36%) |
HCV infection | 6 (1%) |
HBV infection | 49 (10%) |
Previous Hospitalization | 152 (32%) |
IgG < 700 mg/dL | 207 (43%) |
Antibiotic therapy before HSCT | 194 (40%) |
State disease before HSCT | |
Response | 287 (60%) |
Active | 194 (40%) |
Type of HSCT | |
Autologous HSCT | 220 (46%) |
Allogeneic HSCT | 261 (54%) |
HLA identical sibling | 48 (19%) |
Matched unrelated donor | 105 (40%) |
Haploidentical donor | 47 (18%) |
Mismatched unrelated donor | 61 (23%) |
Stem cell source: PB | 462 (96%) |
Conditioning regimen | |
TBI-based regimen | 32 (7%) |
Busulfan-based regimen | 152 (32%) |
RIC | 62 (13%) |
Other myeloablative regimen | 235 (49%) |
Antibiotic therapy post-HSCT (n. lines) | |
0 | 107 (22%) |
1–2 | 215 (45%) |
≥3 | 159 (33%) |
Mucositis (grade) | |
0 | 45 (9%) |
1–2 | 193 (40%) |
3–4 | 142 (22%) |
TPN use | 314 (29%) |
aGVHD (grade) * | |
0 | 143/261 (55%) |
1–2 | 106/261 (41%) |
3–4 | 12/261 (4%) |
CMV reactivation * | 147/261 (56%) |
Other infections post-HSCT | 151 (31%) |
2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|
Patients with CDI after HSCT (tot = 26) | |||||
Auto-HSCT | 0 | 1 | 0 | 5 | 5 |
Allo-HSCT | 1 | 1 | 1 | 3 | 9 |
Toxigenic CD | 0 | 2 | 1 | 5 | 11 |
CDI presentation (median of days) | 6 | 11 | 10 | 10.5 | 8 |
Grade of diarrhea | |||||
<4 | 1 | 1 | - | 2 | 4 |
4–6 | - | - | - | 6 | 7 |
>6 | - | - | 1 | - | 1 |
Fever > 37.5 °C | 1 | 1 | 1 | 1 | 4 |
ANC < 1 × 109/L at the time of CDI diagnosis) | 1 | 2 | 0 | 3 | 8 |
≥grade II acute GVHD (grade 2) | 0 | 1 | 1 | 1 | 3 |
Gastrointestinal and urogenital comorbidities | 1 | 1 | 2 | 7 | 12 |
Abdominal surgery | 0 | 0 | 1 | 5 | 10 |
CD negativization (median of days) | NR | 68 | 10 | 20.2 | 11.7 |
Laboratory test used for CD diagnosis | EIA for toxin | EIA for toxin | EIA for toxin | GDH; PCR for toxin | GDH; PCR for toxin |
Risk Factor | SHR | 95% CI | p |
---|---|---|---|
Sex | |||
Male | 1 | ||
Female | 1.13 | 0.526–2.453 | 0.74 |
Age (yr) | 1.01 | 0.983–1.057 | 0.30 |
≤60 | 1 | ||
>60 | 2.39 | 1.089–5.257 | 0.03 |
Diagnosis | |||
Leukemia and MDS | 1 | ||
Lymphomas | 0.44 | 0.147–1.351 | 0.15 |
Myeloma | 0.53 | 0.205–1.368 | 0.19 |
Other diagnosis | 0.60 | 0.818–4.518 | 0.62 |
Gastrointestinal and urogenital comorbidities | 1.89 | 0.874–4.108 | 0.01 |
Previous infections | 2.36 | 1.085–5.137 | 0.03 |
Previous MDR infection | 1.04 | 0.362–2.997 | 0.93 |
HCT-CI | |||
HCT-CI 0 | 1 | ||
HCT-CI 1–2 | 1.19 | 0.244–5.841 | 0.82 |
HCT-CI ≥ 3 | 2.87 | 0.677–12.213 | 0.15 |
Previous abdominal surgery | 2.96 | 1.35–6.511 | 0.007 |
HCV infection | 6.63 | 1.912–22.842 | 0.003 |
HBV infection | 1.57 | 0.552–4.493 | 0.396 |
Hospitalization before HSCT | 2.55 | 1.185–5.526 | 0.017 |
IgG value pre-HSCT | 1.141 | 0.528–2.466 | 0.73 |
Antibiotic therapy before HSCT | 8.38 | 3.868–18.179 | 0.000 |
Disease status | |||
Responsive | 1 | ||
Active | 0.53 | 0.224–1.265 | 0.15 |
Type of HSCT | |||
