Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality
Abstract
:1. Introduction
2. Method
2.1. Study Population
2.2. Medical Procedures and Rehabilitation Program
2.3. Assessment of Arthrokinematic Motion Quality
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
- -
- non-weight bearing walking with crutches;
- -
- isometric quadriceps/hamstring strengthening;
- -
- isometric hip adductor/abductor strengthening;
- -
- isometric ankle flexors/extensors strengthening.
- -
- magnetotherapy;
- -
- hydrotherapy;
- -
- cryotherapy.
- -
- friction and transverse massage for soft-tissue (ligaments and tendons) restrictions;
- -
- manual proprioceptive neuromuscular facilitation exercises;
- -
- PIR techniques for quadriceps (rectus femoris) and triceps surae;
- -
- talocrural, tibiofemoral and patellofemoral joints mobilization.
- -
- passive ROM exercises for knee and ankle joints.
- -
- non-weight bearing triceps surae and quadriceps (rectus femoris) stretching;
- -
- active ROM (mostly plantar and dorsi-flexion for ankle joint and flexion and extension for knee joint) exercises with elastic tubing;
- -
- stationary bike;
- -
- closed-kinetic chain activities;
- -
- basic strengthening exercises for lower extremities muscles;
- -
- basic proprioception exercises;
- -
- walking on different surfaces;
- -
- rotate board in clockwise and counterclockwise directions non-weight-bearing and weight-bearing for bilateral and unilateral stance.
- -
- nonweight bearing triceps surae and rectus femoris stretching (15 min);
- -
- active ROM exercises with elastic tubing (15 min);
- -
- basic proprioception exercises (15 min);
- -
- magnetotherapy;
- -
- hydrotherapy;
- -
- cryotherapy.
- -
- friction and transverse massage for soft-tissue (ligaments and tendons) restrictions;
- -
- manual proprioceptive neuromuscular facilitation exercises;
- -
- PIR techniques for quadriceps, gastrocnemius and soleus muscles;
- -
- manual lymphatic drainage (if required);
- -
- ankle and knee joints mobilization techniques (if required).
- -
- passive and active ROM exercises;
- -
- weight bearing triceps surae and quadriceps stretching;
- -
- active ROM exercises with elastic tubing for all movements within lower extremity;
- -
- advanced strengthening exercises for lower extremity muscles, such as resisted eccentric movements;
- -
- jogging on different surfaces, walking on different surfaces without visual control;
- -
- progress from jogging to sprinting in straight lines;
- -
- advanced balance and functional exercise with internal provoked perturbations while performing dynamic activities.
- -
- weight bearing triceps surae and quadriceps stretching (15 min);
- -
- active ROM exercises with elastic tubing (15 min);
- -
- advanced proprioception exercises (15 min).
References
- Ahn, J.H.; Lee, S.H.; Choi, S.H.; Wang, J.H.; Jang, S.W. Evaluation of clinical and magnetic resonance imaging results after treatment with casting and bracing for the acutely injured posterior cruciate ligament. Arthroscopy 2011, 27, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Sasabe, R.; Sakamoto, J.; Goto, K.; Honda, Y.; Kataoka, H.; Nakano, J.; Origuchi, T.; Endo, D.; Koji, T.; Okita, M. Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model. J. Orthop. Res. 2016, 35, 1998–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneguchi, A.; Ozawa, J.; Kawamata, S.; Yamaoka, K. Development of arthrogenic joint a contracture as a result of pathological changes in remobilized rat knees. J. Orthop. Res. 2016, 35, 1314–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.; Trudel, G.; Laneuville, O. Noninflammatory joint contractures arising from immobility: Animal models to future treatments. BioMed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; He, R.; Zhu, L.; Liang, T.; Wang, Z.; Lu, Y.; Ren, J.; Yi, X.; Xiao, D.; Wang, K. Endoplasmic reticulum stress-dependent ROS production mediates synovial myofibroblastic differentiation in the immobilization-induced rat knee joint contracture model. Exp. Cell Res. 2018, 369, 325–334. [Google Scholar] [CrossRef]
