Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases
Abstract
:1. Introduction
2. CC16 in ALI and ARDS
3. CC16 in Bronchopulmonary Dysplasia
4. CC16 in COPD
5. CC16 in Idiopathic Pulmonary Fibrosis
6. CC16 in Sarcoidosis
7. CC16 in Respiratory Infections
8. CC16 in Asthma and Allergy
9. Summary, Conclusions, and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
BALF | Bronchoalveolar lavage fluid |
BAMSE | Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology |
BPD | Bronchopulmonary dysplasia |
CC16 | Club cell secretory protein |
COPD | Chronic obstructive pulmonary disease |
CS | Cigarette smoke |
CRS | Children’s Respiratory Study |
ECLIPSE | Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints |
ECRHS | The European community respiratory health survey |
FEV1 | Forced expiratory volume in one second |
ELISA | Enzyme-linked immunoassay |
GOLD | Global Initiative for Chronic Obstructive Lung Disease |
ICU | Intensive care unit |
IL-1β | Interleukin-1-beta |
IL6 | Interleukin 6 |
IPF | Idiopathic pulmonary fibrosis |
IQR | Interquartile range |
LHS | Lung Health Study |
LPS | Lipopolysaccharide |
MAAS | The Manchester asthma and allergy study |
MMT | Methylcyclopentadienyl manganese tricarbonyl |
NF-kB | Nuclear factor-kappa B |
NHPs | Non-human primates |
NLR | NOD-like receptors |
PaO2/FIO2 | Pressure of arterial oxygen to fractional inspired oxygen |
PF | Pulmonary fibrosis |
rCC16 | Recombinant club cell secretory protein |
RSV | Respiratory syncytial virus |
SAPALDIA | The Swiss study on air pollution and lung disease in adults |
TCRS | The Tucson children’s respiratory study |
TESAOD | Tucson epidemiological study of airway obstructive disease |
TLR | Toll-like receptor |
TNFα | Tumor necrosis factor-alpha |
URI | Upper respiratory infections |
WT | Wild type |
References
- Ferkol, T.; Schraufnagel, D. The Global Burden of Respiratory Disease. Ann. Am. Thorac. Soc. 2014, 11, 404–406. [Google Scholar] [CrossRef]
- Kreuter, M.; Cottin, V. The threat in chronic lung diseases: Acute exacerbations. Eur. Respir. Rev. 2017, 26, 170075. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Glaum, M.; El-Badri, N.; Mohapatra, S.; Haller, E.; Park, S.; Patrick, L.; Nattkemper, L.; Vo, D.; Cameron, D.F. Initial observations of cell-mediated drug delivery to the deep lung. Cell Transpl. 2010, 20, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Hogg, J.C. A Brief Review of Chronic Obstructive Pulmonary Disease. Can. Respir. J. 2012, 19, 381–384. [Google Scholar] [CrossRef]
- Smith, P.; Heath, D.; Moosavi, H. The Clara cell. Thorax 1974, 29, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Spella, M.; Lilis, I.; Stathopoulos, G.T. Shared epithelial pathways to lung repair and disease. Eur. Respir. Rev. 2017, 26, 170048. [Google Scholar] [CrossRef] [Green Version]
- Komáromy, L.; Tigyi, A. A unique cell type in the lung—The Clara cell (the non-ciliated bronchiolar epithelial cell). Acta Biol. Hung. 1988, 39, 17–29. [Google Scholar] [PubMed]
- Boers, J.E.; Ambergen, A.W.; Thunnissen, F.B.J.M. Number and Proliferation of Clara Cells in Normal Human Airway Epithelium. Am. J. Respir. Crit. Care Med. 1999, 159, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.M.; Williams, O.W.; Tuvim, M.J.; Nigam, R.; Mixides, G.P.; Blackburn, M.R.; DeMayo, F.J.; Burns, A.R.; Smith, C.; Reynolds, S.D.; et al. Mucin Is Produced by Clara Cells in the Proximal Airways of Antigen-Challenged Mice. Am. J. Respir. Cell Mol. Biol. 2004, 31, 382–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tata, P.R.; Rajagopal, J. Plasticity in the lung: Making and breaking cell identity. Development 2017, 144, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Fine, A. Stem Cells in Lung Injury and Repair. Am. J. Pathol. 2016, 186, 2544–2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokicki, W.M.; Wojtacha, J.; Dżeljijli, A. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. Pol. J. Cardio-Thoracic Surg. 2016, 1, 26–30. [Google Scholar] [CrossRef] [PubMed]
