Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. BiocratesAbsoluteIDQ p180 Kit
2.2. NMR and GC-MS Analysis
2.2.1. Sample Preparation
2.2.2. NMR Analysis and Data Processing
2.2.3. GC-MS Analysis and Data Processing
2.3. Statistical Analysis
2.4. Pathways Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Haider, L.; Zrzavy, T.; Hametner, S.; Höftberger, R.; Bagnato, F.; Grabner, G.; Trattnig, S.; Pfeifenbring, S.; Brück, W.; Lassmann, H. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 2016, 139, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Ebers, G.C. Environmental factors and multiple sclerosis. Lancet Neurol. 2008, 7, 268–277. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; For the National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompsonm, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis. The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchinetti, C.; Bruck, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000, 47, 707–717. [Google Scholar] [CrossRef]
- Leary, S.M.; Stevenson, V.L.; Miller, D.H.; Thompson, A.J. Problems in designing and recruiting to therapeutic trials in primary progressive multiple sclerosis. J. Neurol. 1999, 246, 562–568. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.V.; Hawkins, S.A. Clinical study of primary progressive multiple sclerosis in Northern Ireland. J. Neurol. Neurosurg. Psychiatry 1998, 64, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Weinshenker, B. Progressive forms of MS: Classification streamlined or consensus overturned? Lancet 2000, 353, 162–163. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytic techniques in metabolomics analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef]
- Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta 2010, 659, 23–33. [Google Scholar] [CrossRef]
- Reinke, D.I.; Broadhurst, B.D.; Sykes, G.B.; Baker, I.; KG Warren, C.; Power, C. Metabolomic profiling in multiple sclerosis: Insights into biomarkers and pathogenesi SN. Mult. Scler. J. 2014, 20, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Cocco, E.; Murgia, F.; Lorefice, L.; Barberini, L.; Poddighe, S.; Frau, J.; Fenu, G.; Coghe, G.; Murru, M.R.; Murru, R.; et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, P.; Calabresi, P.A. Metabolomics in multiple sclerosis. Mult. Scler. J. 2016, 22, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Stoessel, D.; Stellmann, J.P.; Willing, A.; Behrens, B.; Rosenkranz, S.C.; Hodecker, S.C.; Sturner, K.H.; Reinhardt, S.; Fleischer, S.; Deuschle, C.; et al. Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front. Hum. Neurosci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dickens, A.M.; Larkin, J.R.; Griffin, J.L.; Cavey, A.; Matthews, L.; Turner, M.R.; Wilcock, G.K.; Davis, B.G.; Claridge, T.C.W.; Palace, J.; et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 2014, 83, 1492–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 2017, 7, 41473. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carrol, W.M.; Coetzee, T.; Comi, G.; Correale, F.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, S.L.; Stoegg, W.M.; Weinberger, K.M.; Graber, A.; Guggenbichler, W. Apparatus and method for analyzing a metabolite profile. CA2608963A1. 11 January 2007. [Google Scholar]
- Murgia, F.; Svegliati, S.; Poddighe, S.; Lussu, M.; Manzin, A.; Spadoni, T.; Fischetti, C.; Gabrielli, A.; Atzori, L. Metabolomic profile of systemic sclerosis patients. Sci. Rep. 2018, 8, 7626. [Google Scholar] [CrossRef]
- Available online: http://www.nist.gov/srd/mslist.cfm (accessed on 20 March 2020).
- Available online: http://fiehnlab.ucdavis.edu/Metabolite-Library-2007 (accessed on 20 March 2020).
- Available online: http://gmd.mpimp-golm.mpg.de (accessed on 20 March 2020).