- Haklar, U.; Ayhan, E.; Ulku, T.K.; Karaoglu, S. Arthrofibrosis of the Knee. In Sports Injuries; Doral, M., Karlsson, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 915–931. [Google Scholar]
- Usher, K.M.; Zhu, S.; Mavropalias, G.; Carrino, J.A.; Zhao, J.; Xu, J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019, 7, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Vanwanseele, B.; Lucchinetti, E.; Stüssi, E. The effects of immobilization on the characteristics of articular cartilage: Current concepts and future directions. Osteoarthr. Cartil. 2002, 10, 408–419. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, B.; Liu, S.; Mao, F.; Zhang, X.; Hu, J.; Zhou, J.; Yao, Q.; Xu, Y.; Wang, L. Cartilage matrix changes in contralateral mobile knees in a rabbit model of osteoarthritis induced by immobilization. BMC Musculoskelet. Disord. 2015, 16, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Bączkowicz, D.; Falkowski, K.; Majorczyk, E. Assessment of relationships between joint motion quality and postural control in patients with chronic ankle joint instability. J. Orthop. Sports Phys. Ther. 2017, 47, 570–577. [Google Scholar] [CrossRef]
- Bączkowicz, D.; Majorczyk, E. Joint motion quality in chondromalacia progression assessed by vibroacoustic signal analysis. PM&R 2016, 8, 1065–1071. [Google Scholar] [CrossRef]
- Chila, A. Foundations of Osteopathic Medicine, 3rd ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Robertson, C.J.; Hurley, M.; Jones, F. People’s beliefs about the meaning of crepitus in patellofemoral pain and the impact of these beliefs on their behaviour: A qualitative study. Musculoskelet. Sci. Pract. 2017, 28, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Song, S.J.; Park, C.H.; Liang, H.; Kim, S.J. Noise around the knee. Clin. Orthop. Surg. 2018, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Puniello, M.S. Iliotibial band tightness and medial patellar glide in patients with patellofemoral dysfunction. J. Orthop. Sports Phys. Ther. 1993, 17, 144–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bączkowicz, D.; Majorczyk, E.; Kręcisz, K. Age-related impairment of quality of joint motion in vibroarthrographic signal analysis. BioMed Res. Int. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bączkowicz, D.; Kręcisz, K.; Borysiuk, Z. Analysis of patellofemoral arthrokinematic motion quality in open and closed kinetic chains using vibroarthrography. BMC Musculoskelet. Disord. 2019, 20, 48–56. [Google Scholar] [CrossRef]
- Lo, G.H.; Driban, J.B.; Price, L.L.; Eaton, C.; McAlindon, T. Subjective crepitus predicts subsequent development of radiographic and symptomatic tibiofemoral osteoarthritis: Data from the osteoarthritis initiative. Osteoarthr. Cartil. 2014, 22, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Schiphof, D.; van Middelkoop, M.; de Klerk, B.M.; Oei, E.; Hofman, A.; Koes, B.; Weinans, H.; Bierma-Zeinstra, S. Crepitus is a first indication of patellofemoral osteoarthritis (and not of tibiofemoral osteoarthritis). Osteoarthr. Cartil. 2014, 22, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, B.; Prior, J.; Shark, L.K.; Selfe, J.; Cole, P.; Goodacre, J.A. Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints. Med. Eng. Phys. 2009, 31, 1013–1022. [Google Scholar] [CrossRef]
