Imaging and Imaging-Based Management of Pediatric Thyroid Nodules
Abstract
:1. Introduction—Definitions
2. Epidemiology
3. Risk Factors for Thyroid Nodules and Factors Indicative of Higher Malignancy Risk
4. Initial Evaluation
5. Ultrasonography (US)
6. US Elastography
7. Fine-Needle Aspiration Biopsy (FNAB)
8. 123Ι/131Ι/99mTc Thyroid Scintigraphy
9. PET/CT
10. 99mTc-sestamibi (MIBI) Scan
11. CT and MRI
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
18F-FDG-PET | 18F fludeoxyglucose Positron Emission Tomography |
ATA | American Thyroid Association |
AUS/FLUS | Atypia or follicular lesion of undetermined significance |
CT | Calsitonin |
CNS | Central Nervous System |
CT | Computed Tomography |
DTC | Differentiated Thyroid Cancer |
EANM | European Association of Nuclear Medicine |
FNAB | Fine Needle Aspiration Biopsy |
FN/SFN | Follicular/Hürthle neoplasm or suspicious for follicular/Hürthle neoplasm |
GEC | Gene Expression Classifier |
GLs | Guidelines |
HT | Hashimoto Thyroiditis |
MTC | Medullary Thyroid Cancer |
MRI | Magnetic Resonance Imaging |
MTC | Medullary thyroid carcinoma |
MPUS | Multiparametric neck ultrasonography |
MEN | multiple endocrine neoplasia |
NCI | National Cancer Institute |
NPV | Negative predictive value |
PTC | Papillary thyroid cancer |
PPV | Positive predictive value |
RAIU | Radioiodine uptake |
SWE | shear-wave elastography |
SEER | Surveillance Epidemiology and End Results |
SUSP | Suspicious for malignancy |
TBSRTC | The Bethesda System for Reporting Thyroid Cytopathology |
TC | Thyroid Cancer |
Tg | Thyroglobulin |
TFNAC | thyroid fine needle aspiration cytology |
US | Ultrasound |
WOInd | Wash-Out Index |
References
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef] [Green Version]
- Popoveniuc, G.; onklaas, J. Thyroid Nodules. Med. Clin. North Am. 2012, 96, 329–349. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.L.; Waguespack, S.G.; Bauer, A.J.; Angelos, P.; Benvenga, S.; Cerutti, J.M.; Dinauer, C.A.; Hamilton, J.; Hay, I.D.; Luster, M.; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015, 25, 716–759. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.J.; Francis, G.L. Evaluation and management of thyroid nodules in children. Curr. Opin. Pediatr. 2016, 28, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Mussa, A.; De Andrea, M.; Motta, M.; Mormile, A.; Palestini, N.; Corrias, A. Predictors of Malignancy in Children with Thyroid Nodules. J. Pediatr. 2015, 167, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Paulson, V.A.; Rudzinski, E.R.; Hawkins, D.S. Thyroid Cancer in the Pediatric Population. Genes 2019, 10, E723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massimino, M.; Evans, D.B.; Podda, M.; Spinelli, C.; Collini, P.; Pizzi, N.; Bleyer, A. Thyroid cancer in adolescents and young adults. Pediatr. Blood Cancer 2018, 65, e27025. [Google Scholar] [CrossRef]
- Corrias, A.; Mussa, A.; Baronio, F.; Arrigo, T.; Salerno, M.; Segni, M.; Vigone, M.C.; Gastaldi, R.; Zirilli, G.; Tuli, G.; et al. Diagnostic features of thyroid nodules in pediatrics. Arch. Pediatr. Adolesc. Med. 2010, 164, 714–719. [Google Scholar] [CrossRef]
- Holmes, L., Jr.; Hossain, J.; Opara, F. Pediatric Thyroid Carcinoma Incidence and Temporal Trends in the USA (1973–2007): Race or Shifting Diagnostic Paradigm? ISRN Oncol. 2012, 2012, 906197. [Google Scholar] [CrossRef] [Green Version]
- Dermody, S.; Walls, A.; Harley, E.H., Jr. Pediatric thyroid cancer: An update from the SEER database 2007–2012. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 121–126. [Google Scholar] [CrossRef]
- Qian, Z.J.; Jin, M.C.; Meister, K.D.; Megwalu, U.C. Pediatric Thyroid Cancer Incidence and Mortality Trends in the United States, 1973–2013. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Giannoula, E.; Iakovou, I.; Chatzipavlidou, V. Risk factors and the progression of thyroid malignancies. Hell J. Nucl. Med. 2015, 18, 275–284. [Google Scholar] [PubMed]