- A Boei, J.J.W.; Vermeulen, S.; Klein, B.; Hiemstra, P.S.; Verhoosel, R.M.; Jennen, D.G.J.; Lahoz, A.; Gmuender, H.; Vrieling, H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch. Toxicol. 2017, 91, 2093–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Keefe, K.M.; Jensen-Taubman, S.M.; Yang, D.; Yan, K.; Linnoila, R.I. Novel Method for Isolation of Murine Clara Cell Secretory Protein-Expressing Cells with Traces of Stemness. PLoS ONE 2012, 7, e43008. [Google Scholar] [CrossRef] [PubMed]
- Deburbure, C.; Pignatti, P.; Corradi, M.; Malerba, M.; Clippe, A.; Dumont, X.; Moscato, G.; Mutti, A.; Bernard, A. Uteroglobin-Related Protein 1 and Clara Cell Protein in Induced Sputum of Patients With Asthma and Rhinitis. Chest 2007, 131, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.B.; Zhang, Z.; Chilton, B.S. Uteroglobin: A Steroid-Inducible Immunomodulatory Protein That Founded the Secretoglobin Superfamily. Endocr. Rev. 2007, 28, 707–725. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 2019, 5, 1–22. [Google Scholar] [CrossRef]
- Thompson, B.T.; Chambers, R.C.; Liu, K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017, 377, 562–572. [Google Scholar] [CrossRef]
- Bhargava, M.; Wendt, C.H. Biomarkers in acute lung injury. Transl. Res. 2012, 159, 205–217. [Google Scholar] [CrossRef]
- Bernard, A.; Hermans, C.; Van Houte, G. Transient increase of serum Clara cell protein (CC16) after exposure to smoke. Occup. Environ. Med. 1997, 54, 63–65. [Google Scholar] [CrossRef] [Green Version]
- Broeckaert, F.; Arsalane, K.; Hermans, C.; Bergamaschi, E.; Brustolin, A.; Mutti, A.; Bernard, A. Serum clara cell protein: A sensitive biomarker of increased lung epithelium permeability caused by ambient ozone. Environ. Heal. Perspect. 2000, 108, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Broeckaert, F.; Bernard, A. Clara cell secretory protein (CC16): Characteristics and perspectives as lung peripheral biomarker. Clin. Exp. Allergy 2000, 30, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesur, O.; Critical Care Research Group of the Québec Respiratory Health Network; Langevin, S.; Berthiaume, Y.; Légaré, M.; Skrobik, Y.; Bellemare, J.-F.; Lévy, B.; Fortier, Y.; Lauzier, F.; et al. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensiv. Care Med. 2006, 32, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, W.; Wang, L.; Tian, F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J. Clin. Lab. Anal. 2017, 32, e22262. [Google Scholar] [CrossRef] [Green Version]
- Kropski, J.A.; Fremont, R.D.; Calfee, C.S.; Ware, L.B. Clara Cell Protein (CC16), a Marker of Lung Epithelial Injury, Is Decreased in Plasma and Pulmonary Edema Fluid From Patients With Acute Lung Injury. Chest 2009, 135, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Jorens, P.G.; Sibille, Y.; Goulding, N.; Van Overveld, F.J.; Herman, A.; Bossaert, L.; De Backer, W.; Lauwerys, R.; Flower, R.; Bernard, A. Potential role of Clara cell protein, an endogenous phospholipase A2 inhibitor, in acute lung injury. Eur. Respir. J. 1995, 8, 1647–1653. [Google Scholar] [CrossRef] [Green Version]
- Arsalane, K.; Broeckaert, F.; Knoops, B.; Wiedig, M.; Toubeau, G.; Bernard, A. Clara Cell Specific Protein (CC16) Expression after Acute Lung Inflammation Induced by Intratracheal Lipopolysaccharide Administration. Am. J. Respir. Crit. Care Med. 2000, 161, 1624–1630. [Google Scholar] [CrossRef] [Green Version]
