Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson’s Disease after Respiratory Muscle Training
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Participants
2.2. Respiratory Muscle Training (RMT)
2.3. Clinical Assessment
2.4. Testing Pulmonary Function
2.5. Testing Autonomic Function
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Correlation among Baseline Pulmonary Function, Cardiovascular Autonomic Function, and Disease Severity and Duration of PD
3.3. Changes of Cardiovascular Autonomic Function, Pulmonary Function, and Functional Score in Study and Control Groups during the Study Period
3.4. The Amount of Change in Parameters of Cardiovascular Autonomic and Pulmonary Function in the RMT Group
4. Discussion
5. Conclusions
Author Contributions
Ethics Approval
Informed Consent
Funding
Conflicts of Interest
References
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. National Institute for Clinical, E. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Postuma, R.B.; Poewe, W.; Litvan, I.; Lewis, S.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Chan, P.; Slow, E.; Seppi, K.; et al. Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2018, 33, 1601–1608. [Google Scholar] [CrossRef]
- Pal, P.K.; Sathyaprabha, T.N.; Tuhina, P.; Thennarasu, K. Pattern of subclinical pulmonary dysfunctions in Parkinson’s disease and the effect of levodopa. Mov. Disord. 2007, 22, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shao, W.B.; Gao, L.; Lu, J.; Gu, H.; Sun, L.H.; Tan, Y.; Zhang, Y.D. Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy--comparison with normal elderly. PLoS ONE 2014, 9, e116123. [Google Scholar] [CrossRef]
- King, L.A.; Priest, K.C.; Nutt, J.; Chen, Y.; Chen, Z.; Melnick, M.; Horak, F. Comorbidity and functional mobility in persons with Parkinson disease. Arch. Phys. Med. Rehabil. 2014, 95, 2152–2157. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Kim, B.J.; Koh, S.B.; Park, K.W. Autonomic dysfunction according to disease progression in Parkinson’s disease. Parkinsonism Relat. Disord. 2014, 20, 303–307. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R.; Group, N.V. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord. 2011, 26, 399–406. [Google Scholar] [CrossRef]
- Herer, B.; Arnulf, I.; Housset, B. Effects of levodopa on pulmonary function in Parkinson’s disease. Chest 2001, 119, 387–393. [Google Scholar] [CrossRef]
- Chiang, P.L.; Chen, H.L.; Lu, C.H.; Chen, Y.S.; Chou, K.H.; Hsu, T.W.; Chen, M.H.; Tsai, N.W.; Li, S.H.; Lin, W.C. Interaction of systemic oxidative stress and mesial temporal network degeneration in Parkinson’s disease with and without cognitive impairment. J. Neuroinflamm. 2018, 15, 281. [Google Scholar] [CrossRef]
- Lee, P.L.; Chou, K.H.; Lu, C.H.; Chen, H.L.; Tsai, N.W.; Hsu, A.L.; Chen, M.H.; Lin, W.C.; Lin, C.P. Extraction of large-scale structural covariance networks from grey matter volume for Parkinson’s disease classification. Eur. Radiol. 2018, 28, 3296–3305. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chen, M.H.; Chiang, P.L.; Chen, H.L.; Chou, K.H.; Chen, Y.C.; Yu, C.C.; Tsai, N.W.; Li, S.H.; Lu, C.H.; et al. Reduced gray matter volume and respiratory dysfunction in Parkinson’s disease: A voxel-based morphometry study. BMC Neurol. 2018, 18, 73. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.C.; Chen, P.C.; Huang, Y.C.; Tsai, N.W.; Chen, H.L.; Wang, H.C.; Lin, T.K.; Chou, K.H.; Chen, M.H.; Chen, Y.W.; et al. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease with and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging. Medicine 2016, 95, e2206. [Google Scholar] [CrossRef]
