Short-Term Outcomes of Surgery for Graves’ Disease in Germany
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Liu, Z.W.; Masterson, L.; Fish, B.; Jani, P.; Chatterjee, K. Thyroid surgery for Graves’ disease and Graves’ ophthalmopathy. Cochrane Database Syst. Rev. 2015, 25, CD010576. [Google Scholar] [CrossRef]
- Burch, H.B.; Cooper, D.S. Management of graves disease a review. JAMA 2015, 314, 2544–2554. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed]
- Dietlein, M.; Grünwald, F.; Schmidt, M.; Schneider, P.; Verburg, F.; Luster, M. DGN-Handlungsempfehlung (S1-Leitlinie) Radioiodtherapie bei Benignen Schilddrüsenerkr (Version 5) Stand: 10/2015—AWMF-Registernummer: 031-003. 2015. Available online: https://www.awmf.org/uploads/tx_szleitlinien/031-003l_S1_Radioiodtherapie_benigne_Schilddruesenerkrankungen_2015-10-abgelaufen.pdf (accessed on 30 October 2020).
- Genovese, B.M.; Noureldine, S.I.; Gleeson, E.M.; Tufano, R.P.; Kandil, E. What is the best definitive treatment for graves’ disease? A systematic review of the existing literature. Ann. Surg. Oncol. 2013, 20, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, D.K.; Clerici, T.; Dotzenrath, C.; Dralle, H.; Goretzki, P.E.; Hermann, M.; Holzer, K.; Kußmann, J.; Lorenz, K.; Nies, C.; et al. Leitlinie der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie—Chirurgische Arbeitsgemeinschaft Endokrinologie: Operative Therapie Benigner Schilddrüsenerkrankungen. AWMF/11/003/0021. 2015. Available online: https://www.awmf.org/uploads/tx_szleitlinien/088-007l_S2k_operative_Therapie_benigner_Schilddrüsenerkrankungen_2015-10-abgelaufen_01.pdf (accessed on 30 October 2020).
- Palit, T.K.; Miller, C.C.; Miltenburg, D.M. The efficacy of thyroidectomy for Graves’ disease: A meta-analysis. J. Surg. Res. 2000, 90, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Werga-Kjellman, P.; Zedenius, J.; Tallstedt, L.; Träisk, F.; Lundell, G.; Wallin, G. Surgical treatment of hyperthyroidism: A ten-year experience. Thyroid 2001, 11, 187–192. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, P.; Liu, Z.; Si, Y.; Jin, M. Total thyroidectomy vs. bilateral subtotal thyroidectomy in patients with Graves’ diseases: A meta-analysis of randomized clinical trials. Clin. Endocrinol. 2013, 79, 739–746. [Google Scholar]
- Papanastasiou, A.; Sapalidis, K.; Goulis, D.G.; Michalopulos, N.; Mareti, E.; Mantalovas, S.; Kesisoglou, I. Thyroid nodules as a risk factor for thyroid cancer in patients with Grave’s disease: A systematic review and meta-analysis of observational studies in surgically treated patients. Clin. Endocrinol. 2019, 91, 571–577. [Google Scholar] [CrossRef]
- Witte, J.; Goretzki, P.E.; Dotzenrath, C.; Simon, D.; Felis, D.; Neubauer, M.; Röher, H.D. Surgery for Graves’ disease: Total versus subtotal thyroidectomy—Results of a prospective randomized trial. World J. Surg. 2000, 24, 1303–1311. [Google Scholar] [CrossRef]
- Järhult, J.; Rudberg, C.; Larsson, E.; Selvander, H.; Sjövall, K.; Winsa, B.; Rastad, J.; Karlsson, F.A. TEO Study Group Graves’ disease with moderate-severe endocrine ophthalmopathy-long term results of a prospective, randomized study of total or subtotal thyroid resection. Thyroid 2005, 15, 1157–1164. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Hubalewska-Dydejczyk, A.; Gołkowski, F.; Nowak, W. Randomized clinical trial of bilateral subtotal thyroidectomy versus total thyroidectomy for Graves’ disease with a 5-year follow-up. Br. J. Surg. 2012, 99, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Maurer, E.; Maschuw, K.; Reuss, A.; Zieren, H.U.; Zielke, A.; Goretzki, P.; Simon, D.; Dotzenrath, C.; Steinmüller, T.; Jähne, J.; et al. Total Versus Near-Total Thyroidectomy in Graves Disease. Ann. Surg. 2019, 270, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Kim J kyu Lim, W.; Moon, B.I.; Paik, N.S. Increased risk of postoperative complications after total thyroidectomy with Graves’ disease. Head Neck. 2019, 41, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Thomusch, O.; Sekulla, C.; Billmann, F.; Seifert, G.; Dralle, H.; Lorenz, K.; PETS2 Study Group. Risk profile analysis and complications after surgery for autoimmune thyroid disease. Br. J. Surg. 2018, 105, 677–685. [Google Scholar] [CrossRef]
- Feroci, F.; Rettori, M.; Borrelli, A.; Coppola, A.; Castagnoli, A.; Perigli, G.; Cianchi, F.; Scatizzi, M. A systematic review and meta-analysis of total thyroidectomy versus bilateral subtotal thyroidectomy for Graves’ disease. Surgery 2014, 155, 529–540. [Google Scholar] [CrossRef]
- Thomusch, O.; Machens, A.; Sekulla, C.; Ukkat, J.; Brauckhoff, M.; Dralle, H. The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: A multivariate analysis of 5846 consecutive patients. Surgery 2003, 133, 180–185. [Google Scholar] [CrossRef]
- Erbil, Y.; Barbaros, U.; Ozbey, N.; Aral, F.; Özarmaǧan, S. Risk factors of incidental parathyroidectomy after thyroidectomy for benign thyroid disorders. Int. J. Surg. 2009, 7, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Musholt, T.J.; Clerici, T.; Frilling, A.; Goretzki, P.E.; Hermann, M.; Kußmann, J.; Lorenz, K.; Niederle, B.; Nies, C.; Simon, D.; et al. Leitlinie der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie—Chirurgische Arbeitsgemeinschaft Endokrinologie: Operative Therapie Maligner Schilddrüsenerkrankungen. AWMF-Leitlinien-Register Nr. 088/022. 2012. Available online: https://www.awmf.org/leitlinien/detail/anmeldung/1/ll/031-056OL.html (accessed on 30 October 2020).
- Bartsch, D.; Dotzenrath, C.; Vorländer, C.; Zielke, A.; Weber, T.; Buhr, H.J.; Klinger, C.; Lorenz, K.; StuDoQ/Thyroid Study Group. Current Practice of Surgery for Benign Goitre—An Analysis of the Prospective DGAV StuDoQ|Thyroid Registry. J. Clin. Med. 2019, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Rubio, G.A.; Koru-Sengul, T.; Vaghaiwalla, T.M.; Parikh, P.P.; Farra, J.C.; Lew, J.I. Postoperative outcomes in graves’ disease patients: Results from the nationwide inpatient sample database. Thyroid 2017, 27, 825–831. [Google Scholar] [CrossRef]
- Alesina, P.F.; Singaporewalla, R.M.; Eckstein, A.; Lahner, H.; Walz, M.K. Is minimally invasive, video-assisted thyroidectomy feasible in Graves’ disease? Surgery 2011, 149, 556–560. [Google Scholar] [CrossRef]
- Kwon, H.; Yi, J.W.; Song, R.Y.; Chai, Y.J.; Kim, S.; Choi, J.Y.; Lee, K.E. Comparison of Bilateral Axillo-Breast Approach Robotic Thyroidectomy with Open Thyroidectomy for Graves’ Disease. World J. Surg. 2016, 40, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, C.R.; Park, S.; Jeong, J.S.; Kang, S.W.; Jeong, J.J.; Nam, K.H.; Chung, W.Y.; Park, C.S. Initial experience with robotic gasless transaxillary thyroidectomy for the management of graves disease: Comparison of conventional open versus robotic thyroidectomy. Surg. Laparosc. Endosc. Percutaneous Tech. 2013, 23, e173–e177. [Google Scholar] [CrossRef] [PubMed]
