Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing
Abstract
:1. Introduction
2. Experimental Section
2.1. Cell Culture Preparation
2.2. Fluorescent Light Energy (FLE) Systems
2.3. Fluorescence Light Energy (FLE) Protocols
- (a)
- Healthy: HDFs maintained in basal medium (no inflammatory cocktail or illumination).
- (b)
- Inflamed: HDFs incubated in TNFα/IL-1β inflammatory cocktail.
- (c)
- Light: Inflamed HDFs illuminated for 5-min with only the multi-LED lamp (no FLE).
- (d)
- Gel: Inflamed HDFs illuminated for 5-min with the FLE-Gel system consisting of the multi-LED lamp and topical photoconverter amorphous gel (LumiHeal Gel, Klox Technologies Inc., Laval, QC, Canada).
- (e)
- Matrix: Inflamed HDFs illuminated for 5-min with the FLE-Matrix system consisting of the multi-LED lamp and topical photoconverter sheet hydrogel matrix (LumiHeal Matrix, Klox Technologies Inc., Laval, QC, Canada).Healthy HDFs were considered as the control group of the experiment.
2.4. Mitochondrial Morphology
2.5. Total RNA Isolation and PCR Array Profile
3. Results
3.1. Mitochondrial Morphology Analysis
3.2. PCR Array Gene Expression Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gauglitz, G.G.; Korting, H.C.; Pavicic, T.; Ruzicka, T.; Jeschke, M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011, 17, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Yager, D.R.; Chen, S.M.; Ward, S.I.; Olutoye, O.O.; Diegelmann, R.F.; Cohen, I.K. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Rep. Regen. 1997, 5, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Su, W.H.; Cheng, M.H.; Lee, W.L.; Tsou, T.S.; Chang, W.H.; Chen, C.S.; Wang, P.H. Nonsteroidal anti-inflammatory drugs for wounds: Pain relief or excessive scar formation? Mediat. Inflamm. 2010, 2010, 413238. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wan, R.; Mo, Y.; Li, M.; Zhang, Q.; Chien, S. Intracellular delivery of adenosine triphosphate enhanced healing process in full-thickness skin wounds in diabetic rabbits. Am. J. Surg. 2010, 199, 823–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, C.K. Wound healing essentials: Let there be oxygen. Wound Repair. Regen. 2009, 17, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Raghubir, R. Energy metabolism in the granulation tissue of diabetic rats during cutaneous wound healing. Mol. Cell Biochem. 2005, 270, 71–77. [Google Scholar] [CrossRef]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J.M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; et al. ATP synthesis and storage. Purinergic. Signal 2012, 8, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Giorgi, C.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; Poletti, F.; et al. Mitochondria-ros crosstalk in the control of cell death and aging. J. Signal Transduct. 2012, 2012, 329635. [Google Scholar] [CrossRef] [Green Version]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, T.; Duscher, D.; Rustad, K.C.; Kosaraju, R.; Rodrigues, M.; Whittam, A.J.; Januszyk, M.; Maan, Z.N.; Gurtner, G.C. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp. Dermatol. 2016, 25, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Zhang, Y.; Dusting, G.J. NADPH oxidase-mediated redox signalling: Roles in cellular stress response, stress tolerance and tissue repair. Pharmacol. Rev. 2011, 63, 218–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.P. Modulating mitochondrial intracellular location as a redox signal. Sci Signal. 2012, 5, pe39. [Google Scholar] [CrossRef]