- Hermans, C.; Knoops, B.; Wiedig, M.; Arsalane, K.; Toubeau, G.; Falmagne, P.; Bernard, A. Clara cell protein as a marker of Clara cell damage and bronchoalveolar blood barrier permeability. Eur. Respir. J. 1999, 13, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Eliane, P.H.R.D.; Bernard, A.; Hermans, C. Kinetics and determinants of the changes of CC16, a lung secretory protein in a rat model of toxic lung injury. Clin. Toxicol. 2009, 46, 230–238. [Google Scholar] [CrossRef]
- Yano, T.; Deterding, R.R.; Nielsen, L.D.; Jacoby, C.; Shannon, J.M.; Mason, R.J. Surfactant protein and CC-10 expression in acute lung injury and in response to keratinocyte growth factor. Chest 1997, 111, 137S–138S. [Google Scholar] [CrossRef]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Prim. 2019, 5, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kurland, G.; Deterding, R.R.; Hagood, J.S.; Young, L.R.; Brody, A.S.; Castile, R.G.; Dell, S.; Fan, L.L.; Hamvas, A.; Hilman, B.C.; et al. An Official American Thoracic Society Clinical Practice Guideline: Classification, Evaluation, and Management of Childhood Interstitial Lung Disease in Infancy. Am. J. Respir. Crit. Care Med. 2013, 188, 376–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, L.; Siddaiah, R.; Oji-Mmuo, C.N.; Silveyra, G.R.; Silveyra, P. Biomarkers for Bronchopulmonary Dysplasia in the Preterm Infant. Front. Pediatr. 2016, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafidis, K.; Stathopoulou, T.; Diamanti, E.; Soubasi, V.; Agakidis, C.; Balaska, A.; Drossou, V. Clara cell secretory protein (CC16) as a peripheral blood biomarker of lung injury in ventilated preterm neonates. Eur. J. Nucl. Med. Mol. Imaging 2008, 167, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Schrama, A.J.J.; Bernard, A.; Poorthuis, B.J.H.M.; Zwinderman, A.H.; Berger, H.M.; Walther, F. (Frans) Cord blood Clara cell protein CC16 predicts the development of bronchopulmonary dysplasia. Eur. J. Nucl. Med. Mol. Imaging 2008, 167, 1305–1312. [Google Scholar] [CrossRef]
- Guzmán-Bárcenas, J.; Calderón-Moore, A.; Baptista-González, H.; Irles, C. Clara Cell Protein Expression in Mechanically Ventilated Term and Preterm Infants with Respiratory Distress Syndrome and at Risk of Bronchopulmonary Dysplasia: A Pilot Study. Can. Respir. J. 2017, 2017, 1–5. [Google Scholar] [CrossRef]
- Mortality in the United States. N. Engl. J. Med. 1840, 22, 46–47. [CrossRef] [Green Version]
- Moll, M.; Sakornsakolpat, P.; Shrine, N.; Hobbs, B.D.; DeMeo, D.L.; John, C.; Guyatt, A.L.; McGeachie, M.J.; A Gharib, S.; Obeidat, M.; et al. Chronic obstructive pulmonary disease and related phenotypes: Polygenic risk scores in population-based and case-control cohorts. Lancet Respir. Med. 2020, 8, 696–708. [Google Scholar] [CrossRef]
- Ragland, M.F.; Benway, C.J.; Lutz, S.M.; Bowler, R.P.; Hecker, J.; Hokanson, J.E.; Crapo, J.D.; Castaldi, P.J.; DeMeo, D.L.; Hersh, C.P.; et al. Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am. J. Respir. Crit. Care Med. 2019, 200, 677–690. [Google Scholar] [CrossRef]
- Laucho-Contreras, M.E.; Polverino, F.; Gupta, K.; Taylor, K.L.; Kelly, E.; Pinto-Plata, V.; Divo, M.; Ashfaq, N.; Petersen, H.; Stripp, B.; et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur. Respir. J. 2015, 45, 1544–1556. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Churg, A.; Wright, J.L.; Li, Y.; Tam, S.; Man, S.F.P.; Tashkin, D.; Wise, R.A.; Connett, J.E.; Sin, D.D. Club Cell Protein 16 and Disease Progression in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestbo, J.; Edwards, L.D.; Scanlon, P.D.; Yates, J.C.; Agustí, A.; Bakke, P.; Calverley, P.M.; Celli, B.R.; Coxson, H.O.; Crim, C.; et al. Changes in Forced Expiratory Volume in 1 Second over Time in COPD. N. Engl. J. Med. 2011, 365, 1184–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, S.; Halonen, M.; Vasquez, M.M.; Spangenberg, A.; Stern, D.A.; Morgan, W.J.; Wright, A.L.; Lavi, I.; Tarès, L.; Carsin, A.