- Giannoula, E.; Gkantaifi, A.; Iakovou, I. Radiation treatment of head and neck carcinomas as a risk factor for thyroid carcinomas. Hell J. Nucl. Med. 2016, 19, 65–74. [Google Scholar] [PubMed]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Guille, J.T.; Opoku-Boateng, A.; Thibeault, S.L.; Chen, H. Evaluation and management of the pediatric thyroid nodule. Oncologist 2015, 20, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penta, L.; Cofini, M.; Lanciotti, L.; Leonardi, A.; Principi, N.; Esposito, S. Hashimoto’s Disease and Thyroid Cancer in Children: Are They Associated? Front. Endocrinol. 2018, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Sklar, C.; Whitton, J.; Mertens, A.; Stoval, M.; Green, D.; Marina, N.; Greffe, B.; Wolden, S.; Robison, L. Abnormalities of the thyroid in survivors of Hodgkin’s disease:data from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2000, 85, 3227–3232. [Google Scholar]
- Meadows, A.T.; Friedman, D.L.; Neglia, J.P.; Mertens, A.C.; Donaldson, S.S.; Stovall, M.; Hammond, S.; Yasui, Y.; Inskip, P.D. Second neoplasms in survivors of childhoodcancer: Findings from the Childhood Cancer Survivor Study cohort. J. Clin. Oncol. 2009, 27, 2356–2362. [Google Scholar] [CrossRef]
- Veiga, L.H.; Holmberg, E.; Anderson, H.; Pottern, L.; Sadetzki, S.; Adams, M.J.; Sakata, R.; Schneider, A.B.; Inskip, P.; Bhatti, P.; et al. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies. Radiat. Res. 2016, 185, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W. Chernobyl thyroid cancer: 30 years of follow-up overview. Radiat. Prot. Dosim. 2018, 182, 58–61. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Galetti, V. Iodine intake as a risk factor for thyroid cancer: A comprehensive review of animal and human studies. Thyroid Res. 2015, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, D.G.; Shoback, D. Hormones and hormone action. In Green Spans Basic and Clinical Endocrinology, 9th ed.; Yale Journal of Biology and Medicine: New York, NY, USA, 2012. [Google Scholar]
- Boelaert, K.; Horacek, J.; Holder, R.L.; Watkinson, J.C.; Sheppard, M.C.; Franklyn, J.A. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J. Clin. Endocrinol. Metab. 2006, 91, 4295–4301. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyshchik, A.; Drozd, V.; Demidchik, Y.; Reiners, C. Diagnosis of thyroid cancer in children: Value of grayscale and power doppler US. Radiology 2005, 235, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Essenmacher, A.C.; Joyce, P.H., Jr.; Kao, S.C.; Epelman, M.; Pesce, L.M.; D’Alessandro, M.P.; Sato, Y.; Johnson, C.M.; Podberesky, D.J. Sonographic Evaluation of Pediatric Thyroid Nodules. Radiographics 2017, 37, 1731–1752. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ly, S.; Castroneves, L.A.; Frates, M.C.; Benson, C.B.; Feldman, H.A.; Wassner, A.J.; Smith, J.R.; Marqusee, E.; Alexander, E.K.; et al. A standardized assessmentof thyroid nodules in children confirms highercancer prevalence than in adults. J. Clin. Endocrinol. Metab. 2013, 98, 3238–3245. [Google Scholar] [CrossRef] [PubMed]
- Al Nofal, A.; Gionfriddo, M.R.; Javed, A.; Haydour, Q.; Brito, J.P.; Prokop, L.J.; Pittock, S.T.; Murad, M.H. Accuracy ofthyroid nodule sonography for the detection of thyroid cancerin children: Systematic review and meta-analysis. Clin. Endocrinol. 2016, 84, 423–430. [Google Scholar] [CrossRef]
- Koltin, D.; O’Gorman, C.S.; Murphy, A.; Ngan, B.; Daneman, A.; Navarro, O.M.; García, C.; Atenafu, E.G.; Wasserman, J.D.; Hamilton, J.; et al. Pediatric thyroidnodules: Ultrasonographic characteristics and inter-observervariability in prediction of malignancy. J. Pediatr. Endocrinol. Metab. 2016, 29, 789–794. [Google Scholar] [CrossRef]
- Richman, D.M.; Benson, C.B.; Doubilet, P.M.; Peters, H.E.; Huang, S.A.; Asch, E.; Wassner, A.J.; Smith, J.R.; Cherella, C.E.; Frates, M.C. Thyroid Nodules in Pediatric Patients: Sonographic Characteristics and Likelihood of Cancer. Radiology 2018, 288, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, V.; Lodise, P.; Grazhdani, H.; Mancuso, E.; Maggini, E.; Di Rocco, G.; D’Ambrosio, F.; Calliada, F.; Redler, A.; Ricci, P.; et al. Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur. J. Radiol. 2014, 83, 420–428. [Google Scholar] [CrossRef]
