Correlation between Fecal Calprotectin Levels in Meconium and Vitamin D Levels in Cord Blood: Association with Intestinal Distress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Ethics
2.2. Maternal and Neonatal Demographic Data
2.3. Measurement of Fecal Calprotectin and 25-OHD in Cord Blood
2.4. Definition of Intestinal Distress
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Features of the Study Population
3.2. Fecal Calprotectin Concentrations by Maternal and Neonatal Factors
3.3. Correlation between Fecal Calprotectin Concentrations and 25-OHD Levels
3.4. Association between Intestinal Distress and Fecal Calprotectin Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- González-Molero, I.; Rojo-Martínez, G.; Morcillo, S.; Gutierrez, C.; Rubio, E.; Pérez-Valero, V.; Esteva, I.; de Adana, M.S.R.; Almaraz, M.C.; Olveira, G.; et al. Hypovitaminosis D and incidence of obesity: A prospective study. Eur. J. Clin. Nutr. 2013, 67, 680–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloka, S.; Silva, C.; Wang, J.; Yong, V.W. Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J. Neuroinflammation 2011, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossein-Nezhad, A.; Mirzaei, K.; Keshavarz, S.A.; Ansar, H.; Saboori, S.; Tootee, A. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva Med. 2013, 104, 295–307. [Google Scholar] [PubMed]
- Talsness, C.E.; Penders, J.; Jansen, E.H.J.M.; Damoiseaux, J.; Thijs, C.; Mommers, M. Influence of vitamin D on key bacterial taxa in infant microbiota in the KOALA Birth Cohort Study. PLoS ONE 2017, 12, e0188011. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res. 2011, 55, 96–108. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Bechtold, M.L.; Nguyen, D.L. Vitamin D and the pathogenesis of inflammatory bowel disease. Curr. Gastroenterol. Rep. 2016, 18, 52. [Google Scholar] [CrossRef]
- Lagishetty, V.; Misharin, A.V.; Liu, N.Q.; Lisse, T.S.; Chun, R.F.; Ouyang, Y.; McLachlan, S.M.; Adams, J.S.; Hewison, M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 2010, 151, 2423–2432. [Google Scholar] [CrossRef] [Green Version]
- Del Pinto, R.; Pietropaoli, D.; Chandar, A.K.; Ferri, C.; Cominelli, F. Association between inflammatory bowel disease and vitamin D deficiency: A systematic review and meta-analysis. Inflamm. Bowel. Dis. 2015, 21, 2708–2717. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Zhang, Z.; Musch, M.W.; Ning, G.; Sun, J.; Hart, J.; Bissonnette, M.; Li, Y.C. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest Liver Physiol. 2008, 294, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.; Hendy, P.; Ding, J.N.; Shaw, S.; Hold, G.; Hart, A. The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis. J. Crohns Colitis 2018, 12, 963–972. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Erener-Ercan, T.; Kalayci-Oral, T.; Babayiğit, A.; Cebeci, B.; Semerci, S.Y.; Buyukkale, G. Maternal/neonatal vitamin D deficiency: A new risk factor for necrotizing enterocolitis in preterm infants? J. Perinatol. 2017, 37, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Berstad, A.; Arslan, G.; Folvik, G. Relationship between intestinal permeability and calprotectin concentration in gut lavage fluid. Scand. J. Gastroenterol. 2000, 35, 64–69. [Google Scholar] [PubMed]