- Garstka, M.; Kandil, E.; Saparova, L.; Bechara, M.; Green, R.; Haddad, A.B.; Kang, S.W.; Aidan, P. Surgery for Graves’ disease in the era of robotic-assisted surgery: A study of safety and feasibility in the Western population. Langenbeck Arch. Surg. 2018, 403, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Bartalena, L.; Hegedüs, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. 2018 European thyroid association guideline for the management of graves’ hyperthyroidism. Eur. Thyroid J. 2018, 7, 167–186. [Google Scholar] [CrossRef]
- Musholt, T.J.; Bockisch, A.; Clerici, T.; Dotzenrath, C.; Dralle, H.; Goretzki, P.E.; Hermann, M.; Holzer, K.; Karges, W.; Krude, H.; et al. Update of the S2k guidelines: Surgical treatment of benign thyroid diseases. Chirurg 2018, 89, 699–709. [Google Scholar]
- Cipolla, C.; Graceffa, G.; Calamia, S.; Fiorentino, E.; Pantuso, G.; Vieni, S.; Latteri, M. The value of total thyroidectomy as the definitive treatment for Graves’ disease: A single centre experience of 594 cases. J. Clin. Transl. Endocrinol. 2019, 16, 100183. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, J.D.; Hsu, C.C.; Yu, M.C. The long-term outcomes of thyroid function after subtotal thyroidectomy for Graves’ hyperthyroidism. J. Surg. Res. 2017, 220, 112–118. [Google Scholar] [CrossRef]
- Limonard, E.J.; Bisschop, P.H.; Fliers, E.; Van Dijkum, E.J.N. Thyroid function after subtotal thyroidectomy in patients with Graves’ hyperthyroidism. Sci. World J. 2012, 2012, 548796. [Google Scholar] [CrossRef] [Green Version]
- Chi, S.Y.; Hsei, K.C.; Sheen-Chen, S.M.; Chou, F.F. A prospective randomized comparison of bilateral subtotal thyroidectomy versus unilateral total and contralateral subtotal thyroidectomy for Graves’ disease. World J. Surg. 2005, 29, 160–163. [Google Scholar] [CrossRef]
- Hallgrimsson, P.; Nordenström, E.; Almquist, M.; Bergenfelz, A.O.J. Risk factors for medically treated hypocalcemia after surgery for Graves’ disease: A swedish multicenter study of 1,157 patients. World J. Surg. 2012, 36, 1933–1942. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; McHenry, C.R. Total thyroidectomy is superior to subtotal thyroidectomy for management of graves’ disease in the United States. World J. Surg. 2010, 34, 1261–1264. [Google Scholar] [CrossRef]
- Al Qubaisi, M.; Haigh, P.I. Hypocalcemia after Total Thyroidectomy in Graves Disease. Perm. J. 2019, 23, 18–188. [Google Scholar]
- Ebrahimi, H.; Edhouse, P.; Lundgren, C.I.; McMullen, T.; Sidhu, S.; Sywak, M.; Delbridge, L. Does autoimmune thyroid disease affect parathyroid autotransplantation and survival? Anz. J. Surg. 2009, 79, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, F.F.; Sywak, M.S.; Sidhu, S.B.; Barraclough, B.H.; Delbridge, L.W. Parathyroid autotransplantation during total thyroidectomy—Does the number of glands transplanted affect outcome? World J. Surg. 2005, 29, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Edafe, O.; Antakia, R.; Laskar, N.; Uttley, L.; Balasubramanian, S.P. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br. J. Surg. 2014, 101, 307–320. [Google Scholar] [CrossRef]
- Karakas, E.; Osei-Agyemang, T.; Schlosser, K.; Hoffmann, S.; Zielke, A.; Rothmund, M.; Hassan, I. The impact of parathyroid gland autotransplantation during bilateral thyroid surgery for graves’ disease on postoperative hypocalcaemia. Endocr. Regul. 2008, 42, 39–44. [Google Scholar]