- Monteiro, L.; Souza-Machado, A.; Valderramas, S.; Melo, A. The effect of levodopa on pulmonary function in Parkinson’s disease: A systematic review and meta-analysis. Clin. Ther. 2012, 34, 1049–1055. [Google Scholar] [CrossRef]
- Widdicombe, J.G.; Sterling, G.M. The autonomic nervous system and breathing. Arch. Intern. Med. 1970, 126, 311–329. [Google Scholar] [CrossRef]
- Yu, L.; De Mazancourt, M.; Hess, A.; Ashadi, F.R.; Klein, I.; Mal, H.; Courbage, M.; Mangin, L. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease. Hum. Brain Mapp. 2016, 37, 2736–2754. [Google Scholar] [CrossRef]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chang, W.N.; Tsai, N.W.; Huang, C.C.; Wang, H.C.; Kung, C.T.; Su, Y.J.; Lin, W.C.; Chang, H.W.; Cheng, B.C.; et al. Link between cerebral blood flow and autonomic function in survivors of internal carotid artery occlusion. J. Neurol. Sci. 2015, 353, 143–148. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Chan, J.; Wu, Y.P.; Bernard, J.R.; Liao, Y.H. Effect of expiratory muscle strength training intervention on the maximum expiratory pressure and quality of life of patients with Parkinson disease. NeuroRehabilitation 2017, 41, 219–226. [Google Scholar] [CrossRef]
- Pitts, T.; Bolser, D.; Rosenbek, J.; Troche, M.; Okun, M.S.; Sapienza, C. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest 2009, 135, 1301–1308. [Google Scholar] [CrossRef] [Green Version]
- Troche, M.S.; Okun, M.S.; Rosenbek, J.C.; Musson, N.; Fernandez, H.H.; Rodriguez, R.; Romrell, J.; Pitts, T.; Wheeler-Hegland, K.M.; Sapienza, C.M. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: A randomized trial. Neurology 2010, 75, 1912–1919. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Martin, P.; Gil-Nagel, A.; Gracia, L.M.; Gomez, J.B.; Martinez-Sarries, J.; Bermejo, F. Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Mov. Disord. 1994, 9, 76–83. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.D.; Theurer, W.M. A stepwise approach to the interpretation of pulmonary function tests. Am. Fam. Physician 2014, 89, 359–366. [Google Scholar]
- Low, P.A. Testing the autonomic nervous system. Semin Neurol. 2003, 23, 407–421. [Google Scholar]
- Parati, G.; Di Rienzo, M.; Mancia, G. How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. J. Hypertens. 2000, 18, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Malberg, H.; Wessel, N.; Hasart, A.; Osterziel, K.J.; Voss, A. Advanced analysis of spontaneous baroreflex sensitivity, blood pressure and heart rate variability in patients with dilated cardiomyopathy. Clin. Sci. 2002, 102, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef] [Green Version]