- Liggi, S.; Hinz, C.; Hall, Z.; Santoru, M.L.; Poddighe, S.; Fjeldsted, J.; Atzori, L.; Griffin, J.L. KniMet: A pipeline for the processing of chromatography-mass spectrometry metabolomics data. Metabolomics 2018, 14, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikstrom, C. Multi-and Megavariate Data Analysis. Basic Principles and Applications; Umetrics Academy: Malmo, Sweden, 2013; pp. 1–50. [Google Scholar]
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
- Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: An introductory tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Bielekova, B.; Martin, R. Development of biomarkers in multiple sclerosis. Brain 2004, 127, 1463–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comabella, M.; Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 2014, 13, 113–126. [Google Scholar] [CrossRef]
- Kuenz, B.; Lutterotti, A.; Ehling, R.; Gneiss, C.; Haemmerle, M.; Rainer, C.; Deisenhammer, F.; Schocke, M.; Berger, T.; Reindl, M. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PLoS ONE 2008, 3, e2559. [Google Scholar] [CrossRef] [Green Version]
- Gilgun-Sherki, Y.; Melamed, E.; Offen, D. The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. J. Neurol. 2004, 251, 261–268. [Google Scholar]
- Winyard, P.G.; Blake, D.R. Antioxidants, redox-regulated transcription factors and inflammation. Adv. Pharmacol. 1997, 38, 403–421. [Google Scholar]
- Naidoo, R.; Knapp, M.L. Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin. Chem. 1992, 38, 2449–2454. [Google Scholar] [CrossRef]
- Bizzozero, O.; DeJesus, G.; Bixler, H.A.; Pastuszyn, A. Evidence of nitrosative damage in the brain white matter of patients with multiple sclerosis. Neurochem. Res. 2005, 30, 139–149. [Google Scholar] [CrossRef] [PubMed]
- LeVine, S.M. The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med. Hypotheses 1992, 39, 271–274. [Google Scholar] [CrossRef]
- Bhargava, P.; Fitzgerald, K.C.; Calabresi, P.A.; Mowry, E.M. Metabolic alterations in multiple sclerosis and the impact of vitamin D supplementation. JCI Insight 2017, 2, e95302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, V.; Scapagnini, G.; Ravagna, A.; Bella, R.; Foresti, R.; Bates, T.E.; Giuffrida Stella, A.M.; Pennisi, G. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002, 70, 580–587. [Google Scholar] [CrossRef]
- Koch, M.; Ramsaransing, G.S.; Arutjunyan, A.V.; Stepanov, M.; Teelken, A.; Heersema, D.J.; De Keyser, J. Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J. Neurol. 2006, 253, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Gonsette, R.E. Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. J. Neurol. Sci. 2008, 274, 48–53. [Google Scholar] [CrossRef]
- Groom, A.J.; Smith, T.; Lursky, L. Multiple sclerosis and glutamate. Ann. N. Y. Acad. Sci. 2003, 993, 229–275. [Google Scholar] [CrossRef]
- Pitt, D.; Nagelmeier, I.E.; Wilson, H.C.; Raine, C.S. Glutamate uptake by oligodendrocytes Implications for excitotoxicity in multiple sclerosis. Neurology 2003, 61, 1113–1120. [Google Scholar] [CrossRef]
- Pieragostino, D.; D’Alessandro, M.; di Ioia, M.; Rossi, C.; Zucchelli, M.; Urbani, A.; Di Ilio, C.; Lugaresi, A.; Sacchetta, P.; Del Boccio, P. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. BioSyst. 2015, 11, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Villoslada, P.; Alonso, C.; Agirrezabal, I.; Kotelnikova, E.; Zubizarreta, I.; Pulido-Valdeolivas, I.; Saiz, A.; Comabella, M.; Montalban, X.; Villar, L.; et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e321. [Google Scholar] [CrossRef] [Green Version]