-E.; et al. Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: A prospective study. Lancet Respir. Med. 2015, 3, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Pilette, C.; Godding, V.; Kiss, R.; Delos, M.; Verbeken, E.; Decaestecker, C.; De Paepe, K.; Vaerman, J.-P.; Decramer, M.; Sibille, Y. Reduced Epithelial Expression of Secretory Component in Small Airways Correlates with Airflow Obstruction in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 185–194. [Google Scholar] [CrossRef]
- Laucho-Contreras, M.E.; Polverino, F.; Tesfaigzi, Y.; Pilon, A.; Celli, B.R.; Owen, C.A. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin. Ther. Targets 2016, 20, 869–883. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Di, P.Y.P.; Wu, R.; Pinkerton, K.E.; Chen, Y. Repression of CC16 by Cigarette Smoke (CS) Exposure. PLoS ONE 2015, 10, e0116159. [Google Scholar] [CrossRef] [Green Version]
- A Lomas, D.; Silverman, E.K.; Edwards, L.D.; E Miller, B.; O Coxson, H.; Talsinger, R. on behalf of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax 2008, 63, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Polverino, F.; Doyle-Eisele, M.; McDonald, J.; Wilder, J.A.; Royer, C.; Laucho-Contreras, M.; Kelly, E.M.; Divo, M.; Pinto-Plata, V.; Mauderly, J.; et al. A novel nonhuman primate model of cigarette smoke-induced airway disease. Am. J. Pathol. 2014, 185, 741–755. [Google Scholar] [CrossRef] [Green Version]
- Sgalla, G.; Iovene, B.; Calvello, M.; Ori, M.; Varone, F.; Richeldi, L. Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir. Res. 2018, 19, 1–18. [Google Scholar] [CrossRef]
- Buendía-Roldán, I.; Ruiz, V.; Sierra, P.; Montes, E.; Ramírez, R.; Vega, A.; Salgado, A.; Vargas, M.H.; Mejía, M.; Pardo, A.; et al. Increased Expression of CC16 in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2016, 11, e0168552. [Google Scholar] [CrossRef]
- Tsoumakidou, M.; Bouloukaki, I.; Thimaki, K.; Tzanakis, N.; Siafakas, N.M. Innate immunity proteins in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Exp. Lung Res. 2010, 36, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Kokuho, N.; Ishii, T.; Kamio, K.; Hayashi, H.; Kurahara, M.; Hattori, K.; Motegi, T.; Azuma, A.; Gemma, A.; Kida, K. Diagnostic Values For Club Cell Secretory Protein (CC16) in Serum of Patients of Combined Pulmonary Fibrosis and Emphysema. COPD: J. Chronic Obstr. Pulm. Dis. 2014, 12, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Fujimoto, M.; Hamaguchi, Y.; Matsushita, T.; Inoue, K.; Sato, S.; Takehara, K. Use of Serum Clara Cell 16-kDa (CC16) Levels as a Potential Indicator of Active Pulmonary Fibrosis in Systemic Sclerosis. J. Rheumatol. 2011, 38, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Broos, C.E.; Van Nimwegen, M.; Hoogsteden, H.C.; Hendriks, R.W.; Kool, M.; Blink, B.V.D. Granuloma Formation in Pulmonary Sarcoidosis. Front. Immunol. 2013, 4, 437. [Google Scholar] [CrossRef] [Green Version]
- Bonham, C.A.; Strek, M.E.; Patterson, K.C. From granuloma to fibrosis. Curr. Opin. Pulm. Med. 2016, 22, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Bergantini, L.; Bianchi, F.; Cameli, P.; Mazzei, M.A.; Fui, A.; Sestini, P.; Rottoli, P.; Bargagli, E. Prognostic Biomarkers of Sarcoidosis: A Comparative Study of Serum Chitotriosidase, ACE, Lysozyme, and KL-6. Dis. Markers 2019, 2019, 8565423. [Google Scholar] [CrossRef]
- Bernard, A.; Marchandise, F.X.; Depelchin, S.; Lauwerys, R.; Sibille, Y. Clara cell protein in serum and bronchoalveolar lavage. Eur Respir J 1992, 5, 1231–1238. [Google Scholar]