- Reyes, A.; Castillo, A.; Castillo, J.; Cornejo, I. The effects of respiratory muscle training on peak cough flow in patients with Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 2018, 32, 1317–1327. [Google Scholar] [CrossRef]
- Reyes, A.; Castillo, A.; Castillo, J.; Cornejo, I.; Cruickshank, T. The Effects of Respiratory Muscle Training on Phonatory Measures in Individuals with Parkinson’s Disease. J. Voice 2019. [Google Scholar] [CrossRef]
- Saleem, A.F.; Sapienza, C.M.; Okun, M.S. Respiratory muscle strength training: Treatment and response duration in a patient with early idiopathic Parkinson’s disease. NeuroRehabilitation 2005, 20, 323–333. [Google Scholar] [CrossRef]
- Khokhar, A.; Nair, A.; Midya, V.; Kumar, A.; Sinharoy, A.; Ahmad, T.A.; Abu-Hasan, M.; Mondal, P. Association between pulmonary function and left ventricular volume and function in Duchenne muscular dystrophy. Muscle Nerve 2019, 60, 286–291. [Google Scholar] [CrossRef]
- Troche, M.S.; Rosenbek, J.C.; Okun, M.S.; Sapienza, C.M. Detraining outcomes with expiratory muscle strength training in Parkinson disease. J. Rehabil. Res. Dev. 2014, 51, 305–310. [Google Scholar] [CrossRef] [PubMed]
RMT Group (n = 38) | Disease Controls(n =37) | p Value | |
---|---|---|---|
Age, years | 63.7 ± 10.0 | 64.5 ± 9.8 | 0.757 |
Sex (female; male) | 21;17 | 12;12 | 0.688 |
Body mass index (kg/m2) | 24.6 ± 4.2 | 23.8 ± 4.5 | 0.496 |
Education, years | 9.1 ± 4.2 | 10.0 ± 5.4 | 0.467 |
Disease duration, years | 5.5 ± 4.5 | 5.4 ± 4.3 | 0.878 |
Levodopa equivalent dose (mg) | 731 ± 488 | 682 ± 379 | 0.654 |
Disease severity scale | |||
Hoehn-Yahr stage | 2.0 [1.4, 2.5] | 2.0 [1.0, 3.0] | 0.614 |
UPDRSα | 33.5 [16.5, 42.3] | 33.0 [25.5, 43.5] | 0.817 |
UPDRS Iβ | 2.0 [1.0, 3.0] | 1.5 [1.0, 3.0] | 0.511 |
UPDRS IIγ | 10.0 [3.8, 12.0] | 9.5 [7.3, 11.0] | 0.788 |
UPDRS IIIδ | 21.0 [9.8, 28.3] | 20.5 [15.3, 29.3] | 0.756 |
Pulmonary function parameters | |||
FVC (% pred) | 85.5 ± 16.9 | 83.5 ± 15.5 | 0.637 |
FEV1 (% pred) | 85.9 ± 13.7 | 85.2 ± 18.6 | 0.891 |
FEV1/FVC | 80.7 ± 9.2 | 80.8 ± 9.2 | 0.946 |
Maximum inspiratory pressures (MIP) | 80.8 ± 31.8 | 84.8 ± 40.6 | 0.689 |
Maximum expiratory pressures (MEP) | 102.0 ± 32..6 | 90.0 ± 37.2 | 0.209 |
Cardiovascular autonomic function | |||
Heart rate response to deep breathing (beats/min) | 7.3 ± 3.4 | 6.9 ± 3.7 | 0.749 |
Valsalva ratio | 1.37 ± 0.17 | 1.30 ± 0.19 | 0.290 |
BRSVM | 1.8 ± 0.9 | 1.7 ± 0.9 | 0.835 |
BRSSeq | 7.1 ± 4.5 | 6.7 ± 3.6 | 0.743 |
LF/HF ratio | 1.09[0.48, 1.75] | 1.79[0.54, 2.37] | 0.236 |
MIP | MEP | FVC | ||||
---|---|---|---|---|---|---|
Spearman Correlation | r | p | r | p | r | p |
Cardiovascular autonomic function | ||||||
HRDB (beats/min) | 0.251 | 0.067 | 0.303 | 0.026 * | 0.460 | < 0.001 *** |
Valsalva ratio | 0.082 | 0.571 | 0. 101 | 0.448 | 0.270 | 0.055 |
BRSVM (ms/mmHg) | −0.148 | 0.362 | −0.032 | 0.843 | −0.062 | 0.701 |
BRSseq (ms/mmHg) | 0.129 | 0.377 | 0.168 | 0.249 | 0.059 | 0.682 |
LF/HF ratio | 0.148 | 0.305 | 0.010 | 0.947 | 0.492 | < 0.001 *** |
Disease duration, years | −0.254 | 0.046 * | −0.111 | 0.391 | −0.156 | 0.222 |
Levodopa equivalent dose (mg) | −0.258 | 0.043 * | −0.108 | 0.402 | −0.307 | 0.773 |
Disease severity scale | ||||||