- Kim, K.S.; Seo, J.H.; Kang, J.U.; Song, C.G. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput. Methods Programs Biomed. 2009, 94, 198–206. [Google Scholar] [CrossRef]
- Tanaka, N.; Hoshiyama, M. Articular sound and clinical stages in knee arthropathy. J. Musculoskelet. Res. 2011, 14, 1150006. [Google Scholar] [CrossRef]
- Nalband, S.; Sundar, A.; Prince, A.A.; Agarwal, A. Feature selection and classification methodology for the detection of knee-joint disorders. Comput. Methods Programs Biomed. 2016, 127, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Rangayyan, R.M.; Oloumi, F.; Wu, Y.; Cai, S. Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed. Signal Process. Control. 2013, 8, 23–29. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, P.; Luo, X.; Huang, H.; Liao, L.; Yao, Y.; Wu, M.; Rangayyan, R.M. Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures. Comput. Methods Programs Biomed. 2016, 130, 1–12. [Google Scholar] [CrossRef]
- Schlüter, D.K.; Spain, L.; Quan, W.; Southworth, H.; Platt, N.; Mercer, J.; Shark, L.-K.; Waterton, J.C.; Bowes, M.; Diggle, P.J.; et al. Use of acoustic emission to identify novel candidate biomarkers for knee osteoarthritis (OA). PLoS ONE 2019, 14, e0223711. [Google Scholar] [CrossRef] [PubMed]
- Rudge, W.; Newman, K.; Trompeter, A. Fractures of the tibial shaft in adults. Orthop. Trauma 2014, 28, 243–255. [Google Scholar] [CrossRef]
- Rangayyan, R.M.; Wu, Y. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann. Biomed. Eng. 2009, 37, 156–163. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Ando, A.; Chimoto, E.; Saijo, Y.; Ohmori-Matsuda, K.; Itoi, E. Changes of articular cartilage after immobilization in a rat knee contracture model. J. Orthop. Res. 2009, 27, 236–242. [Google Scholar] [CrossRef]
- Kunz, R.I.; Coradini, J.G.; Silva, L.I.; Bertolini, G.; Brancalhao, R.; Ribeiro, L. Effects of immobilization and remobilization on the ankle joint in Wistar rats. Braz. J. Med. Biol. Res. 2014, 47, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, D.C.; Silva, M.C.; Neto, S.-R.; Souza, M.R.; Souza, R.R. The effects of joint immobilization on articular cartilage of the knee in previously exercised rats. J. Anat. 2013, 222, 518–525. [Google Scholar] [CrossRef]
- Nomura, M.; Sakitani, N.; Iwasawa, H.; Kohara, Y.; Takano, S.; Wakimoto, Y.; Kuroki, H.; Moriyama, H. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthr. Cartil. 2017, 25, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.P.; Guilak, F.; Jay, G.D.; Zauscher, S. Interaction of lubricin with type II collagen surfaces: Adsorption, friction, and normal forces. J. Biomech. 2014, 47, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapala, J.; Arokoski, J.P.; Rönkkö, S.; Ågren, U.; Kosma, V.-M.; Lohmander, L.S.; Tammi, M.; Helminen, H.J.; Kiviranta, I. Decline after immobilisation and recovery after remobilisation of synovial fluid IL1, TIMP, and chondroitin sulphate levels in young beagle dogs. Ann. Rheum. Dis. 2001, 60, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trudel, G. Differentiating the myogenic and arthrogenic components of joint contractures. An experimental study on the rat knee joint. Int. J. Rehabil. Res. 1997, 2, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Trudel, G.; Jabi, M.; Uhthoff, H.K. Localized and adaptive synoviocyte proliferation characteristics in rat knee joint contractures secondary to immobility. Arch. Phys. Med. Rehabil. 2003, 84, 1350–1356. [Google Scholar] [CrossRef]
- Ando, A.; Hagiwara, Y.; Onoda, Y.; Hatori, K.; Suda, H.; Chimoto, E.; Itoi, E. Distribution of type A and B synoviocytes in the adhesive and shortened synovial membrane during immobilization of the knee joint in rats. Tohoku J. Exp. Med. 2010, 221, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Lizhang, J.; Fisher, J.; Jin, Z.; Burton, A.; Williams, S. The effect of contact stress on cartilage friction, deformation and wear. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 461–475. [Google Scholar] [CrossRef]