- Shijubo, N.; Itoh, Y.; Yamaguchi, T.; Abe, S. Development of an enzyme-linked immunosorbent assay for Clara cell 10-kDa protein: In pursuit of clinical significance of sera in patients with asthma and sarcoidosis. Ann. N. Y. Acad. Sci. 2000, 923, 268–279. [Google Scholar] [CrossRef]
- Hermans, C.; Petrek, M.; Kolek, V.; Weynand, B.; Pieters, T.; Lambert, M.; Bernard, A. Serum Clara cell protein (CC16), a marker of the integrity of the air-blood barrier in sarcoidosis. Eur. Respir. J. 2001, 18, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.E. Respiratory Syncytial Virus Infection. Clin. Chest Med. 2017, 38, 29–36. [Google Scholar] [CrossRef]
- Piedimonte, G.; Perez, M.K. Respiratory Syncytial Virus Infection and Bronchiolitis. Pediatr. Rev. 2014, 35, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Kristjansson, S.; Bjarnarson, S.P.; Wennergren, G.; Rudin, A. Clara cell protein 16 (CC16) serum levels in infants during respiratory syncytial virus infection. Acta Paediatr. 2009, 98, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Egron, C.; Labbé, A.; E, R.; Mulliez, A.; Bernard, A.; Amat, F. Urinary club cell protein 16 (CC16): Utility of its assay during acute bronchiolitis. Pediatr. Pulmonol. 2019, 55, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Kurowski, M.; Jurczyk, J.; Jarzębska, M.; Moskwa, S.; Makowska, J.; Krysztofiak, H.; Kowalski, M.L. Association of serum Clara cell protein CC16 with respiratory infections and immune response to respiratory pathogens in elite athletes. Respir. Res. 2014, 15, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekudo, M.; Ishigatsubo, Y.; Eaoki, I. Pathology of asthma. Front. Microbiol. 2013, 4, 263. [Google Scholar] [CrossRef] [Green Version]
- Sonntag, H.-J.; Filippi, S.; Pipis, S.; Custovic, A. Blood Biomarkers of Sensitization and Asthma. Front. Pediatr. 2019, 7, 251. [Google Scholar] [CrossRef] [PubMed]
- A Laing, I.; Goldblatt, J.; Eber, E.; Hayden, C.M.; Rye, P.J.; A Gibson, N.; Palmer, L.J.; Burton, P.R.; Le Souef, P.N. A polymorphism of the CC16 gene is associated with an increased risk of asthma. J. Med. Genet. 1998, 35, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Laing, I.A.; Hermans, C.; Bernard, A.; Burton, P.R.; Goldblatt, J.; Le Souëf, P.N. Association between Plasma CC16 Levels, the A38G Polymorphism, and Asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 124–127. [Google Scholar] [CrossRef]
- Shijubo, N.; Itoh, Y.; Yamaguchi, T.; Sugaya, F.; Hirasawa, M.; Yamada, T.; Kawai, T.; Abe, S. Serum levels of Clara cell 10-kDa protein are decreased in patients with asthma. Lung 1999, 177, 45–52. [Google Scholar] [CrossRef]
- Guerra, S.; Vasquez, M.M.; Spangenberg, A.; Halonen, M.; Martin, R.J. Club cell secretory protein in serum and bronchoalveolar lavage of patients with asthma. J. Allergy Clin. Immunol. 2016, 138, 932–934.e1. [Google Scholar] [CrossRef] [Green Version]
- Van Vyve, T.; Chanez, P.; Bernard, A.; Bousquet, J.; Godard, P.; Lauwerijs, R.; Sibille, Y. Protein content in bronchoalveolar lavage fluid of patients with asthma and control subjects. J. Allergy Clin. Immunol. 1995, 95, 60–68. [Google Scholar] [CrossRef]