- Lin, D.T.; Patel, S.G.; Shaha, A.R.; Singh, B.; Shah, J.P. Incidence of inadvertent parathyroid removal during thyroidectomy. Laryngoscope 2002, 112, 608–611. [Google Scholar] [CrossRef]
- Sippel, R.S.; Özgül, Ö.; Hartig, G.K.; Mack, E.A.; Chen, H. Risks and consequences of incidental parathyroidectomy during thyroid resection. Anz. J. Surg. 2007, 77, 33–36. [Google Scholar] [CrossRef]
- Page, C.; Strunski, V. Parathyroid risk in total thyroidectomy for bilateral, benign, multinodular goitre: Report of 351 surgical cases. J. Laryngol. Otol. 2007, 121, 237–241. [Google Scholar] [CrossRef]
- Lavazza, M.; Liu, X.; Wu, C.; Anuwong, A.; Kim, H.Y.; Liu, R.; Randolph, G.W.; Inversini, D.; Boni, L.; Rausei, S.; et al. Indocyanine green-enhanced fluorescence for assessing parathyroid perfusion during thyroidectomy. Gland Surg. 2016, 5, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Lang, B.H.H.; Wong, C.K.H.; Hung, H.T.; Wong, K.P.; Mak, K.L.; Au, K.B. Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy. Surgery 2017, 161, 87–95. [Google Scholar] [CrossRef]
- McWade, M.A.; Sanders, M.E.; Broome, J.T.; Solórzano, C.C.; Mahadevan-Jansen, A. Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery 2016, 159, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladurner, R.; Al Arabi, N.; Guendogar, U.; Hallfeldt, K.K.J.; Stepp, H.; Gallwas, J.K.S. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery. Ann. R. Coll. Surg. Engl. 2018, 100, 33–36. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, F.; Breuskin, I.; Abbaci, M.; Casiraghi, O.; Mirghani, H.; Lakhdar, A.B.; Laplace-Builhe, C.; Hartl, D. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study. World J. Surg. 2016, 40, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Bergenfelz, A.; Jansson, S.; Kristoffersson, A.; Mårtensson, H.; Reihnér, E.; Wallin, G.; Lausen, I. Gender Complications to thyroid surgery: Results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbecks Arch Surg. 2008, 393, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Cappellani, A.; Di Vita, M.; Zanghì, A.; Lo Menzo, E.; Cavallaro, A.; Alfano, G.; Giuffrida, D. The recurrent goiter: Prevention and management. Ann. Ital. Chir. 2008, 79, 247–253. [Google Scholar] [PubMed]
- Orloff, L.A.; Wiseman, S.M.; Bernet, V.J.; Fahey, T.J., 3rd; Shaha, A.R.; Shindo, M.L.; Snyder, S.K.; Stack, B.C., Jr.; Sunwoo, J.B.; Wang, M.B. American Zhyroid Association Statement on Postoperative Hypoparathyroidism: Diagnosis, Prevention and management in Adults. Thyroid 2018, 28, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Antakia, R.; Edafe, O.; Uttley, L.; Balasubramanian, S.P. Effectiveness of preventative and other surgical measures on hypocalcemia following bilateral thyroid surgery: A systematic review and meta-analysis. Thyroid 2015, 25, 95–106. [Google Scholar] [CrossRef]
- Kandil, E.; Mohsin, K.; Murcy, M.A.; Randolph, G.W. Continuous vagal monitoring value in prevention of vocal cord paralysis following thyroid surgery. Laryngoscope 2018, 128, 2429–2432. [Google Scholar] [CrossRef]
- Dionigi, G.; Donatini, G.; Boni, L.; Rausei, S.; Rovera, F.; Tanda, M.L.; Kim, H.Y.; Chiang, F.Y.; Wu, C.W.; Mangano, A.; et al. Continuous monitoring of the recurrent laryngeal nerve in thyroid surgery: A critical appraisal. Int. J. Surg. 2013, 11 (Suppl. 1), S44–S46. [Google Scholar] [CrossRef]
- Jonas, J.; Boskovic, A. Intraoperative neuromonitoring (IONM) for recurrent laryngeal nerve protection: Comparison of intermittent and continuous nerve stimulation. Surg. Technol. Int. 2014, 24, 133–138. [Google Scholar]