- Simas, J.M.; Kunz, R.I.; Brancalhão, R.M.; Ribeiro, L.D.F.C.; Bertolini, G.R.F. Effects of physical exercise on the cartilage of ovariectomized rats submitted to immobilization. Einstein 2015, 13, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Khan, M.Y.; Minhas, L.A. Effects of immobilisation and re-mobilisation on superficial zone of articular cartilage of patella in rats. J. Pak. Med. Assoc. 2012, 62, 531–535. [Google Scholar]
- Pihlajamäki, H.K.; Kuikka, P.I.; Leppänen, V.V.; Kiuru, M.J.; Mattila, V.M. Reliability of clinical findings and magnetic resonance imaging for the diagnosis of chondromalacia patellae. J. Bone Jt. Surg. Am. 2010, 92, 927–934. [Google Scholar] [CrossRef] [Green Version]
Immobilized Group (n = 34) | Controls (n = 37) | |
---|---|---|
Number of males/females | 23/11 | 24/13 |
Age (years), mean (SD) | 33.8 (2.7) | 34.2 (2.9) |
Height (cm), mean (SD) | 176.8 (10.5) | 175.4 (11.2) |
Weight (kg), mean (SD) | 75.4 (12.1) | 76.2 (13.8) |
BMI, mean (SD) | 24.6 (3.4) | 25.3 (3.7) |
Open/closed fracture | 3/31 | - |
Tscherne classification for open fractures | - | |
Grade I | 1 | |
Grade II | 2 | |
Tscherne classification for closed fractures | - | |
Grade 0 | 11 | |
Grade I | 17 | |
Grade II | 3 | |
Fibula fracture, no/yes | 9/25 | - |
Managed operatively/non-operatively | 21/13 | - |
VMS (V) Mean (SD) | R4 (V) Mean (SD) | P1 (V2/Hz) Mean (SD) | P2 (V2/Hz) Mean (SD) | |||||
---|---|---|---|---|---|---|---|---|
Controls | L | R | L | R | L | R | L | R |
0.072 (0.213) | 0.075 (0.194) | 2.50 (2.30) | 2.58 (2.48) | 6.12 (9.73) | 6.22 (11.40) | 0.62 (1.01) | 0.66 (1.52) | |
Patients | IMB | non-IMB | IMB | non-IMB | IMB | non-IMB | IMB | non-IMB |
before rehabilitation | 0.137 (0.401) * | 0.081 (0.243) | 3.98 (3.57) * | 2.61 (2.86) | 11.89 (15.91) * | 6.30 (11.71) | 1.36 (2.32) * | 0.71 (1.71) |
after rehabilitation | 0.082 (0.219) | 0.076 (0.212) | 3.01 (2.99) * | 2.53 (2.28) | 7.75 (12.84) | 6.39 (11.18) | 0.87 (1.50) | 0.70 (1.65) |
p-value | ||||||||
controls vs. before rehabilitation | <0.001 | 0.18 | <0.001 | 0.52 | <0.001 | 0.34 | <0.001 | 0.49 |
controls vs. after rehabilitation | 0.11 | 0.55 | 0.047 | 0.44 | 0.09 | 0.61 | 0.045 | 0.46 |
before rehabilitation vs. after rehabilitation | 0.026 | 0.18 | 0.008 | 0.57 | 0.016 | 0.58 | 0.032 | 0.72 |
VAG Parameters | ||||||
---|---|---|---|---|---|---|
VMS | R4 | P1 | P2 | |||
Range of motion | before rehabilitation | r | −0.458 | −0.520 | −0.431 | −0.382 |
p | 0.036 | 0.003 | 0.07 | 0.05 | ||
after rehabilitation | r | −0.153 | −0.316 | −0.084 | −0.046 | |
p | 0.11 | 0.08 | 0.28 | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bączkowicz, D.; Skiba, G.; Falkowski, K.; Domaszewski, P.; Selkow, N. Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality. J. Clin. Med. 2020, 9, 451. https://doi.org/10.3390/jcm9020451
Bączkowicz D, Skiba G, Falkowski K, Domaszewski P, Selkow N. Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality. Journal of Clinical Medicine. 2020; 9(2):451. https://doi.org/10.3390/jcm9020451
Chicago/Turabian StyleBączkowicz, Dawid, Grzegorz Skiba, Krzysztof Falkowski, Przemysław Domaszewski, and Noelle Selkow. 2020. "Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality" Journal of Clinical Medicine 9, no. 2: 451. https://doi.org/10.3390/jcm9020451
APA StyleBączkowicz, D., Skiba, G., Falkowski, K., Domaszewski, P., & Selkow, N. (2020). Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality. Journal of Clinical Medicine, 9(2), 451. https://doi.org/10.3390/jcm9020451