- Haga, N.; Fujita, N.; Tsuruo, T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene 2003, 22, 5579–5585. [Google Scholar] [CrossRef] [Green Version]
- Nakada, K.; Inoue, K.; Ono, T.; Isobe, K.; Ogura, A.; Goto, Y.I.; Nonaka, I.; Hayashi, J.I. Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 2001, 7, 934–940. [Google Scholar] [CrossRef]
- Karbowski, M.; Youle, R.J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 2003, 10, 870–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, S.P.; Bhatia, S.N.; Toner, M.; Irimia, D. Mitochondrial Localization and the Persistent Migration of Epithelial Cancer cells. Biophys. J. 2013, 104, 2077–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldogh, I.R.; Pon, L.A. Interactions of mitochondria with the actin cytoskeleton. Biochim. Biophys. Acta 2006, 1763, 450–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low level laser (light) Therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 42–52. [Google Scholar]
- Anders, J.J.; Lanzafme, R.J.; Arany, P.R. Low level light/laser therapy versus Photobiomodulation therapy. Photomed. Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics. 2016, 9, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Enwemeka, C.S.; Parker, J.C.; Dowdy, D.S.; Harkness, E.E.; Sanford, L.E.; Woodruff, L.D. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed. Laser Surg. 2004, 22, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, L.D.; Bounkeo, J.M.; Brannon, W.M.; Dawes, K.S.; Barham, C.D.; Waddell, D.L.; Enwemeka, C.S. The efficacy of laser therapy in wound repair: A meta-analysis of the literature. Photomed. Laser Surg. 2004, 22, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Traverzim, M.; Makbe, S.; Sivla, D.F.T.; Pavani, C.1; Bussadori, S.K.; Fernandes, K.S.P.; Motta, L.J. Effect of LED photobiomodulation on analgesia during labour: Study protocol for randomized control clinical trial. Medicine 2018, 97, e11120. [Google Scholar] [CrossRef]
- Da-Palma-Cruz, M.; da Silva, R.F.; Monteiro, D.; Rehim, H.M.M.A.; Grabulosa, C.C.; de Oliveira, A.P.L.; Lino-Dos-Santos-Franco, A. Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers. Med. Sci. 2019, 34, 191–199. [Google Scholar] [CrossRef]
- Langella, L.G.; Casalechi, H.L.; Tomazoni, S.S.; Johnson, D.S.; Albertini, R.; Pallotta, R.C.; Marcos, R.L.; de Carvalho, P.T.C.; Leal-Junior, E.C.P. Photobiomodulation Therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty- a randomized, triple blind, placebo controlled clinical trial. Lasers. Med. Sci. 2018, 33, 1933–1940. [Google Scholar] [CrossRef]
- Liebert, A.; Krause, A.; Goonetilleke, N.; Bicknell, B.; Kiat, H. A Role for Photobiomodulation in the Prevention of Myocardial Ischemic Reperfusion Injury: A Systematic Review and Potential Molecular Mechanisms. Sci. Rep. 2017, 7, 42386. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res. 2018, 96, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Mosca, R.C.; Ong, A.A.; Albasha, O.; Bass, K.; Arany, P. Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Adv. Skin Wound Care 2019, 32, 157–167. [Google Scholar] [CrossRef]
- Karu, T.I.; Afanas’eva, N.I. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl. Akad. Nauk. 1995, 342, 693–695. [Google Scholar] [PubMed]