- Zhou, L.; Dionigi, G.; Pontin, A.; Pino, A.; Caruso, E.; Wu, C.W.; Sun, H.; Tufano, R.P.; Kim, H.Y. How does neural monitoring help during thyroid sugery for Graves’ disease? J. Clin. Transl. Endocrinol. 2019, 15, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Li, X.; Liu, Y.; Ling, L.; Kwong, J.S.; Ren, K.; Jiang, Y.; Sun, X.; Tian, H.; Li, S. Incidental thyroid carcinoma in surgery-treated hyperthyroid patients with Graves’ disease: A systematic review and meta-analysis of cohort studies. Cancer Manag. Res. 2018, 10, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fama, F.; Sindoni, A.; Cicciu, M.; Polito, F.; Piquard, A.; Saint-Marc, O.; Gioffre-Florio, M.; Benvenga, S. Preoperatively undiagnosed papillary thyroid carcinoma in patients thyroidectomized for benign multinodular goiter. Arch. Endocrinol. Metab. 2018, 62, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miccoli, P.; Minuto, M.N.; Galleri, D.; D’Agostino, J.; Basolo, F.; Antonangeli, L.; Aghini-Lombardi, F.; Berti, P. Incidental thyroid carcinoma in a large series of consecutive patients operated on for benign thyroid disease. Anz. J. Surg. 2006, 76, 123–126. [Google Scholar] [CrossRef]
- Pezzolla, A.; Marzaioli, R.; Lattarulo, S.; Docimo, G.; Conzo, G.; Ciampolillo, A.; Barile, G.; Anelli, F.M.; Madaro, A. Incidental carcinoma of the thyroid. Int. J. Surg. 2014, 12 (Suppl. 1), S98–S102. [Google Scholar] [CrossRef] [Green Version]
- Botrugno, I.; Lovisetto, F.; Cobianchi, L.; Zonta, S.; Klersy, C.; Vailati, A.; Dionigi, P.; Jemos, V. Incidental carcinoma in multinodular goiter: Risk factors. Am. Surg. 2011, 77, 1553–1558. [Google Scholar] [CrossRef]
- Chen, Y.K.; Lin, C.L.; Chang, Y.J.; Cheng, F.T.; Peng, C.L.; Sung, F.C.; Cheng, Y.H.; Kao, C.H. Cancer risk in patients with Graves’ disease: A nationwide cohort study. Thyroid 2013, 23, 879–884. [Google Scholar] [CrossRef] [Green Version]
No. of Operations for GD/Evaluation Period | No. of Institutions n = 78 | No. of Patients with GD n = 1808 | Postoperative Hypoparathyroidism n = 525 | Postoperative RLNP (per NAR) | Re-Operations Due to Bleeding |
---|---|---|---|---|---|
<10 | 38 (49%) | 155 (8.6%) | 72 (46.5%) | 15/279 (5.4%) | 1 (0.6%) |
11–30 | 22 (28%) | 411 (22.7%) | 143 (34.8%) | 42/772 (5.4%) | 5 (1.2%) |
31–50 | 7 (9%) | 280 (15.5%) | 62 (22.1%) | 26/533 (4.9%) | 3 (1.1%) |
>51 | 11 (14%) | 962 (53.2%) | 248 (25.8%) | 55/1845 (3.0%) | 14 (1.5%) |
Parameter | % (n) |
---|---|
female | 81.7% (1478) |
age < 18 years | 2.4% (43) |
age > 70 years | 3.5% (64) |
BMI > 35 | 7.2% (131) |
ASA 1/2 | 89.3% (1615) |
Endocrine orbitopathy | 35.7% (645) |
Biochemical hyperthyroidism at operation | 55.3% (999) |
Thyrotoxic crisis at operation | 0.3% (6) |
Preoperative vocal cord assessment | 98.5% (1780) |
Preoperative VCP | 0.3% (6) |
Previous neck surgery | 3.8% (68) |
Type of Surgery | Number (%) |
---|---|
Total thyroidectomy | 1668 (92.3%) |
Hemithyroidectomy | 98 (5.4%) |
Hemithyroidectomy, contralateral node excision | 4 (0.2%) |
Hemithyroidectomy, contralateral subtotal resection | 14 (0.8%) |
Unilateral subtotal resection | 3 (0.2%) |
Bilateral subtotal resection | 10 (0.6%) |
Other resections (e.g., isthmus resection, node excision) | 11 (0.6%) |
All procedures | 1808 (100%) |
Parameter | Number of NAR (%) | Unilateral RLNP * per NAR | Bilateral RLNP * per NAR | Postoperative not Examined |