Hoehn-Yahr stage | −0.298 | 0.020 * | −0.332 | 0.009 ** | −0.374 | 0.003 *** |
UPDRSα | −0.333 | 0.008** | −0.201 | 0.117 | −0.130 | 0.309 |
UPDRS Iβ | −0.159 | 0.216 | −0.093 | 0.471 | −0.134 | 0.296 |
UPDRS IIγ | −0.327 | 0.009** | −0.171 | 0.183 | −0.109 | 0.395 |
UPDRS IIIδ | −0.294 | 0.020* | −0.207 | 0.107 | −0.145 | 0.255 |
RMT Group (n = 38) | Disease Control Group (n = 37) | |||
---|---|---|---|---|
Baseline | Follow-Up | Baseline | Follow-Up | |
Cardiovascular autonomic function | ||||
HR_DB | 7.3 ± 3.4 | 9.1 ± 5.8 * | 6.9 ± 3.7 | 7.7 ± 4.2 |
Valsalva ratio | 1.37 ± 0.17 | 1.39 ± 0.24 | 1.30 ± 0.19 | 1.29 ± 0.16 |
BRS_VM | 1.8 ± 0.9 | 2.1 ± 1.1 | 1.7 ± 0.9 | 1.7 ± 0.9 |
BRS_Seq | 7.1 ± 4.5 | 7.4 ± 3.8 | 6.7 ± 3.6 | 7.2 ± 2.1 |
LF/HF ratio | 1.09 [0.48, 1.75] | 0.78 [0.44, 1.72] | 1.79 [0.54, 2.37] | 0.76 [0.39, 1.84] |
Pulmonary function parameters | ||||
FVC (% pred) | 85.5 ± 16.9 | 81.3 ± 13.7 | 83.5 ± 15.5 | 83.0 ± 19.7 |
FEV1 (% pred) | 85.9 ± 13.7 | 84.7 ± 16.0 | 85.2 ± 18.6 | 83.8 ± 18.4 * |
FEV1/FVC | 80.7 ± 9.2 | 82.1 ± 8.0 | 80.8 ± 9.2 | 80.7 ± 8.8 |
Maximum inspiratory pressures (MIP) | 80.8 ± 31.8 | 103.5 ± 34.1 * | 84.8 ± 40.6 | 99.0 ± 35.5 |
Maximum expiratory pressures (MEP) | 102.0 ± 32..6 | 131.6 ± 34.8 * | 90.0 ± 37.2 | 93.7 ± 43.9 |
Disease severity score | ||||
UPDRS I | 2.0 [1.0, 3.0] | 1.0 [1.0, 1.5] * | 1.5 [1.0, 3.0] | 1.5 [1.0, 3.0] |
UPDRS II | 1.0 [3.8, 12.0] | 5.0 [2.0, 8.5] * | 9.5 [7.3, 11.0] | 9.0 [8.0, 11.8] |
UPDRS III | 21.0 [9.8, 28.3] | 7.0 [4.5, 11.5] * | 20.5 [15.3, 29.3] | 20.0 [16.3, 28.0] |
UPDRS ALL | 33.5 [16.5, 42.3] | 15.0 [7.5, 21.5] * | 33.0 [25.5, 43.5] | 33.0 [27.3, 42.0] |
ΔMIP | ΔMEP | |||
---|---|---|---|---|
Spearman Correlation | r | p | r | p |
Cardiovascular autonomic function | ||||
ΔHRDB | 0.141 | 0.412 | 0.039 | 0.822 |
ΔValsalva Ratio | 0.369 | 0.049 * | 0.383 | 0.040 * |
Δ BRSVM | −0.164 | 0.445 | −0.083 | 0.701 |
ΔBRSseq | 0.116 | 0.521 | 0.138 | 0.444 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C.; Lai, Y.-R.; Wu, F.-A.; Kuo, N.-Y.; Tsai, Y.-C.; Cheng, B.-C.; Tsai, N.-W.; Lu, C.-H. Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson’s Disease after Respiratory Muscle Training. J. Clin. Med. 2020, 9, 316. https://doi.org/10.3390/jcm9020316
Huang C-C, Lai Y-R, Wu F-A, Kuo N-Y, Tsai Y-C, Cheng B-C, Tsai N-W, Lu C-H. Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson’s Disease after Respiratory Muscle Training. Journal of Clinical Medicine. 2020; 9(2):316. https://doi.org/10.3390/jcm9020316
Chicago/Turabian StyleHuang, Chih-Cheng, Yun-Ru Lai, Fu-An Wu, Nai-Ying Kuo, Yuh-Chyn Tsai, Ben-Chung Cheng, Nai-Wen Tsai, and Cheng-Hsien Lu. 2020. "Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson’s Disease after Respiratory Muscle Training" Journal of Clinical Medicine 9, no. 2: 316. https://doi.org/10.3390/jcm9020316
APA StyleHuang, C.-C., Lai, Y.-R., Wu, F.-A., Kuo, N.-Y., Tsai, Y.-C., Cheng, B.-C., Tsai, N.-W., & Lu, C.-H. (2020). Simultaneously Improved Pulmonary and Cardiovascular Autonomic Function and Short-Term Functional Outcomes in Patients with Parkinson’s Disease after Respiratory Muscle Training. Journal of Clinical Medicine, 9(2), 316. https://doi.org/10.3390/jcm9020316