- Karu, T.I.; Pyatibrat, L.V.; Kolyakov, S.F.; Afanasyeva, N.I. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome C oxidase under near IR radiation. J. Photochem. Photobiol. B 2005, 81, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Ravera, S.; Baldini, F.; Benedicenti, S.; Panfoli, I.; Vergani, L. Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med. Sci. 2019, 34, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Tatmatsu-Rocha, J.C.; Tim, C.R.; Avo, L.; Bernardes-Filho, R.; Brassolatti, P.; Kido, H.W.; Hamblin, M.R.; Parizotto, N.A. Mitochondrial dynamics (fission and fusion) and collagen production in a rat model of diabetic wound healing treated by photobiomodulation: Comparison of 904 nm laser and 850 nm light-emitting diode (LED). J. Photochem. Photobiol. B 2018, 187, 41–47. [Google Scholar] [CrossRef]
- Korobova, F.; Ramabhadran, V.; Higgs, H.N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 2013, 339, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Scapagnini, G.; Marchegiani, A.; Rossi, G.; Zago, M.; Jowarska, J.; Wael, M.; Campbell, S.E.; Schiffman, Z.; Buonamici, E.; Garvao, R.; et al. Management of all three phases of wound healing through the induction of fluorescence biomodulation using fluorescence light energy, Proc. SPIE 10863, Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases II, 108630W, San Francisco, California, United States, 7 March 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Available online: https://doi.org/10.1117/12.2508066 (accessed on 8 November 2019).
- Romanelli, M.; Piaggesi, A.; Scapagnini, G.; Dini, V.; Janowska, A.; Iacopi, E.; Scarpa, C.; Fauverghe, S.; Bassetto, F.; EUREKA Study Group. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: The EURIKA trial. J. Wound Care 2018, 27, 744–753. [Google Scholar] [CrossRef]
- Dini, V.; Janowska, A.; Davini, G.; Kerihuel, J.C.; Fauverghe, S.; Romanelli, M. Biomodulation induced by fluorescent light energy versus standard of care in venous leg ulcers: A retrospective study. J. Wound Care 2019, 28, 730–736. [Google Scholar] [CrossRef]
- Nikolis, A.; Griard, D.; Pesant, Y.; Scapagnini, G.; Vezina, D. A prospective case series evaluating the safety and efficacy of the Klox Biophotonic System in venous leg ulcers. Chron. Wound Care Manag. Res. 2016, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Edge, D.; Mellergaard, M.; Dam-Hansen, C.; Corell, D.D.; Jaworska, J.; Scapagnini, G.; Nielsen, M.C.E. FLUORESCENT LIGHT ENERGY: The Future for Treating Inflammatory Skin Conditions? J. Clin. Aesthet. Dermatol. 2019, 12, E61–E68. [Google Scholar]
- Koceva, I.; Rümmelein, B.; Gerber, P.A.; Edge, D.; Nielsen, M.C.E. Fluorescent light energy: A new therapeutic approach to effectively treating acne conglobata and hidradenitis suppurativa. Clin. Case Rep. 2019, 7, 1769–1772. [Google Scholar] [CrossRef] [Green Version]
- Sannino, M.; Lodi, G.; Dethlefsen, M.W.; Nisticò, S.P.; Cannarozzo, G.; Nielsen, M.C.E. Fluorescent light energy: Treating rosacea subtypes 1, 2, and 3. Clin. Case Rep. 2018, 6, 2385–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchegiani, A.; Spaterna, A.; Cerquetella, M.; Tambella, A.M.; Fruganti, A.; Paterson, S. Fluorescence biomodulation in the management of canine interdigital pyoderma cases: A prospective, single-blinded, randomized and controlled clinical study. Vet. Dermatol. 2019, 30, 371–e109. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Gardin, C.; Dalla Paola, L.; Campo, G.; Cimaglia, P.; Bellin, G.; Pinton, P.; Zavan, B. Characterization of Dermal Stem Cells of Diabetic Patients. Cells 2019, 8, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutter, J.; Winge, D.R.; Schiffman, J.D. Succinate dehydrogenase—Assembly, regulation and role in human disease. Mitochondrion 2010, 10, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Aguilar, M.; Baines, C.P. Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem. J. 2013, 454, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Ghaffari, A.; Kilani, R.T.; Ghahary, A. The role of stratifin in fibroblast-keratinocyte interaction. Mol. Cell Biochem. 2007, 305, 255–264. [Google Scholar] [CrossRef]