- Sarchielli, P.; Greco, L.; Floridi, A.; Floridi, A.; Gallai, V. Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid. Arch. Neurol. 2003, 60, 1082–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanovic, I.; Vojinovic, S.; Ljubisavljevic, S.; Pavlovic, R.; Basic, J.; Pavlovic, D.; Ilic, A.; Cvetkovic, T.; Stukalov, M. INF-β1b therapy modulates L-arginine and nitric oxide metabolism in patients with relapse remittent multiple sclerosis. J. Neurol. Sci. 2012, 323, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, S.; Murgia, F.; Lorefice, L.; Liggi, S.; Cocco, E.; Marrosu, M.G.; Atzori, L. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 2017, 93, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, A.K.; Poisson, L.M.; Nemutlu, E.; Datta, I.; Denic, A.; Dzeja, P.; Rodriguez, M.; Rattan, R.; Giri, S. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics. J. Clin. Cell. Immunol. 2013, 4. [Google Scholar] [CrossRef]
- Pritzker, L.B.; Joshi, S.; Gowan, J.J.; Harauz, G.; Moscarello, M.A. Deimination of myelin basic protein I. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathespsin D. Biochemistry 2000, 39, 5324–5381. [Google Scholar] [CrossRef]
- Moscarello, M.A.; Mastronardi, F.G.; Wood, D.D. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 2007, 32, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Finch, P.R.; Wood, D.D.; Moscarello, M.A. The presence of citrulline in a myelin protein fraction. FEBS Lett. 1971, 15, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Fernstrom, J.D. Branched-chain amino acids and brain. J. Nutr. 2005, 135, 1539–1546. [Google Scholar] [CrossRef]
- Hutson, S.M.; Sweatt, A.J.; LaNoue, K.F. Branched Chain Amino Acids (BCAAs) in Brain. In Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System; Springer Science: New York, NY, USA, 2007; pp. 117–131. [Google Scholar]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Schwarcz, R. The kynurenine pathway of tryptophan degradation as a drug target. Curr. Opin. Pharmacol. 2004, 4, 12–17. [Google Scholar] [CrossRef]
- Watzlawik, J.O.; Wootla, B.; Rodriguez, M. Tryptophan catabolites and their impact on multiple sclerosis progression. Curr. Pharm. Des. 2016, 22, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Rajda, C.; Bergquist, J.; Vécsei, L. Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis. Neuropsychiatric Disorders an Integrative Approach. J. Neural Transm. 2007, 72, 323–329. [Google Scholar]
- Lovelace, M.D.; Varney, B.; Sundaram, G.; Franco, N.F.; Ng, M.L.; Pai, S.; Lim, C.K.; Guillemin, G.L.; Brew, B.J. Current evidence for a role of the Kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front. Immunol. 2016, 7, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorefice, L.; Murgia, F.; Fenu, G.; Frau, J.; Coghe, G.; Murru, M.R.; Tranquilli, S.; Visconti, A.; Marrosu, M.G.; Atzori, L.; et al. Assessing the metabolomic profile of multiple sclerosis patients treated with interferon beta 1a by 1H-NMR spectroscopy. Neurotherapeutics 2019, 16, 797–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MS Patients (34) | Relapsing (22) | Progressive (12) | p-Value | |
---|---|---|---|---|
Male Gender | 14 (41.2%) | 6 (27.2%) | 8 (66.6%) | ns |
Age (mean ± SD) years | 37.3 ± 12.8 | 32±8.4 | 47.1 ± 12.8 | <0.05 |
MS Disease Duration (mean ± SD) years | 2.1 ± 1.5 | 1.2 ± 1.4 | 3.7 ± 1.2 | <0.05 |
Expanded Disability Status Scale (EDSS) score | 2.1 ± 1.1 | 1.1 ± 1.5 | 3.9 ± 1.7 | <0.05 |