HLA identical donor | 1 | ||
Matched unrelated donor | 0.95 | 0.292–3.090 | 0.93 |
Haploidentical donor | 0.76 | 0.177–3.338 | 0.72 |
Mismatched unrelated donor | 0.19 | 0.022–1.765 | 1.76 |
Autologous HSCT | 0.55 | 0.178–1.749 | 0.31 |
Conditioning regimen | |||
TBI-based | 1 | ||
Busulfan-based | 1.66 | 0.210–13.104 | 0.63 |
Reduced intensity | 2.11 | 0.237–18.822 | 0.50 |
Other myeloablative regimen | 1.76 | 0.233–13.351 | 0.58 |
Antibiotic therapy post-HSCT (n. lines) | |||
No lines | 1 | ||
1–2 lines | 0.66 | 0.232–1.914 | 0.45 |
≥3 lines | 1.40 | 0.531–3.733 | 0.49 |
Mucositis (grades) | |||
0–1–2 | 1 | ||
3–4 | 0.68 | 0.278–1.695 | 0.41 |
TPN use | 0.51 | 0.238−1.108 | 0.09 |
aGVHD (grades) | |||
0–1–2 | 1 | ||
3–4 | 1.52 | 0.545–4.28 | 0.41 |
CMV reactivation | 0.36 | 0.132–1.006 | 0.051 |
Other infections post-HSCT | 0.39 | 0.137–1.134 | 0.08 |
Factor | SHR | 95% CI | p |
---|---|---|---|
Previous abdominal surgery | 3.69 | 1.614–8.458 | 0.002 |
Antibiotic therapy before HSCT | 15.09 | 6.491–35.078 | 0.000 |
Previous HCV infection | 6.53 | 1.295–33.016 | 0.023 |
Other infections post-HSCT | 2.15 | 0.044–0.529 | 0.003 |
TRM | OS | |||||
---|---|---|---|---|---|---|
Factor | SHR | p | 95% CI | SHR | p | 95% CI |
Gastrointestinal comorbidity | 1.98 | 0.008 | 1.193–3.299 | 1.50 | 0.017 | 1.076–2.096 |
Previous infections | 1.533 | 0.024 | 1.058–2.222 | |||
Previous Hospitalization | 1.84 | 0.003 | 1.230–2.757 | |||
Disease status | 2.23 | 0.000 | 1.581–3.170 | |||
aGVHD (grades) | ||||||
0–3 | 1 | |||||
4 | 4.07 | 0.001 | 1.764–9.392 | |||
Other infections post-HSCT | 1.42 | 0.043 | 1.011–1.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosignoli, C.; Petruzzellis, G.; Radici, V.; Facchin, G.; Girgenti, M.; Stella, R.; Isola, M.; Battista, M.; Sperotto, A.; Geromin, A.; et al. Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation. J. Clin. Med. 2020, 9, 3673. https://doi.org/10.3390/jcm9113673
Rosignoli C, Petruzzellis G, Radici V, Facchin G, Girgenti M, Stella R, Isola M, Battista M, Sperotto A, Geromin A, et al. Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation. Journal of Clinical Medicine. 2020; 9(11):3673. https://doi.org/10.3390/jcm9113673
Chicago/Turabian StyleRosignoli, Chiara, Giuseppe Petruzzellis, Vera Radici, Gabriele Facchin, Marco Girgenti, Rossella Stella, Miriam Isola, Martalisa Battista, Alessandra Sperotto, Antonella Geromin, and et al. 2020. "Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation" Journal of Clinical Medicine 9, no. 11: 3673. https://doi.org/10.3390/jcm9113673
APA StyleRosignoli, C., Petruzzellis, G., Radici, V., Facchin, G., Girgenti, M., Stella, R., Isola, M., Battista, M., Sperotto, A., Geromin, A., Cerno, M., Arzese, A., Deias, P., Tascini, C., Fanin, R., & Patriarca, F. (2020). Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation. Journal of Clinical Medicine, 9(11), 3673. https://doi.org/10.3390/jcm9113673