- Agarwal, P.; Sandey, M.; DeInnocentes, P.; Bird, R.C. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J. Cell. Biochem. 2013, 114, 1355–1363. [Google Scholar] [CrossRef]
- Han, J.; Flemington, C.; Houghton, A.B.; Gu, Z.; Zambetti, G.P.; Lutz, R.J.; Zhu, L.; Chittenden, T. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. USA 2001, 98, 11318–11323. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.D.; Xavier, J.M.; Steer, C.J.; Rodrigues, C.M. The role of p53 in apoptosis. Discov. Med. 2010, 9, 145–152. [Google Scholar]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol. Aspects. Med. 2013, 34, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Chaban, Y.; Boekema, E.J.; Dudkina, N.V. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim. Biophys. Acta 2014, 1837, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passarella, S.; Karu, T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B 2014, 140, 344–358. [Google Scholar] [CrossRef]
- Pannala, V.R.; Camara, A.K.; Dash, R.K. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J. Appl. Physiol. 2016, 121, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Motori, E.; Puyal, J.; Toni, N.; Ghanem, A.; Angeloni, C.; Malaguti, M.; Cantelli-Forti, G.; Berninger, B.; Conzelmann, K.K.; Götz, M.; et al. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab. 2013, 18, 844–859. [Google Scholar] [CrossRef] [Green Version]
- Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The BCL-2 family reunion. Mol. Cell. 2010, 12, 299–310. [Google Scholar] [CrossRef]
- Zong, W.X.; Thompson, C.B. Necrotic death as a cell fate. Genes. Dev. 2006, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hardie, C.R. Polarization Vision: Drosophila Enters the Arena. Curr. Biol. 2012, 22, R12–R14. [Google Scholar] [CrossRef] [Green Version]
- Suárez, J.; Rivera, P.; Arrabal, S.; Crespillo, A.; Serrano, A.; Baixeras, E.; Pavón, F.J.; Cifuentes, M.; Nogueiras, R.; Ballesteros, J.; et al. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis. Model Mech. 2014, 7, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinzadeh, A.; Kamrava, S.K.; Joghataei, M.T.; Darabi, R.; Shakeri-Zadeh, A.; Shahriari, M.; Reiter, R.J.; Ghaznavi, H.; Mehrzadi, S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J. Pineal Res. 2016, 61, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Kim, T.J.; Lee, J.M.; Kim, D.Y. SOD2 is upregulated in periodontitis to reduce further inflammation progression. Oral. Dis. 2018, 24, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Nøhr, M.K.; Bobba, N.; Richelsen, B.; Lund, S.; Pedersen, S.B. Inflammation Downregulates UCP1 Expression in Brown Adipocytes Potentially via SIRT1 and DBC1 Interaction. Int. J. Mol. Sci. 2017, 18, 1006. [Google Scholar] [CrossRef]
- Lee, J.Y.; Takahashi, N.; Yasubuchi, M.; Kim, Y.I.; Hashizaki, H.; Kim, M.J.; Sakamoto, T.; Goto, T.; Kawada, T. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am. J. Physiol. Cell Physiol. 2012, 302, C463–C472. [Google Scholar] [CrossRef] [Green Version]
- Ortega, S.P.; Chouchani, E.T.; Boudina, S. Stress turns on the heat: Regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 2017, 6, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Ruprecht, J.J.; Kunji, E.R.S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem. Sci. 2019, 45, 224–258. [Google Scholar] [CrossRef] [Green Version]