CSF | SERUM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2X | R2Y | Q2 | p-Value | Permutation Test: Intercept R2\Q2 | R2X | R2Y | Q2 | p-Value | Permutation Test: Intercept R2\Q2 | |
FIA-MS/MS | 0.272 | 0.862 | 0.634 | 2,6e-05 | 0.59/−0.23 | 0.523 | 0.666 | 0.512 | 0.0004 | 0.33/−0.19 |
LC-MS | 0.395 | 0.697 | 0.496 | 0.002 | 0.29/−0.28 | 0.224 | 0.846 | 0.514 | 0.0002 | 0.35/−0.26 |
CSF | ||||||||
---|---|---|---|---|---|---|---|---|
METABOLITES | RR vs. PP | p-Value | Holm–Bonf. Correction | ROC-CURVE | ||||
AUC | Std. Error | CI | p-Value | |||||
FIA-MS/MS | -lysoPC a C20:4 | + | 0.02 | ns | 0.74 | 0.09 | 0.55–0.93 | 0.02 |
-PC aa C34:2 | - | 0.04 | ns | 0.71 | 0.08 | 0.53–0.88 | 0.04 | |
-PC aa C36:5 | - | 0.03 | ns | 0.72 | 0.09 | 0.54–0.90 | 0.03 | |
-PC aa C38:5 | - | 0.02 | ns | 0.73 | 0.09 | 0.55–0.90 | 0.03 | |
-PC aa C42:0 | - | 0.009 | ns | 0.78 | 0.08 | 0.61–0.94 | 0.01 | |
-PC ae C34:3 | - | 0.04 | ns | 0.71 | 0.09 | 0.53–0.89 | 0.04 | |
-PC ae C38:4 | - | 0.03 | ns | 0.72 | 0.08 | 0.55–0.89 | 0.03 | |
-PC ae C40:2 | - | 0.007 | ns | 0.78 | 0.08 | 0.62–0.93 | 0.008 | |
PC ae C42:2 | - | 0.004 | 0.04 | 0.79 | 0.07 | 0.64–0.95 | 0.005 | |
SM(OH) C 22:1 | - | 0.010 | ns | 0.77 | 0.08 | 0.6–0.93 | 0.01 | |
SM(OH) C 22:2 | - | 0.01 | ns | 0.76 | 0.08 | 0.6–0.92 | 0.01 | |
LC-MS/MS | HIS | + | 0.0004 | 0.001 | 0.89 | 0.06 | 0.77–1 | 0.0009 |
ORN | - | 0.01 | 0.010 | 0.79 | 0.08 | 0.63–0.96 | 0.03 | |
PHE | + | 0.03 | 0.010 | 0.75 | 0.09 | 0.57–0.93 | 0.03 | |
THR | + | 0.001 | 0.002 | 0.86 | 0.07 | 0.71–1 | 0.002 |
SERUM | ||||||||
---|---|---|---|---|---|---|---|---|
METABOLITES | RR vs. PP | p-Value | Holm––Bonf. Correction | ROC-CURVE | ||||
AUC | Std. Error | CI | p-Value | |||||
FIA-MS/MS | PC aa C34:3 | + | <0.0001 | 0.001 | 0.91 | 0.05 | 0.81–1.00 | <0.0001 |
PC aa C38:4 | - | 0.0010 | 0.005 | 0.83 | 0.07 | 0.70–0.97 | 0.001 | |
PC ae C38:1 | + | 0.0016 | 0.006 | 0.82 | 0.08 | 0.67–0.97 | 0.002 | |
PC ae C38:2 | + | 0.0036 | 0.011 | 0.80 | 0.08 | 0.62–0.97 | 0.004 | |
PC aa C40:5 | - | 0.0059 | 0.012 | 0.78 | 0.08 | 0.61–0.95 | 0.007 | |
SM C26:0 | - | 0.006 | 0.012 | 0.79 | 0.08 | 0.63–0.93 | 0.008 | |
C5 | - | 0.0149 | 0.012 | 0.75 | 0.08 | 0.6–0.92 | 0.015 | |
LC-MS/MS | MET-SO | + | 0.010 | 0.040 | 0.76 | 0.08 | 0.59–0.94 | 0.01 |
ALPHA-AAA | - | 0.002 | 0.010 | 0.81 | 0.08 | 0.65–0.98 | 0.003 | |
GLU | - | 0.02 | 0.040 | 0.74 | 0.09 | 0.56–0.93 | 0.02 | |
VAL | - | 0.02 | 0.040 | 0.74 | 0.09 | 0.56–0.92 | 0.02 | |
TAU | - | 0.01 | 0.040 | 0.77 | 0.08 | 0.59–0.94 | 0.01 | |
SPER | - | 0.02 | 0.040 | 0.75 | 0.08 | 0.57–0.92 | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgia, F.; Lorefice, L.; Poddighe, S.; Fenu, G.; Secci, M.A.; Marrosu, M.G.; Cocco, E.; Atzori, L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. J. Clin. Med. 2020, 9, 863. https://doi.org/10.3390/jcm9030863
Murgia F, Lorefice L, Poddighe S, Fenu G, Secci MA, Marrosu MG, Cocco E, Atzori L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. Journal of Clinical Medicine. 2020; 9(3):863. https://doi.org/10.3390/jcm9030863
Chicago/Turabian StyleMurgia, Federica, Lorena Lorefice, Simone Poddighe, Giuseppe Fenu, Maria Antonietta Secci, Maria Giovanna Marrosu, Eleonora Cocco, and Luigi Atzori. 2020. "Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis" Journal of Clinical Medicine 9, no. 3: 863. https://doi.org/10.3390/jcm9030863
APA StyleMurgia, F., Lorefice, L., Poddighe, S., Fenu, G., Secci, M. A., Marrosu, M. G., Cocco, E., & Atzori, L. (2020). Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. Journal of Clinical Medicine, 9(3), 863. https://doi.org/10.3390/jcm9030863