- Emmanouil, P.; Loukides, S.; Kostikas, K.; Papatheodorou, G.; Papaporfyriou, A.; Hillas, G.; Vamvakaris, I.; Triggidou, R.; Katafigiotis, P.; Kokkini, A.; et al. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma. Allergy 2015, 70, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-N.; Wang, J.; Lee, Y.L.; Ren, W.-H.; Lv, X.-F.; He, Q.-C.; Dong, G.-H. Association of urine CC16 and lung function and asthma in Chinese children. Allergy Asthma Proc. 2015, 36, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Keen, C.; Ståhl, A.; Wennergren, G.; Benson, M. Low levels of CC16 in nasal fluid of children with birch pollen-induced rhinitis. Allergy 2005, 60, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.; Fransson, M.; Martinsson, T.; Naluai, Å.T.; Uddman, R.; Cardell, L.O. Inverse relation between nasal fluid Clara Cell Protein 16 levels and symptoms and signs of rhinitis in allergen-challenged patients with intermittent allergic rhinitis. Allergy 2007, 62, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.D.; Malkinson, A.M. Clara cell: Progenitor for the bronchiolar epithelium. Int. J. Biochem. Cell Biol. 2010, 42, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chichester, C.H.; Philpot, R.M.; Weir, A.J.; Buckpitt, A.R.; Plopper, C.G. Characterization of the Cytochrome P-450 Monooxygenase System in Nonciliated Bronchiolar Epithelial (Clara) Cells Isolated from Mouse Lung. Am. J. Respir. Cell Mol. Biol. 1991, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Zhang, Z.; Mukherjee, A.B. Mice lacking uteroglobin are highly susceptible to developing pulmonary fibrosis. FEBS Lett. 2006, 580, 4515–4520. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-Z.; Rosenberger, C.L.; Bao, Y.-X.; Stark, J.M.; Harrod, K.S. Clara Cell Secretory Protein Modulates Lung Inflammatory and Immune Responses to Respiratory Syncytial Virus Infection. J. Immunol. 2003, 171, 1051–1060. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Takemura, T.; Ferrans, V.J. Evolution of metaplastic squamous cells of alveolar walls in pulmonary fibrosis produced by paraquat. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1989, 58, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Barkauskas, C.E.; Cronce, M.J.; Xue, Y.; Harris, J.R.; Liang, J.; Noble, P.W.; Hogan, B.L. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. USA 2011, 108, E1475–E1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukumoto, J.; Soundararajan, R.; Leung, J.; Cox, R.; Mahendrasah, S.; Muthavarapu, N.; Herrin, T.; Czachor, A.; Tan, L.C.; Hosseinian, N.; et al. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging 2016, 8, 3091–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baughman, R.P.; Culver, D.A.; Judson, M.A. A Concise Review of Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 2011, 183, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, K.C.; Hogarth, K.; Husain, A.N.; Sperling, A.I.; Niewold, T.B. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl. Res. 2012, 160, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shijubo, N.; Itoh, Y.; Yamaguchi, T.; Imada, A.; Hirasawa, M.; Yamada, T.; Kawai, T.; Abe, S. Clara Cell Protein–positive Epithelial Cells Are Reduced in Small Airways of Asthmatics. Am. J. Respir. Crit. Care Med. 1999, 160, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Bouchard, J.; Renzix, P. The Link between Allergic Rhinitis and Asthma: A Role for Antileukotrienes? Can. Respir. J. 2008, 15, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Raffay, T.; Locy, M.L.; Hill, C.L.; Jindal, N.; Rogers, L.K.; Welty, S.E.; Tipple, T.E. Neonatal Hyperoxic Exposure Persistently Alters Lung Secretoglobins and Annexin A1. BioMed Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
Disease | Specimen | Change of CC16 | Conclusion | Reference |
---|---|---|---|---|
ALI/ARDS | Human; Serum | ↑ | Temporary increased in firefighters after 20 min of smoke inhalation Slightly increased after two hours of riding in cyclists who exposed to photochemical smog No signs of lung impairment were reported | [20,21,22] |
ARDS | Human; Serum | ↑ | Higher in non-survivors compared to survivors Positive correlation with severity and mortality | [23,24] |