- Owen, L.; Sunram-Lea, S.I. Metabolic agents that enhance ATP can improve cognitive functioning: A review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients 2011, 3, 735–755. [Google Scholar] [CrossRef] [Green Version]
Gene | Inflamed vs. Healthy | p Value | Light vs. Inflamed | p Value | FLE-Gel vs. Inflamed | p Value | FLE-Matrix vs. Inflamed | p Value |
---|---|---|---|---|---|---|---|---|
ATP12A | 1.08 | 0.3024 | 1.31 | 0.5219 | −1.11 | 0.1645 | 1.02 | 0.1648 |
ATP4A | 2.23 | 0.7832 | 1.03 | 0.6392 | −1.03 | 0.2884 | −1.03 | 0.2967 |
ATP4B | 1.45 | 0.3082 | 1.79 | 0.7798 | −1.21 | 0.2096 | 1.52 | 0.2148 |
ATP5A1 | −1.08 | 0.9484 | −1.14 | 0.9730 | 1.06 | 0.7168 | 1.03 | 0.8362 |
ATP5B | −1.05 | 0.9663 | −1.04 | 0.9969 | 1.00 | 0.9906 | 1.04 | 0.5569 |
ATP5C1 | −1.05 | 0.9517 | −1.12 | 0.9898 | −1.08 | 0.8672 | −1.04 | 0.9454 |
ATP5F1 | −1.23 | 0.1785 | 1.01 | 0.2102 | 1.05 | 0.1455 | 1.07 | 0.1458 |
ATP5G1 | −1.02 | 0.8216 | 1.01 | 0.9565 | −1.05 | 0.1904 | 1.02 | 0.2007 |
ATP5G2 | −1.15 | 0.8984 | 1.28 | 0.9757 | 1.28 | 0.2901 | 1.08 | 0.2901 |
ATP5G3 | −1.04 | 0.2888 | −1.02 | 0.8484 | −1.09 | 0.1986 | −1.04 | 0.1983 |
ATP5H | −1.13 | 0.4352 | 1.05 | 0.7275 | 1.14 | 0.2591 | 1.08 | 0.2589 |
ATP5I | −1.08 | 0.9752 | 1.05 | 0.8689 | −1.05 | 0.8167 | 0.99 | 0.9525 |
ATP5J | 1.02 | 0.9968 | −1.02 | 0.9737 | −1.04 | 0.9612 | 0.99 | 0.9791 |
ATP5J2 | −1.23 | 0.9810 | −1.07 | 0.9603 | −1.01 | 0.2836 | 1.22 | 0.2834 |
ATP5L | 1.68 | 0.5228 | −1.36 | 0.8836 | −1.53 | 0.2096 | −1.27 | 0.2134 |
ATP5O | −1.24 | 0.8745 | 1.05 | 0.7809 | −1.03 | 0.8725 | −1.04 | 0.5821 |
ATP6V0A2 | 2.59 | 0.9270 | 1.03 | 0.3655 | −1.79 | 0.2746 | −1.09 | 0.1516 |
ATP6V0D2 | 1.91 | 0.6030 | 1.62 | 0.9800 | 1.36 | 0.2356 | 1.21 | 0.4197 |
ATP6V1C2 | 1.11 | 0.1784 | 1.12 | 0.6929 | −1.18 | 0.2758 | 1.20 | 0.2789 |
ATP6V1E2 | 1.02 | 0.6367 | 1.01 | 0.8071 | 1.17 | 0.1381 | 1.04 | 0.1352 |
ATP6V1G3 | −1.70 | 0.4560 | 1.12 | 0.8299 | −1.11 | 0.3228 | −1.05 | 0.3231 |
BCS1L | −1.46 | 0.5451 | −1.07 | 0.8080 | 1.16 | 0.4274 | 1.24 | 0.4942 |
COX4I1 | 1.08 | 0.6312 | −1.02 | 0.6719 | 1.03 | 0.7022 | 1.06 | 0.7194 |
COX4I2 | −1.85 | 0.9443 | 3.24 | 0.8211 | 1.40 | 0.1855 | 1.90 | 0.1854 |
COX5A | −1.15 | 0.9779 | −1.02 | 0.3636 | −1.05 | 0.1026 | 1.10 | 0.0556 |
COX5B | −1.08 | 0.8219 | 1.06 | 0.6803 | 1.01 | 0.6248 | 1.01 | 0.6164 |
COX6A1 | 1.05 | 0.9912 | −1.02 | 0.6452 | −1.05 | 0.9001 | −1.06 | 0.8699 |
COX6A2 | 1.29 | 0.7882 | 1.55 | 0.4056 | −1.03 | 0.5157 | −1.02 | 0.3269 |
COX6B1 | 1.09 | 0.8830 | 1.06 | 0.3851 | −1.12 | 0.3845 | −1.06 | 0.1568 |
COX6B2 | 1.54 | 0.6464 | 1.36 | 0.9643 | −1.06 | 0.2774 | 1.21 | 0.2775 |
COX6C | −2.23 | 0.2374 | 1.12 | 0.4507 | −1.11 | 0.2241 | 1.18 | 0.2246 |
COX7A2 | 1.31 | 0.8657 | 1.00 | 0.7080 | 1.00 | 0.2980 | 1.02 | 0.3576 |
COX7A2L | 1.14 | 0.9597 | 1.18 | 0.3701 | −1.02 | 0.2149 | 1.02 | 0.2810 |
COX7B | −1.23 | 0.1399 | 1.03 | 0.9086 | −1.11 | 0.8089 | −1.07 | 0.8180 |
COX8A | −1.02 | 0.6213 | 1.04 | 0.7314 | −1.01 | 0.3849 | 1.03 | 0.4075 |
COX8C | 1.11 | 0.3632 | 3.60 | 0.3340 | −1.20 | 0.2921 | 1.67 | 0.2925 |
CYC1 | 1.03 | 0.9564 | 1.02 | 0.9543 | −1.01 | 0.8904 | 1.00 | 0.8846 |
LHPP | −1.12 | 0.7322 | 1.14 | 0.6447 | 1.10 | 0.9146 | 1.02 | 0.9953 |
NDUFA1 | 1.07 | 0.6609 | −1.06 | 0.7084 | 1.06 | 0.2131 | −1.16 | 0.2167 |
NDUFA10 | −1.06 | 0.9250 | 0.99 | 0.7389 | 1.01 | 0.6267 | 0.99 | 0.7675 |
NDUFA11 | −1.03 | 0.9466 | −1.02 | 0.9339 | 1.04 | 0.8978 | 1.09 | 0.9636 |
NDUFA2 | 1.07 | 0.9914 | 1.02 | 0.3434 | 1.11 | 0.1150 | 1.01 | 0.0749 |