- Zhao, C.K.; Xu, H.X. Ultrasound elastography of the thyroid: Principles and current status. Ultrasonography 2019, 38, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.B.; Marino, L.C.I.; Yamaya, A.; Kochi, C.; Monte, O.; Longui, C.A.; Cury, A.N.; Fleury, E.D.F.C. Elastography for the evaluation of thyroid nodules in pediatric patients. Radiol. Bras. 2019, 52, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Pawluś, A.; Sokołowska-Dąbek, D.; Szymańska, K.; Inglot, M.S.; Zaleska-Dorobisz, U. Ultrasound elastography: Review of techniques and its clinical applications in pediatrics—Part 1. Adv. Clin. Exp. Med. 2015, 24, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rago, T.; Vitti, P. Role of thyroid ultrasound in the diagnostic evaluation of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 913–928. [Google Scholar] [CrossRef]
- Yurttutan, N.; Gungor, G.; Bilal, N.; Kizildag, B.; Baykara, M.; Sarica, M.A. Interpretation of thyroid glands in a group of healthy children: Real-time ultrasonography elastography study. J. Pediatr. Endocrinol. Metab. 2016, 29, 933–937. [Google Scholar] [CrossRef]
- Palabıyık, F.B.; İnci, E.; PapatyaÇakır, E.D.; Hocaoğlu, E. Evaluation of Normal Thyroid Tissue and Autoimmune Thyroiditis in Children Using Shear Wave Elastography. J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 132–139. [Google Scholar] [CrossRef]
- Borysewicz-Sanczyk, H.; Dzieciol, J.; Sawicka, B.; Bossowski, A. Practical application ofelastography in the diagnosis of thyroid nodules in children and adolescents. Horm. Res. Paediatr. 2016, 86, 39–44. [Google Scholar] [CrossRef]
- Partyka, K.L.; Huang, E.C.; Cramer, H.M.; Chen, S.; Wu, H.H. Histologic and clinical follow-up of thyroidfine-needle aspirates in pediatric patients. Cancer Cytopathol. 2016, 124, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Cibas, E.S.; Ali, S.Z. NCI Thyroid FNA State of the Science Conference. The Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 2009, 132, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Cherella, C.E.; Angell, T.E.; Richman, D.M.; Frates, M.C.; Benson, C.B.; Moore, F.D.; Barletta, J.A.; Hollowell, M.; Smith, J.R.; Alexander, E.K.; et al. Differences in Thyroid Nodule Cytology and Malignancy Risk between Children and Adults. Thyroid 2019, 29, 1097–1104. [Google Scholar] [CrossRef]
- Giovanella, L.; Avram, A.M.; Iakovou, I.; Kwak, J.; Lawson, S.A.; Lulaj, E.; Luster, M.; Piccardo, A.; Schmidt, M.; Tulchinsky, M.; et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Kresnik, E.; Gallowitsch, H.J.; Mikosch, P.; Stettner, H.; Igerc, I.; Gomez, I.; Kumnig, G.; Lind, P. Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 2003, 133, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Ryu, J.S.; Kim, T.Y.; Kim, W.B.; Kwon, G.Y.; Gong, G.; Moon, D.H.; Kim, S.C.; Hong, S.J.; Shong, Y.K. 18F-fluorodeoxyglucose positron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J. Clin. Endocrinol. Metab. 2007, 92, 1630–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastianes, F.M.; Cerci, J.J.; Zanoni, P.H.; Soares, J., Jr.; Chibana, L.K.; Tomimori, E.K.; de Camargo, R.Y.; Izaki, M.; Giorgi, M.C.; Eluf-Neto, J.; et al. Role of 18F-fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 2007, 92, 4485–4488. [Google Scholar] [CrossRef] [Green Version]
- Hales, N.W.; Krempl, G.A.; Medina, J.E. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am. J. Otolaryngol. 2008, 29, 113–118. [Google Scholar] [CrossRef]
- Wang, N.; Zhai, H.; Lu, Y. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J. Otolaryngol. Head Neck Surg. 2013, 42, 38. [Google Scholar] [CrossRef] [Green Version]
- Vriens, D.; Adang, E.M.; Netea-Maier, R.T.; Smit, J.W.; de Wilt, J.H.; Oyen, W.J.; de Geus-Oei, L.F. Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: A decision analytic approach. J. Clin. Endocrinol. Metab. 2014, 99, 3263–3274. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, A.; Puntoni, M.; Treglia, G.; Foppiani, L.; Bertagna, F.; Paparo, F.; Massollo, M.; Dib, B.; Paone, G.; Arlandini, A.; et al. Thyroid nodules with indeterminate cytology: Prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur. J. Endocrinol. 2016, 174, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Giovanella, L.; Suriano, S.; Maffioli, M.; Ceriani, L.; Spriano, G. (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck 2010, 32, 607–611. [Google Scholar]