---|---|---|---|---|
NAR | 3429 * (100%) | 134 (3.9%) | 4 (0.1%) | 97 (2.8%) |
only visualization RLN | 16 (0.5%) | 0 (0%) | 0 (0%) | 0 (0%) |
IONM | 3409 (99.4%) | 134 (3.9%) | 4 (0.1%) | 95 (2.8%) |
intermittent IONM | 2656 (77.4%) | 108 (4.1%) | 4 (0.1%) | 72 (2.7%) |
continuous IONM | 753 (22.0%) | 26 (3.4%) | 0 (0%) | 23 (3.1%) |
no visualization, no IONM | 4 (0.1%) | 0 (0%) | 0 (0%) | 2 (50%) |
Parameter | Number of Patients | Number of Patients with Transient Postoperative Hypoparathyroidism * | p-Value |
---|---|---|---|
All patients | 1808 (100%) | 525 (29.0%) | |
no PG identified | 31 (1.7%) | 8 (25.8%) | |
any PG identified | 1777 (98.3%) | 517 (29.1%) | 0.69 |
1 PG identified | 30 (1.6%) | 5 (16.6%) | |
2 or more PGs identified | 1747 (96.6%) | 512 (29.3%) | |
no PG autotransplanted | 1433 (79.3%) | 362 (25.2%) | <0.0001 |
any PG autotransplanted | 375 (20.7%) | 163 (43.5%) | |
1 PG autotransplanted | 3 (0.1%) | 3 (100%) | |
2 PG autotransplanted | 327 (18.1%) | 131 (40.1%) | |
1 or 2 PG autotransplanted | 330 (18.3%) | 134 (40.6%) | |
>2 PG autotransplanted | 45 (2.5%) | 29 (64.4%) |
Parameter | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Case load GD/study period > 30 | 0.543 (0.439–0.672) | <0.0005 | 0.490 (0.393–0.611) | <0.0005 |
Case load thyroid resection/year > 301 | 1.759 (1.351–2.290) | <0.0005 | 0.501 (0.392–0.640) | <0.0005 |
Age > 50 years | 0.660 (0.531–0.819) | <0.0005 | 0.690 (0.552–0.864) | 0.001 |
BMI > 30 | 0.701 (0.520–0.944) | 0.019 | 1.349 (1.064–1.711) | 0.014 |
Male gender | 0.580 (0.434–0.774) | <0.0005 | 0.666 (0.494–0.897) | 0.007 |
Previous bilateral thyroid/parathyroid surgery | 0.310 (0.109–0.883) | 0.028 | 0.330 (0.114–0.959) | 0.042 |
Autotransplantation PG | 2.275 (1.796–2.881) | <0.0005 | 2.276 (1.786–2.902) | <0.0005 |
Surgical method minimally invasive | 1.370 (0.547–3.430) | 0.502 | ||
Previous neck surgery overall | 0.683 (0.381–1.222) | 0.199 | ||
Lymphadenectomy | 0.620 (0.375–1.02) | 0.063 | ||
Thyroid volume > 100 g | 1.170 (0.689–1.985) | 0.080 | ||
Preoperative TSH level | 0.913 (0.737–1.131) | 0.405 | ||
Preoperative PTH level | 0.848 (0.496–1.451) | 0.548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurer, E.; Vorländer, C.; Zielke, A.; Dotzenrath, C.; von Frankenberg, M.; Köhler, H.; Lorenz, K.; Weber, T.; Jähne, J.; Hammer, A.; et al. Short-Term Outcomes of Surgery for Graves’ Disease in Germany. J. Clin. Med. 2020, 9, 4014. https://doi.org/10.3390/jcm9124014
Maurer E, Vorländer C, Zielke A, Dotzenrath C, von Frankenberg M, Köhler H, Lorenz K, Weber T, Jähne J, Hammer A, et al. Short-Term Outcomes of Surgery for Graves’ Disease in Germany. Journal of Clinical Medicine. 2020; 9(12):4014. https://doi.org/10.3390/jcm9124014
Chicago/Turabian StyleMaurer, Elisabeth, Christian Vorländer, Andreas Zielke, Cornelia Dotzenrath, Moritz von Frankenberg, Hinrich Köhler, Kerstin Lorenz, Theresia Weber, Joachim Jähne, Antonia Hammer, and et al. 2020. "Short-Term Outcomes of Surgery for Graves’ Disease in Germany" Journal of Clinical Medicine 9, no. 12: 4014. https://doi.org/10.3390/jcm9124014
APA StyleMaurer, E., Vorländer, C., Zielke, A., Dotzenrath, C., von Frankenberg, M., Köhler, H., Lorenz, K., Weber, T., Jähne, J., Hammer, A., Böttcher, K. A., Schwarz, K., Klinger, C., Buhr, H. J., & Bartsch, D. K. (2020). Short-Term Outcomes of Surgery for Graves’ Disease in Germany. Journal of Clinical Medicine, 9(12), 4014. https://doi.org/10.3390/jcm9124014