NDUFA3 | −1.29 | 0.8155 | 1.05 | 0.9753 | −1.04 | 0.8924 | −1.03 | 0.8893 |
NDUFA4 | 1.09 | 0.5712 | 1.03 | 0.7243 | −1.04 | 0.0812 | −1.04 | 0.0819 |
NDUFA5 | −1.97 | 0.5816 | 1.28 | 0.9752 | −1.24 | 0.2903 | 1.15 | 0.3374 |
NDUFA6 | 1.03 | 0.1884 | −1.07 | 0.5686 | 1.18 | 0.1108 | 1.12 | 0.1032 |
NDUFA7 | −1.03 | 0.9399 | −1.03 | 0.9026 | 1.04 | 0.3395 | 1.00 | 0.2997 |
NDUFA8 | −1.23 | 0.8994 | −1.08 | 0.7818 | 1.23 | 0.8069 | 0.99 | 0.4317 |
NDUFAB1 | 1.08 | 0.5897 | 1.03 | 0.9813 | −1.03 | 0.7660 | −1.04 | 0.7574 |
NDUFB10 | −1.03 | 0.2064 | −1.03 | 0.6846 | 1.00 | 0.7707 | −1.02 | 0.7615 |
NDUFB2 | −1.15 | 0.9577 | 1.05 | 0.2898 | 1.05 | 0.1720 | −1.05 | 0.3253 |
NDUFB3 | −1.14 | 0.8127 | 1.03 | 0.8891 | 1.07 | 0.3763 | −1.03 | 0.3061 |
NDUFB4 | 1.24 | 0.3245 | −1.06 | 0.7046 | 1.09 | 0.0957 | 1.04 | 0.0861 |
NDUFB5 | −1.07 | 0.5122 | 1.04 | 0.1030 | 1.05 | 0.0993 | 1.03 | 0.0712 |
NDUFB6 | −1.08 | 0.6834 | 1.09 | 0.3958 | −1.07 | 0.4169 | −1.21 | 0.1946 |
NDUFB7 | −1.25 | 0.8837 | 1.03 | 0.9139 | 1.07 | 0.9146 | 1.11 | 0.9221 |
NDUFB8 | −1.29 | 0.9782 | −1.08 | 0.4260 | 1.04 | 0.0860 | 1.04 | 0.0867 |
NDUFB9 | −1.07 | 0.8154 | 1.04 | 0.6321 | −1.03 | 0.3974 | 1.00 | 0.3031 |
NDUFC1 | −1.13 | 0.6376 | 1.06 | 0.4091 | 1.10 | 0.1097 | −1.03 | 0.1077 |
NDUFC2 | 1.03 | 0.6633 | 1.03 | 0.5582 | 1.26 | 0.4491 | 1.21 | 0.6712 |
NDUFS1 | −1.05 | 0.8937 | 1.03 | 0.8077 | 1.06 | 0.2821 | 1.06 | 0.2782 |
NDUFS2 | −1.05 | 0.6046 | 1.08 | 0.8433 | 1.08 | 0.5569 | 1.05 | 0.5270 |
NDUFS3 | 1.14 | 0.7629 | −1.09 | 0.3173 | 1.05 | 0.1314 | 1.05 | 0.0777 |
NDUFS4 | −1.11 | 0.3228 | 1.05 | 0.6511 | −1.01 | 0.6848 | −1.04 | 0.5687 |
NDUFS5 | −1.13 | 0.9234 | 1.05 | 0.8181 | 1.01 | 0.3283 | −1.03 | 0.4957 |
NDUFS6 | −1.10 | 0.7346 | 1.09 | 0.9146 | 1.05 | 0.6572 | 1.11 | 0.6882 |
NDUFS7 | −1.29 | 0.7148 | −1.32 | 0.7148 | 1.05 | 0.3395 | 1.02 | 0.2788 |
NDUFS8 | −1.23 | 0.8670 | 1.03 | 0.9886 | 1.18 | 0.9448 | 1.23 | 0.9275 |
NDUFV1 | −1.21 | 0.8922 | 0.99 | 0.6639 | 1.04 | 0.1205 | 1.06 | 0.1277 |
NDUFV2 | −1.21 | 0.8671 | 1.08 | 0.5305 | 1.06 | 0.1460 | −1.02 | 0.2872 |
NDUFV3 | 1.13 | 0.7272 | −1.10 | 0.3081 | 1.26 | 0.1167 | 1.24 | 0.1145 |
OXA1L | −1.13 | 0.5362 | 1.14 | 0.5885 | 1.27 | 0.1040 | 1.22 | 0.1026 |
PPA1 | −1.71 | 0.2951 | −1.03 | 0.5926 | 1.04 | 0.8757 | −1.02 | 0.8405 |
PPA2 | −1.19 | 0.5189 | 1.04 | 0.4868 | −1.02 | 0.2007 | −1.04 | 0.2018 |
SDHA | −1.42 | 0.3281 | 1.09 | 0.5285 | 1.05 | 0.1407 | 1.02 | 0.1423 |
SDHB | 1.04 | 0.5917 | 1.01 | 0.8479 | 1.04 | 0.6252 | 1.03 | 0.7692 |
SDHC | −1.19 | 0.7466 | 1.22 | 0.6577 | −1.05 | 0.1798 | −1.02 | 0.1799 |
SDHD | −1.22 | 0.8702 | −1.23 | 0.9003 | 1.00 | 0.5197 | −1.07 | 0.7193 |
UQCR11 | 1.26 | 0.4176 | −1.16 | 0.8663 | −1.04 | 0.1969 | −1.06 | 0.1947 |
UQCRC1 | −1.03 | 0.9857 | −1.13 | 0.8575 | −1.02 | 0.9116 | −1.04 | 0.8919 |
UQCRC2 | −1.29 | 0.8090 | −1.21 | 0.1460 | 1.02 | 0.1357 | 1.04 | 0.1405 |
UQCRFS1 | −1.03 | 0.9645 | −1.17 | 0.8910 | −1.03 | 0.9580 | −1.03 | 0.9512 |
UQCRH | −1.03 | 0.9254 | −1.07 | 0.9792 | −1.04 | 0.9931 | −1.04 | 0.9962 |
UQCRQ | 1.00 | 0.5753 | −1.11 | 0.7945 | 1.06 | 0.8875 | 1.03 | 0.8636 |
Gene | Inflamed vs. Healthy | p Value | Light vs Inflamed | p Value | FLE-Gel vs. Inflamed | p Value | FLE-Matrix vs. Inflamed | p Value |
---|---|---|---|---|---|---|---|---|
AIFM2 | 1.17 | 0.9186 | 1.05 | 0.9694 | 1.15 | 0.8808 | 1.05 | 0.3564 |
AIP | −1.12 | 0.9070 | 1.16 | 0.8602 | 1.21 | 0.9389 | 1.13 | 0.8818 |
BAK1 | 2.18 | 0.4666 | −1.09 | 0.8772 | 1.02 | 0.7111 | −1.05 | 0.1289 |
BBC3 | −2.91 | 0.9816 | 1.31 | 0.9722 | 1.08 | 0.9145 | 1.04 | 0.6868 |