- Kristinsson, J.; Røseth, A.; Fagerhol, M.K.; Aadland, E.; Schjønsby, H.; Børmer, O.P.; Raknerud, N.; Nygaard, K. Fecal calprotectin concentration in patients with colorectal carcinoma. Dis. Colon Rectum 1998, 41, 316–321. [Google Scholar] [CrossRef]
- Lee, Y.M.; Min, C.Y.; Choi, Y.J.; Jeong, S.J. Delivery and feeding mode affects fecal calprotectin levels in infants <7 months old. Early Hum. Dev. 2017, 108, 45–48. [Google Scholar]
- Røseth, A.G.; Schmidt, P.N.; Fagerhol, M.K. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 1999, 34, 50–54. [Google Scholar] [PubMed]
- van Zoonen, A.G.J.F.; Hulzebos, C.V.; Kobold, A.C.M.; Kooi, E.M.W.; Bos, A.F.; Hulscher, J.B.F. Serial fecal calprotectin in the prediction of necrotizing enterocolitis in preterm neonates. J. Pediatr. Surg. 2019, 54, 455–459. [Google Scholar] [CrossRef]
- D’Incà, R.; Dal Pont, E.; Di Leo, V.; Ferronato, A.; Fries, W.; Vettorato, M.G.; Martinez, D.; Sturniolo, G.C. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int. J. Colorectal Dis. 2007, 22, 429–437. [Google Scholar] [CrossRef]
- Fagerhol, M.K. Calprotectin, a faecal marker of organic gastrointestinal abnormality. Lancet 2000, 356, 1783–1784. [Google Scholar] [CrossRef]
- Aydemir, O.; Aydemir, C.; Sarikabadayi, Y.U.; Canpolat, F.E.; Erdeve, O.; Biyikli, Z.; Dilmen, U. Fecal calprotectin levels are increased in infants with necrotizing enterocolitis. J. Matern. Fetal Neonatal Med. 2012, 25, 2237–2241. [Google Scholar] [CrossRef]
- Yang, Q.; Smith, P.B.; Goldberg, R.N.; Cotton, C.M. Dynamic change of fecal calprotectin in very low birth weight infants during the first month of life. Neonatology 2008, 94, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Nakayuenyongsuk, W.; Christofferson, M.; Stevenson, D.K.; Sylvester, K.; Lee, H.C.; Park, K.T. Point-of-care fecal calprotectin monitoring in preterm infants at risk for necrotizing enterocolitis. J. Pediatr. 2018, 196, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Beşer, O.F.; Sancak, S.; Erkan, T.; Kutlu, T.; Cokuğraş, H.; Cokuğraş, F.Ç. Can fecal calprotectin level be used as a markers of inflammation in the diagnosis and follow-up of cow’s milk protein allergy? Allergy Asthma Immunol. Res. 2014, 6, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orivuori, L.; Mustonen, K.; de Goffau, M.C.; Hakala, S.; Paasela, M.; Roduit, C.; Dalphin, J.C.; Genuneit, J.; Lauener, R.; Riedler, J.; et al. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin. Exp. Allergy J. 2015, 45, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Moussa, R.; Khashana, A.; Kamel, N.; Elsharqawy, S.E. Fecal calprotectin levels in preterm infants with and without feeding intolerance. J. Pediatr. 2016, 92, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.C.; Kliegman, R.M. Necrotizing enterocolitis: Treatment based on staging criteria. Pediatr. Clin. N. Am. 1986, 33, 179–201. [Google Scholar] [CrossRef]
- Laforgia, N.; Baldassarre, M.E.; Pontrelli, G.; Indrio, F.; Altomare, M.A.; Di Bitonto, G.; Mautone, A. Calprotectin levels in meconium. Acta Paediatr. 2003, 92, 463–466. [Google Scholar] [CrossRef]