- Leidig-Bruckner, G.; Cichorowski, G.; Sattler, P.; Bruckner, T.; Sattler, B. Evaluation of thyroid nodules—Combined use of 99mTc-methylisobutylnitrile scintigraphy and aspiration cytology to assess risk of malignancy and stratify patients for surgical or nonsurgical therapy—A retrospective cohort study. Clin. Endocrinol. 2012, 76, 749–758. [Google Scholar] [CrossRef]
- Saggiorato, E.; Angusti, T.; Rosas, R.; Martinese, M.; Finessi, M.; Arecco, F.; Trevisiol, E.; Bergero, N.; Puligheddu, B.; Volante, M.; et al. 99mTc-MIBI Imaging in the Presurgical Characterization of Thyroid Follicular Neoplasms: Relationship to Multidrug Resistance Protein Expression. J. Nucl. Med. 2009, 50, 1785–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campennì, A.; Siracusa, M.; Ruggeri, R.M.; Laudicella, R.; Pignata, S.A.; Baldari, S.; Giovanella, L. Differentiating malignant from benign thyroid nodules with indeterminate cytology by 99mTc-MIBI scan: A new quantitative method for improving diagnostic accuracy. Sci. Rep. 2017, 7, 6147. [Google Scholar]
- Hoang, J.K.; Branstetter, B.F., 4th; Gafton, A.R.; Lee, W.K.; Glastonbury, C.M. Imaging of thyroid carcinoma with CT and MRI: Approaches to common scenarios. Cancer Imaging 2013, 13, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubin, J.H.; Adams, M.J.; Shore, R.; Holmberg, E.; Schneider, A.B.; Hawkins, M.M.; Robison, L.L.; Inskip, P.D.; Lundell, M.; Johansson, R.; et al. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts. J. Clin. Endocrinol. Metab. 2017, 102, 2575–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hempel, J.M.; Kloeckner, R.; Krick, S.; Pinto dos Santos, D.; Schadmand-Fischer, S.; Boeßert, P.; Bisdas, S.; Weber, M.M.; Fottner, C.; Musholt, T.J.; et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 2016, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Exposure to Radioactivity | Medical Exposure |
---|---|
External Beam Radiation Therapy | |
Radioactive Contamination | |
Genes’ mutations andrelated types of thyroid tumors | RET:MTC |
HRAS, KRAS, NRAS: FTA, FTC, FVPTC, PDTC, ATC | |
PI3KCA: FTA, FTC, ATC, PTC | |
AKT1: Metastatic cancer | |
CTNNB1: PDTC, ATC | |
TP53: PDTC, ATC | |
PPKAR1A: PTC, HCTC | |
IDH1: FTC, FVPTC, PTC, ATC | |
ALK: ATC | |
APC: NMTC | |
EGFR: PTC | |
BRAFV600E: PTC, FVPTC, TCPTC,ATC | |
BRAFK601E: FVPTC | |
PTEN (mutation): FTCA, FTC, ATC, PTC | |
PTEN (deletion): FTC | |
NDUFA13: HCTC | |
Benign thyroid diseases | Autoimmune thyroiditis, most commonly Hashimoto |
Goiter | |
Grave’s disease | |
Iodine consumption | |
Dietary and Metabolic factors | Obesity |
Lack of physical exercise | |
Smoking | |
Female sex | |
Gender hormones and reproductive function | Menstruation before the age of 12 or after 14 years |
Gestation | |
Exogenous hormones | |
Trace elements associated with volcanic activity | |
Environmental factors | Air pollutants |
Xenobiotics | |
Viruses |
A. Sonographic patterns of thyroid nodules and estimated risk of malignancy [24]. | ||
Sonographic Pattern | US Features | Estimated Risk of Malignancy |
High suspicion | Solid hypoechoic nodule or solid hypoechoic component of a partially cystic nodule with one or more of the following features: irregular margins (infiltrative, microlobulated), microcalcifications, taller-than-wide shape, rim calcifications with small extrusive soft tissue component, evidence of extrathyroidal extension | >70–90% |
Intermediate suspicion | Hypoechoic solid nodule with smooth margins without microcalcifications, extrathyroidal extension, or taller-than-wide shape | 10–20% |
Low suspicion | Isoechoic or hyperechoic solid nodule, or partially cystic nodule with eccentric solid areas, without microcalcification, irregular margin or extrathyroidal extension, or taller-than-wide shape. | 5–10% |