BCL2 | 1.93 | 0.4330 | 1.13 | 0.4945 | 1.14 | 0.4947 | 1.16 | 0.5045 |
BCL2L1 | −1.37 | 0.9929 | 1.07 | 0.4951 | −1.07 | 0.3020 | −1.07 | 0.3250 |
BID | 1.51 | 0.6882 | 1.01 | 0.8719 | 1.06 | 0.9178 | −1.35 | 0.2987 |
BNIP3 | −1.36 | 0.8372 | 1.06 | 0.9668 | −1.23 | 0.9024 | −1.16 | 0.9280 |
CDKN2A | −2.99 | 0.7208 | −1.03 | 0.5949 | 1.13 | 0.3788 | −1.23 | 0.3111 |
COX10 | −1.03 | 0.6641 | 1.01 | 0.4646 | −1.10 | 0.5937 | −1.08 | 0.3185 |
COX18 | −1.36 | 0.7253 | 1.32 | 0.6170 | 1.30 | 0.4723 | 1.09 | 0.3871 |
CPT1B | −1.33 | 0.8146 | 0.99 | 0.9582 | 1.82 | 0.9127 | 2.04 | 0.4682 |
CPT2 | 1.11 | 0.6167 | 1.11 | 0.5475 | 1.04 | 0.4144 | −1.03 | 0.3732 |
DNM1L | 1.04 | 0.6504 | 1.02 | 0.4551 | −1.02 | 0.3857 | 1.01 | 0.3536 |
FIS1 | −1.29 | 0.7077 | 1.12 | 0.4843 | 1.15 | 0.4490 | 1.07 | 0.3857 |
GRPEL1 | 1.40 | 0.9575 | −1.15 | 0.8785 | −1.12 | 0.3880 | −1.01 | 0.8202 |
HSP90AA1 | −1.19 | 0.8602 | 1.06 | 0.5892 | 1.13 | 0.1296 | 1.27 | 0.4059 |
HSPD1 | −1.17 | 0.8993 | −1.01 | 0.9746 | 1.00 | 0.9350 | 1.07 | 0.8728 |
IMMP1L | −2.51 | 0.9134 | −1.02 | 0.9908 | 1.06 | 0.9928 | 1.10 | 0.9780 |
IMMP2L | −1.31 | 0.5724 | 1.08 | 0.9491 | 1.08 | 0.9692 | 1.06 | 0.4700 |
LRPPRC | −1.20 | 0.9990 | 1.19 | 0.7798 | 1.07 | 0.6555 | 1.10 | 0.6068 |
MFN1 | −1.07 | 0.7624 | 1.05 | 0.9604 | 1.11 | 0.8119 | 1.10 | 0.5266 |
MFN2 | −1.09 | 0.9807 | −1.11 | 0.7044 | −1.15 | 0.5278 | −1.06 | 0.5023 |
MIPEP | −1.84 | 0.9939 | −1.03 | 0.8895 | 1.23 | 0.9541 | 1.26 | 0.4258 |
MPV17 | −1.56 | 0.9050 | 1.05 | 0.9991 | 1.06 | 0.9772 | 1.04 | 0.5992 |
MSTO1 | 1.04 | 0.9795 | 1.10 | 0.9732 | 1.26 | 0.6936 | 1.17 | 0.3500 |
MTX2 | 1.01 | 0.4066 | 1.07 | 0.4383 | 1.33 | 0.2515 | 1.28 | 0.1868 |
NEFL | 16.93 | 0.6088 | −1.36 | 0.9775 | −1.65 | 0.4401 | −1.51 | 0.3560 |
OPA1 | −1.20 | 0.5516 | 1.15 | 0.9987 | 1.10 | 0.6269 | 1.15 | 0.9292 |
PMAIP1 | −1.06 | 0.8934 | −1.01 | 0.9052 | −1.24 | 0.9505 | −1.03 | 0.9594 |
RHOT1 | −1.42 | 0.8552 | 1.13 | 0.6221 | 1.20 | 0.4302 | 1.17 | 0.3495 |
RHOT2 | 1.07 | 0.7768 | 1.03 | 0.5066 | 1.00 | 0.5196 | 1.00 | 0.9821 |
SFN | −2.38 | 0.4837 | 1.66 | 0.8181 | 1.90 | 0.4771 | 1.75 | 0.4248 |
SH3GLB1 | −1.22 | 0.9383 | 1.28 | 0.9551 | 1.52 | 0.8607 | 1.52 | 0.3748 |
SLC25A1 | −2.07 | 0.8876 | 1.13 | 0.8759 | 1.05 | 0.7808 | 1.04 | 0.7874 |
SLC25A10 | 1.38 | 0.6742 | −1.62 | 0.9591 | −1.85 | 0.9908 | −1.60 | 0.9927 |
SLC25A12 | −1.26 | 0.8391 | −1.36 | 0.9808 | −1.22 | 0.9588 | −1.12 | 0.3523 |
SLC25A13 | 1.51 | 0.8949 | 1.11 | 0.9549 | −1.05 | 0.9313 | 1.09 | 0.3061 |
SLC25A14 | 1.13 | 0.5778 | 1.06 | 0.9728 | 1.04 | 0.9826 | 1.03 | 0.2791 |
SLC25A15 | 1.20 | 0.6720 | −1.02 | 0.5093 | 1.18 | 0.4814 | 1.21 | 0.3807 |
SLC25A16 | −1.12 | 0.9002 | 1.13 | 0.8996 | 1.03 | 0.8461 | 1.16 | 0.6215 |
SLC25A17 | 1.26 | 0.8423 | −1.05 | 0.9918 | −1.10 | 0.8879 | −1.06 | 0.5068 |
SLC25A19 | 1.44 | 0.8739 | −1.08 | 0.9144 | −1.07 | 0.8900 | −1.06 | 0.9309 |
SLC25A2 | 1.14 | 0.6760 | 1.17 | 0.4763 | 1.15 | 0.4239 | 1.48 | 0.3471 |
SLC25A20 | −1.19 | 0.8596 | −1.14 | 0.7744 | 1.05 | 0.8105 | 1.05 | 0.5398 |
SLC25A21 | −1.42 | 0.8432 | 0.99 | 0.5065 | 1.30 | 0.5826 | 1.43 | 0.3696 |
SLC25A22 | 1.21 | 0.7463 | 1.07 | 0.6007 | 1.11 | 0.6098 | 1.17 | 0.3715 |
SLC25A23 | −1.43 | 0.7167 | −1.09 | 0.4906 | −1.52 | 0.4234 | −1.27 | 0.3587 |
SLC25A24 | −1.13 | 0.8747 | 1.05 | 0.8545 | 1.02 | 0.9513 | 1.03 | 0.3730 |
SLC25A25 | 2.30 | 0.9570 | −1.06 | 0.9910 | −1.11 | 0.8293 | −1.09 | 0.6173 |
SLC25A27 | −1.27 | 0.3919 | −2.25 | 0.9605 | −1.10 | 0.4895 | −1.55 | 0.7273 |