- Rougé, C.; Butel, M.J.; Piloquet, H.; Ferraris, L.; Legrand, A.; Vodovar, M.; Voyer, M.; de la Cochetière, M.F.; Darmaun, D.; Rozé, J.C. Fecal calprotectin excretion in preterm infants during the neonatal period. PLoS ONE 2010, 5, e11083. [Google Scholar] [CrossRef] [Green Version]
- de Souza Rugolo, L.M.S.; Bentlin, M.R.; Trindade, C.E.P. Preeclampsia: Effect on the fetus and newborn. NeoReviews 2011, 12, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Gregori, S.; Giarratana, N.; Smiroldo, S.; Uskokovic, M.; Adorini, L. A 1alpha, 25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 2002, 51, 1367–1374. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Wu, S.; Zhang, Y.G.; Lu, R.; Xia, Y.; Dong, H.; Sun, J. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin. Ther. 2015, 37, 996–1009. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.J.; Leaphart, C.L.; Mollen, K.P.; Hackam, D.J. The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 2007, 27, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Torrazza, R.M.; Neu, J. The altered gut microbiome and necrotizing enterocolitis. Clin. Perinatol. 2013, 40, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Kastenberg, Z.J.; Sylvester, K.G. The surgical management of necrotizing enterocolitis. Clin. Perinatol. 2013, 40, 135–148. [Google Scholar] [CrossRef]
- De Plaen, I.G. Inflammatory signaling in necrotizing enterocolitis. Clin. Perinatol. 2013, 40, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Zoppelli, L.; Güttel, C.; Bittrich, H.J.; Andrée, C.; Wirth, S.; Jenke, A. Fecal calprotectin concentrations in premature infants have a lower limit and show postnatal and gestational age dependence. Neonatology 2012, 102, 68–74. [Google Scholar] [CrossRef]
- Campeotto, F.; Baldassarre, M.; Butel, M.J.; Viallon, V.; Nganzali, F.; Soulaines, P.; Kalach, N.; Lapillonne, A.; Laforgia, N.; Moriette, G.; et al. Fecal calprotectin: Cutoff values for identifying intestinal distress in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 507–510. [Google Scholar]
- Indrio, F.; Riezzo, G.; Cavallo, L.; Di Mauro, A.; Francavilla, R. Physiological basis of food intolerance in VLBW. J. Matern. Fetal Neonatal Med. 2011, 24, 64–66. [Google Scholar] [CrossRef]
Variable | Median (IQR) or n (%) |
---|---|
Male sex | 118 (51.8) |
Gestational age (wks) | 37.0 (34.3–38.4) |
Birth weight (g) | 2635 (2100–3268) |
SGA | 22 (9.6) |
Delivery mode | |
Vaginal delivery | 68 (29.8) |
Cesarean section | 160 (70.2) |
Maternal features | |
Age | 33.0 (30.0–36.0) |
PROM | 35 (14.8) |
PIH or Preeclampsia | 24 (10.5) |
Diabetes | 24 (10.5) |
Antibiotics | 40 (17.5) |
Steroid | 31 (13.6) |
Neonatal features | |
Apgar score at 1 min | 7.0 (7.0–8.0) |
Apgar score at 5 min | 9.0 (8.0–9.0) |
Intestinal distress | 60 (26.3) |
NEC | 4 (1.8) |
25-OHD (ng/mL) | 21.0 (15.5–28.8) |
Calprotectin (μg/g) | 134.1 (55.6–403.2) |
Factors | n | FC (μg/g) | p-Value | |
---|---|---|---|---|
Diabetes | Yes | 24 | 248.6 (84.0–524.0) | 0.125 |
No | 204 | 126.8 (53.0–403.2) | ||
PROM | Yes | 35 | 148.1 (62.1–416.6) | 0.039 |
No | 193 | 86.0 (24.9–170.3) | ||
PIH or preeclampsia | Yes | 24 | 177.8 (62.3–356.5) | 0.739 |
No | 204 | 131.7 (55.6–414.3) | ||
Use of antibiotics | Yes | 40 | 105.8 (49.4–458.3) | 0.634 |
No | 188 | 134.1 (56.7–369.6) | ||
Use of steroid | Yes | 31 | 105.8 (68.9–318.9) | 0.975 |