Very low suspicion | Spongiform or partially cystic nodules without any of the sonographic features described in low, intermediate, or high suspicion patterns | <3% |
Benign | Purely cystic nodules (no solid component) | <1% |
B. Differences between pediatric and adult thyroid nodules | ||
Difference | Pediatric | Adults |
Epidemiology [4,5] | Less common. Nodule prevalence: 0.2–5% | More common Nodule prevalence: 19–35% |
Higher likelihood of malignancy (25%) | Lower likelihood of malignancy (10%) | |
Histology/Stage [3] | Higher incidence of regional lymph node involvement, extrathyroidal extension, and pulmonary metastasis | Lower incidence of regional lymph node involvement, extrathyroidal extension, and pulmonary metastasis |
Prognosis [11] | More favorable progression-free survival in children Mortality rate ~0.1% in patients aged < 20 | Less favorable progression-free survival in adults Maximum mortality rate up to 27.4% in patients aged 75–84 |
Molecular [3] | Higher prevalence of gene rearrangements and a lowerfrequency of point mutations in the proto-oncogenes implicatedin PTC | Lower prevalence of gene rearrangements and a higherfrequency of point mutations in the proto-oncogenes implicatedin PTC |
BRAF mutations are the less common abnormality in children PTC | BRAF mutations are the most common abnormality in adult PTC (36–83% of cases) | |
RET/PTC rearrangements are more common in PTC from children | RET/PTC rearrangements are less common in adult PTC | |
Sonographic characteristics [8,25,26,27,28,29] | The malignancy rate is increased with increasing nodule size | The nodule’s size is not associated with increased malignancy risk |
Color Doppler analysisis not a useful differentiating characteristic in the identification of thyroid cancer | Color Doppler analysis has incremental value in the identification of malignancies | |
Patients with an abnormal background sonographic appearance documented a higher risk of malignancy | A higher risk of malignancy is not documented for patients with an abnormal background sonographic appearance | |
Diffuse sclerosing variant PTC, with abundant microcalcifications is more common in children | Diffuse sclerosing variant PTC with abundant microcalcifications is less common in adults |
I | Non-diagnostic or unsatisfactory | Cyst fluid only Virtually acellular specimen Other (obscuring blood, clotting artifact, etc.) |
II | Benign | Consistent with a benign follicular nodule (includes adenomatoid nodule, colloid nodule, etc.) Consistent with lymphocytic (Hashimoto) thyroiditis in the proper clinical context Consistent with granulomatous (subacute) thyroiditis Other |
III | Atypia or follicular lesion of undetermined significance (AUS/FLUS). | |
IV | Follicular/Hürthle neoplasm or suspicious for follicular/Hürthle neoplasm (FN or SFN) | Specify if Hürthle cell (oncocytic) type |
V | Suspicious for malignancy (SUSP) | Suspicious for papillary carcinoma Suspicious for medullary carcinoma Suspicious for metastatic carcinoma Suspicious for lymphoma Other |
VI | Malignant | Papillary thyroid carcinoma Poorly differentiated carcinoma Medullary thyroid carcinoma Undifferentiated (anaplastic) carcinoma Squamous cell carcinoma Carcinoma with mixed features (specify) Metastatic carcinoma Non-Hodgkin lymphoma Other |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iakovou, I.; Giannoula, E.; Sachpekidis, C. Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. J. Clin. Med. 2020, 9, 384. https://doi.org/10.3390/jcm9020384
Iakovou I, Giannoula E, Sachpekidis C. Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. Journal of Clinical Medicine. 2020; 9(2):384. https://doi.org/10.3390/jcm9020384
Chicago/Turabian StyleIakovou, Ioannis, Evanthia Giannoula, and Christos Sachpekidis. 2020. "Imaging and Imaging-Based Management of Pediatric Thyroid Nodules" Journal of Clinical Medicine 9, no. 2: 384. https://doi.org/10.3390/jcm9020384
APA StyleIakovou, I., Giannoula, E., & Sachpekidis, C. (2020). Imaging and Imaging-Based Management of Pediatric Thyroid Nodules. Journal of Clinical Medicine, 9(2), 384. https://doi.org/10.3390/jcm9020384