ALI/ARDS | Mice/Rats; Serum | ↑ | A transient elevation of CC16 when animals exposed to O3 or treated with 4-Ipomeanol/alpha-naphtylthiourea | [21,22,29] |
ARDS | Human; BALF | ↑ | BALF CC16 levels were higher compared to controls | [26] |
ALI/ARDS | Rats; Airways | ↑ | Lower CC16 concentration after treatment with LPS Lower CC16 messenger RNA expression in an acid aspiration rat model of ALI | [27,30] |
BPD | Human; Serum | ↑ | Higher CC16 levels in mechanically ventilated neonates who developed BPD | [34] |
BPD | Human; Cord blood | ↓ | Lower CC16 concentrations from cord blood predicted the development of BPD in preterm infants | [35] |
BPD | Human; Airways | ↓ | BALF CC16 level was lower in ventilated neonates who thereafter developed BPD | [36] |
COPD | Human; Serum | ↓ | Associated with FEV1 decline in most longitudinal studies throughout childhood (BAMSE, MAAS, and CRS birth control studies) or elderly life (LHS, ECLIPSE, TESAOD, ECRHS, and SAPALDIA) Reduced in COPD patients than smoker and non-smoker controls Lower in current than former smoker | [41,42,43,47] |
COPD | Human; Airways | ↓ | Airway CC16 expression is inversely correlated with the severity of airflow obstruction in COPD patients | [44,45,46] |
COPD | Mice; Airways | - | CC16 deficient mice had greater airspace enlargement than WT after CS exposure | [45,46] |
COPD | Mice; Airways | - | Both WT and CC16 deficient mice developed similar increases in airspace enlargement after CS exposure | [41] |
COPD | Non-human primates; Airways | ↓ | CC16 expression was downregulated in two different monkey species, Macaca mulatta and Macaca fascicularis, after CS-exposure | [46,48] |
PF | Human; Serum/Airways | ↑ | BALF and serum levels of CC16 were significantly increased in IPF compared to non-IPF patients and healthy controls | [50,52] |
PF | Mice | - | CC16 deficient mice developed more severe PF when exposed to Bleomycin | [78] |
Sarcoidosis | Human; Serum | ↑ | Serum and BALF CC16 increased in individuals with sarcoidosis compared with healthy controls | [57,58,59] |
Sarcoidosis | Human; BALF | ↑ | BALF CC16 increased in patients with sarcoidosis compared to controls | [58] |
Sarcoidosis | Human; BALF | No difference | CC16 in BALF was not affected by sarcoidosis | [57,59] |
Respiratory syncytial virus | Human; Serum | - | Positive association between the serum levels of CC16 and IgG against RSV in atopic athletes compared to non-atopic athletes and healthy controls | [64] |
Respiratory syncytial virus | Mice | - | Increased persistence of viruses and extended viral-specific gene expression were seen in CC16 deficient mice after RSV infection | [79] |
Asthma | Human; Serum | ↓ | Mutation in CC16 gene increased risk of asthma in childhood CC16 levels decreased in asthmatic patients with a long duration of the disease compared to those with a short duration Significantly decreased in patients with refractory and non-refractory asthma | [67,68,69,70] |
Asthma | Human; Serum | No difference | No significant association between CC16 serum levels and asthma among athletes | [64] |
Asthma | Human; Airways | ↓ | Fewer CC16 epithelial cells in the airways of asthmatic patients compared to controls Lower CC16 concentration in BALF of asthmatics compared with control healthy subjects | [58,70,71] |
Asthma | Human; Sputum | ↑ | Higher CC16 levels in sputum from patients with mild to moderate and refractory asthma compared to controls | [15,72] |
Asthma | Human; urine | ↓ | Lower urine CC16 levels in asthmatics children compared to healthy children | [73] |
Allergic rhinitis | Human; Serum | No difference | No significant association between CC16 serum levels and allergic rhinitis among athletes | [64] |