No | 197 | 136.3 (53.1–416.6) |
Factors | n | FC (μg/g) | p-Value |
---|---|---|---|
Sex | |||
Female | 110 | 122.4 (53.3–364.5) | 0.455 |
Male | 118 | 148.1 (61.5–420.8) | |
Gestational age | |||
Preterm | 111 | 134.4 (61.8–437.2) | 0.639 |
Full-term | 117 | 133.8 (52.8–301.5) | |
Fetal growth | |||
SGA | 22 | 92.3 (22.5–191.3) | 0.086 |
AGA | 206 | 137.2 (61.5–415.8) | |
Delivery mode | |||
Vaginal delivery | 68 | 141.4 (77.6–397.4) | 0.420 |
Cesarean section | 160 | 123.7 (52.9–403.2) |
Variable | ID (n = 60) | Non-ID (n = 168) | p-Value |
---|---|---|---|
Male sex | 32 (53.3) | 86 (51.2) | 0.880 |
Gestational age (weeks) | 34.5 (32.1–37.1) | 37.4 (35.1–38.7) | <0.001 |
Birth weight (g) | 2185 (1663–2683) | 2805 (2238–3373) | <0.001 |
SGA | 4 (6.7) | 18 (10.7) | 0.452 |
Cesarean section | 46 (76.7) | 114 (67.9) | 0.250 |
Maternal features | |||
Age | 34.0 (30.0–37.0) | 32.0 (29.0–35.0) | 0.034 |
PROM | 11 (18.3) | 24 (14.3) | 0.531 |
PIH or preeclampsia | 8 (13.3) | 16 (9.5) | 0.463 |
Diabetes | 9 (15.0) | 15 (8.9) | 0.221 |
Antibiotics | 16 (26.6) | 24 (14.3) | 0.263 |
Steroid | 12 (20.0) | 19 (11.3) | 0.123 |
Neonatal features | |||
Apgar score at 1 min | 7.0 (6.0–8.0) | 7.0 (7.0–8.0) | 0.327 |
Apgar score at 5 min | 9.0 (8.0–9.0) | 9.0 (8.0–9.0) | 0.663 |
25-OHD (ng/mL) | 17.9 (12.8–22.1) | 23.2 (17.2–33.0) | <0.001 |
Calprotectin (μg/g) | 398.2 (131.8–900.2) | 105.6 (39.4–248.5) | <0.001 |
Factors | Adjusted | ||
---|---|---|---|
Odds Ratio | 95% CI | p-Value | |
Male sex | 0.673 | 0.278–1.630 | 0.380 |
Gestational age (weeks) | 0.675 | 0.471–0.968 | 0.032 |
Birth weight (g) | 0.999 | 0.998–1.001 | 0.448 |
SGA | 1.828 | 0.274–12.217 | 0.533 |
Cesarean section | 0.558 | 0.199–1.565 | 0.267 |
Maternal features | |||
Age | 1.164 | 1.049–1.292 | 0.004 |
PROM | 1.541 | 0.389–6.097 | 0.538 |
PIH or preeclampsia | 5.240 | 1.204–22.803 | 0.027 |
Diabetes | 1.801 | 0.471–6.882 | 0.390 |
Antibiotics | 3.649 | 0.577–23.098 | 0.169 |
Steroid | 1.515 | 0.388–5.910 | 0.550 |
Neonatal features | |||
Apgar score at 1 min | 0.517 | 0.271–0.986 | 0.045 |
Apgar score at 5 min | 0.344 | 0.125–0.951 | 0.040 |
25-OHD (ng/mL) | 0.943 | 0.897–0.991 | 0.021 |
Calprotectin (μg/g) | 1.003 | 1.002–1.004 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.H.; Park, S.H. Correlation between Fecal Calprotectin Levels in Meconium and Vitamin D Levels in Cord Blood: Association with Intestinal Distress. J. Clin. Med. 2020, 9, 4089. https://doi.org/10.3390/jcm9124089
Jung JH, Park SH. Correlation between Fecal Calprotectin Levels in Meconium and Vitamin D Levels in Cord Blood: Association with Intestinal Distress. Journal of Clinical Medicine. 2020; 9(12):4089. https://doi.org/10.3390/jcm9124089
Chicago/Turabian StyleJung, Jae Hoon, and Sook Hyun Park. 2020. "Correlation between Fecal Calprotectin Levels in Meconium and Vitamin D Levels in Cord Blood: Association with Intestinal Distress" Journal of Clinical Medicine 9, no. 12: 4089. https://doi.org/10.3390/jcm9124089
APA StyleJung, J. H., & Park, S. H. (2020). Correlation between Fecal Calprotectin Levels in Meconium and Vitamin D Levels in Cord Blood: Association with Intestinal Distress. Journal of Clinical Medicine, 9(12), 4089. https://doi.org/10.3390/jcm9124089