SLC25A3 | −1.20 | 0.3646 | 1.02 | 0.7269 | 1.03 | 0.4790 | 1.01 | 0.1843 |
SLC25A30 | −1.36 | 0.9004 | 1.12 | 0.9875 | 1.08 | 0.9820 | 1.10 | 0.9916 |
SLC25A31 | −1.12 | 0.8581 | 1.28 | 0.9795 | 2.47 | 0.9464 | −1.06 | 0.4897 |
SLC25A37 | 1.92 | 0.6504 | 1.07 | 0.9261 | 1.21 | 0.8353 | 1.24 | 0.8423 |
SLC25A4 | −1.86 | 0.6059 | 1.06 | 0.8584 | −1.03 | 0.6999 | 1.02 | 0.8379 |
SLC25A5 | 1.00 | 0.9160 | −1.09 | 0.5923 | 1.01 | 0.5904 | 1.05 | 0.3863 |
SOD1 | −1.14 | 0.6756 | 1.09 | 0.4430 | 1.08 | 0.4504 | 1.14 | 0.3994 |
SOD2 | 17.28 | 0.8853 | 1.28 | 0.7959 | 1.19 | 0.7786 | 1.13 | 0.7637 |
STARD3 | −1.04 | 0.3845 | 1.00 | 0.8834 | −1.02 | 0.9115 | 1.01 | 0.9488 |
TAZ | −1.26 | 0.8577 | 1.02 | 0.3116 | 1.27 | 0.2549 | 1.22 | 0.9748 |
TIMM10 | 1.22 | 0.8033 | −1.08 | 0.5207 | −1.09 | 0.4573 | 1.03 | 0.3611 |
TIMM10B | 1.14 | 0.7175 | 1.06 | 0.9674 | 1.01 | 0.6375 | −1.01 | 0.7582 |
TIMM17A | 1.22 | 0.7552 | −1.08 | 0.7767 | 1.05 | 0.7586 | 1.01 | 0.7073 |
TIMM17B | −1.33 | 0.7433 | 1.29 | 0.5761 | 1.15 | 0.5304 | 1.23 | 0.4434 |
TIMM22 | −1.06 | 0.7358 | −1.08 | 0.4982 | 1.00 | 0.4019 | 1.17 | 0.3696 |
TIMM23 | 1.07 | 0.9080 | −1.05 | 0.9481 | 1.00 | 0.9475 | −1.01 | 0.7871 |
TIMM44 | 1.13 | 0.7086 | −1.06 | 0.5628 | −1.14 | 0.7906 | −1.13 | 0.3392 |
TIMM50 | −1.06 | 0.9866 | 1.09 | 0.8853 | 1.00 | 0.9968 | 1.09 | 0.8634 |
TIMM8A | 1.28 | 0.7994 | −1.11 | 0.1517 | −1.05 | 0.2349 | −1.01 | 0.2730 |
TIMM8B | −1.11 | 0.9864 | −1.06 | 0.9095 | −1.09 | 0.8707 | 1.02 | 0.9847 |
TIMM9 | 1.37 | 0.6803 | −1.14 | 0.6204 | −1.29 | 0.4490 | −1.33 | 0.3385 |
TOMM20 | 1.07 | 0.9647 | 1.00 | 0.9962 | −1.05 | 0.9785 | −1.03 | 0.9860 |
TOMM22 | −1.03 | 0.9395 | −1.03 | 0.9564 | −1.05 | 0.9226 | 1.00 | 0.8254 |
TOMM34 | 1.16 | 0.9339 | 1.04 | 0.9646 | 0.99 | 0.9878 | 1.08 | 0.9486 |
TOMM40 | 1.29 | 0.5140 | −1.16 | 0.6759 | −1.09 | 0.8690 | 0.99 | 0.7455 |
TOMM40L | −1.01 | 0.9861 | 1.13 | 0.8819 | 1.05 | 0.6619 | 1.15 | 0.3629 |
TOMM70A | −1.16 | 0.9512 | 1.07 | 0.9631 | 1.19 | 0.8725 | 1.17 | 0.3903 |
TP53 | −2.04 | 0.7434 | 1.44 | 0.8865 | 1.27 | 0.5986 | −1.05 | 0.3399 |
TSPO | −1.30 | 0.8269 | 1.10 | 0.5675 | 1.02 | 0.4945 | 1.00 | 0.3463 |
UCP1 | −1.52 | 0.8095 | 3.89 | 0.8001 | −1.09 | 0.6418 | 2.70 | 0.3743 |
UCP2 | −1.52 | 0.9517 | 1.10 | 0.9361 | 1.08 | 0.8185 | 1.09 | 0.3625 |
UCP3 | 1.59 | 0.7862 | 1.64 | 0.6184 | −1.31 | 0.5903 | 1.48 | 0.4868 |
UXT | 1.07 | 0.9794 | 1.09 | 0.6893 | 1.05 | 0.8536 | 1.02 | 0.4300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferroni, L.; Zago, M.; Patergnani, S.; Campbell, S.E.; Hébert, L.; Nielsen, M.; Scarpa, C.; Bassetto, F.; Pinton, P.; Zavan, B. Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. J. Clin. Med. 2020, 9, 559. https://doi.org/10.3390/jcm9020559
Ferroni L, Zago M, Patergnani S, Campbell SE, Hébert L, Nielsen M, Scarpa C, Bassetto F, Pinton P, Zavan B. Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. Journal of Clinical Medicine. 2020; 9(2):559. https://doi.org/10.3390/jcm9020559
Chicago/Turabian StyleFerroni, Letizia, Michela Zago, Simone Patergnani, Shannon E. Campbell, Lise Hébert, Michael Nielsen, Carlotta Scarpa, Franco Bassetto, Paolo Pinton, and Barbara Zavan. 2020. "Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing" Journal of Clinical Medicine 9, no. 2: 559. https://doi.org/10.3390/jcm9020559
APA StyleFerroni, L., Zago, M., Patergnani, S., Campbell, S. E., Hébert, L., Nielsen, M., Scarpa, C., Bassetto, F., Pinton, P., & Zavan, B. (2020). Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. Journal of Clinical Medicine, 9(2), 559. https://doi.org/10.3390/jcm9020559