Allergic rhinitis | Human; Sputum | No difference | No difference in CC16 levels between atopic rhinitis and non-atopic controls | [15] |
Allergic rhinitis | Human; Nasal lavage fluids | ↓ | Reduction in the levels of CC16 in nasal lavage fluids compared with controls during the pollen season | [74,75] |
Condition/Disease | CC16 Serum Concentration (ng/mL) | p-Value | Reference |
---|---|---|---|
ARDS | ARDS: 54.44 ± 19.62 ng/mL Non-ARDS: 24.13 ± 12.32 ng/mL | 0.001 | [24] |
Severe ARDS: 64.73 ± 14.42 ng/mL Mild ARDS: 48.17 ± 19.81 ng/mL Moderate ARDS: 57.35 ± 19.33 ng/mL | <0.05 | ||
ARDS: 22 ng/mL, IQR 9–44 Cardiogenic pulmonary edema: 55 ng/mL, IQR, 18–123 | 0.053 | [25] | |
Non-survivors: 22 ng/mL, IQR 7–50 Survivors: 20 ng/mL, IQR 10–38 | 0.99 | ||
Non-survivors: 19.93 ng/mL, IQR 11.8–44.32 Survivors: 8.9 ng/mL, IQR 5.66–26.38 | 0.01 | [21,22] | |
ALI | Firefighters: 54.4 ± 34.9 ng/mL Controls:19.5 ± 11.7 | 0.04 | [20] |
Cyclists: men: 12.3 ± 0.9 ng/mL; women: 11.9 ± 1.3 ng/mL Controls: men: 11.2 ± 0.8 ng/mL; women: 11.1 ± 0.6 ng/mL | 0.01 | [21,22] | |
Smoking/COPD | Never: 8.81 ng/mL; Former: 8.16 ng/mL; Current: 6.21 ng/mL | <0.0001 | [43] |
Nonsmoker: 14.6 ± 5.0 ng/mL, smoker 11.3 ± 5.3 ng/mL | 0.0001 | [59] | |
Active smokers: 3.10 ± 2.23 ng/mL Sustained quitters: 4.35 ± 2.72 ng/mL Intermittent quitters: 3.90 ± 2.43 ng/mL | 0.0001 | [43] | |
Current and former smokers with COPD: 4.9 ng/mL Current and former smokers without COPD: 5.6 ng/mL Non-smokers controls: 6.4 ng/mL | <0.001 | [47] | |
IPF | Controls: 5.67 ± 0.42 ng/mL Emphysema: 5.66 ± 0.35 ng/mL Combined pulmonary fibrosis and emphysema: 9.38 ± 1.04 ng/mL IPF: 22.15 ± 4.64 ng/mL | <0.05 | [52] |
Controls: 10.7 ± 7.6 ng/mL Non-IPF: 23.1 ± 13 ng/mL IPF: 31.2 ± 10.8 ng/mL | <0.0001 | [50] | |
PF/systemic sclerosis | Systemic sclerosis with PF: 90.8 ± 110.7 ng/mL Systemic sclerosis without PF: 42.1 ± 80.7 ng/mL | <0.01 | [50] |
Sarcoidosis | Sarcoid patients: 25.9 ± 16.2 ng/mL Controls: 13.9 ± 5.2 ng/mL | <0.05 | [50] |
Respiratory Infections | RSV group: 19.9 (4.6–56.1) ng/mL Influenza/parainfluenza group: 12.7 (7.2–36.0) ng/mL Healthy controls: 10.5 (4.0–125) ng/mL | <0.01 | [21,22] |
Atopic athletes: 6.88, IQR 5.37–9.15 ng/mL Non-atopic athletes: 6.6, IQR 5.03–9.06 ng/mL | >0.05 | [21,22] | |
Athletes reporting frequent URIs: 5.57 ng/mL Control athletes: 7.03 ng/mL | 0.01 | ||
Asthma | Asthmatics children: 7.96 ng/mL; 95% CI =6.79–9.31 Non-asthmatic children: 9.98 ng/mL; 95% CI = 8.83–11.26 | 0. 006 | [21,22] |
Asthmatic nonsmokers: 7.02 ± 3.05 ng/mL Controls: 11.7 ± 3.90 ng/mL | <0.0001 | [21,22] | |
Atopic asthmatics: 7.50 ± 3.38 ng/mL Nonatopic asthmatics: 6.32 ± 2.39 ng/mL | >0.05 | ||
Asthmatics, long duration of disease: 6.37 ± 3.11 ng/mL Asthmatics, short duration of disease: 7.88 ± 2.78 ng/mL | 0.0106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuntashiri, S.; Zhu, Y.; Han, Y.; Wang, X.; Somanath, P.R.; Zhang, D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J. Clin. Med. 2020, 9, 4039. https://doi.org/10.3390/jcm9124039
Almuntashiri S, Zhu Y, Han Y, Wang X, Somanath PR, Zhang D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. Journal of Clinical Medicine. 2020; 9(12):4039. https://doi.org/10.3390/jcm9124039
Chicago/Turabian StyleAlmuntashiri, Sultan, Yin Zhu, Yohan Han, Xiaoyun Wang, Payaningal R. Somanath, and Duo Zhang. 2020. "Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases" Journal of Clinical Medicine 9, no. 12: 4039. https://doi.org/10.3390/jcm9124039
APA StyleAlmuntashiri, S., Zhu, Y., Han, Y., Wang, X., Somanath, P. R., & Zhang, D. (2020). Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. Journal of Clinical Medicine, 9(12), 4039. https://doi.org/10.3390/jcm9124039