Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients and Controls
2.2. Blood Sampling
2.3. Neutrophil Function
2.4. Neutrophil Phenotype
2.5. Statistical Analysis
2.6. Data Availability Statement
3. Results
3.1. Group Characteristics
3.2. Oxidative Burst
3.2.1. Burst Activity per Cell
3.2.2. Percentage of Neutrophil Granulocytes Having Produced ROS
3.3. Phagocytosis
3.3.1. Phagocytic Capacity per Cell
3.3.2. Percentage of Neutrophil Granulocytes Having Phagocytosed Bacteria
3.4. Neutrophil Phenotype
3.4.1. CD11b
3.4.2. CD16
3.5. Independent Association of Oxidative Burst and Occurrence of Infections
3.6. Neutrophil Function and Clinical Outcome according to mRS and Barthel Index after 90 Days
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BI | Barthel Index |
BMI | Body mass index |
CR | Complement receptor |
CI | Confidence interval |
CRP | C-reactive protein |
DNA | Deoxyribonucleic acid |
e.g. | Exempli gratia, for example |
eGFR | Estimated glomerular filtration rate |
FITC | Fluorescein isothiocyanate |
fMLP | Formyl-methionyl-leucyl-phenylalanine |
FSC | Forward scatter |
FSC-H | Forward scatter-height |
FSC-W | Forward scatter-width |
GPCR | G-protein-coupled receptor |
i.a. | Inter alia, among others |
IQR | Interquartile range |
MFI | Mean fluorescent intensity |
MPO | Myeloperoxidase |
mRS | Modified Rankin Scale |
NET | Neutrophil extracellular traps |
NLR | Neutrophil–lymphocyte ratio |
NIHSS | National Institutes of Health Stroke Scale |
PKC | Protein kinase C |
PMA | Phorbol 12-myristate 13-acetate |
ROS | Reactive oxygen species |
SSC | Side scatter |
TOAST | Trial of Org. in Acute Stroke Treatment |
Appendix A. Neutrophil Function Measurement
References
- Westendorp, W.F.; Nederkoorn, P.J.; Vermeij, J.D.; Dijkgraaf, M.G.; van de Beek, D. Post-stroke infection: A systematic review and meta-analysis. BMC Neurol. 2011, 11, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslanyan, S.; Weir, C.J.; Diener, H.; Kaste, M.; Lees, K.R. Pneumonia and urinary tract infection after acute ischaemic stroke. Neurology 2004, 11, 49–53. [Google Scholar]
- Haeusler, K.G.; Schmidt, W.U.H.; Föhring, F.; Meisel, C.; Helms, T.; Jungehulsing, G.J.; Nolte, C.H.; Schmolke, K.; Wegner, B.; Meisel, A.; et al. Cellular Immunodepression Preceding Infectious Complications after Acute Ischemic Stroke in Humans. Cerebrovasc. Dis. 2008, 25, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Urra, X.; Cervera, Á.; Obach, V.; Climent, N.; Planas, A.M.; Chamorro, A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke 2009, 40, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Ruhnau, J.; Schulze, K.; Gaida, B.; Langner, S.; Kessler, C.; Broker, B.; Dressel, A.; Vogelgesang, A. Stroke alters respiratory burst in neutrophils and monocytes. Stroke 2014, 45, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Prass, K.; Meisel, C.; Höflich, C.; Braun, J.; Halle, E.; Wolf, T.; Ruscher, K.; Victorov, I.V.; Priller, J.; Dirnagl, U.; et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 2003, 198, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Song, Y.S.; Chan, P.H. Inhibition of NADPH Oxidase is Neuroprotective after Ischemia—Reperfusion. J. Cereb. Blood Flow Metab. 2009, 29, 1262–1272. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Onodera, H.; Shiga, Y.; Nakamura, M.; Ninomiya, M.; Kihara, T.; Kogure, K. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 1994, 25, 1469–1475. [Google Scholar] [CrossRef] [Green Version]
- Seki, Y.; Sahara, Y.; Itoh, E.; Kawamura, T. Suppressed neutrophil respiratory burst in patients with haemorrhagic stroke. J. Clin. Neurosci. 2010, 17, 187–190. [Google Scholar] [CrossRef]
- Vogelgesang, A.; Lange, C.; Blümke, L.; Laage, G.; Rümpel, S.; Langner, S.; Bröker, B.M.; Dressel, A.; Ruhnau, J. Ischaemic stroke and the recanalization drug tissue plasminogen activator interfere with antibacterial phagocyte function. J. Neuroinflamm. 2017, 14, 140. [Google Scholar] [CrossRef]
- Adams, H.; Adams, H.; Bendixen, B.; Bendixen, B.; Kappelle, L.; Kappelle, L.; Biller, J.; Biller, J.; Love, B.; Love, B.; et al. Classification of Subtype of Acute Ischemic Stroke. Stroke 1993, 23, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.J.; Kishore, A.K.; Vail, A.; Chamorro, A.; Garau, J.; Hopkins, S.J.; Di Napoli, M.; Kalra, L.; Langhorne, P.; Montaner, J.; et al. Diagnosis of Stroke-Associated Pneumonia: Recommendations From the Pneumonia in Stroke Consensus Group. Stroke 2015, 46, 2335–2340. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 56–61. [Google Scholar]
- Sulter, G.; Steen, C.; De Keyser, J. Use of the Barthel Index and Modified Rankin Scale in Acute Stroke Trials. Stroke 1999, 30, 1538–1541. [Google Scholar] [CrossRef] [Green Version]
- Foerch, C.; Singer, O.C.; Neumann-Haefelin, T.; de Rochemont, R.D.M.; Steinmetz, H.; Sitzer, M. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch. Neurol. 2005, 62, 1130–1134. [Google Scholar] [CrossRef] [Green Version]
- Karakonstantis, S.; Kalemaki, D.; Tzagkarakis, E.; Lydakis, C. Pitfalls in studies of eosinopenia and neutrophil-to-lymphocyte count ratio. Infect. Dis. 2018, 50, 163–174. [Google Scholar] [CrossRef]
- Nam, K.-W.; Kim, T.J.; Lee, J.S.; Kwon, H.-M.; Lee, Y.-S.; Ko, S.-B.; Yoon, B.-W. High Neutrophil-to-Lymphocyte Ratio Predicts Stroke-Associated Pneumonia. Stroke 2018, 49, 1886–1892. [Google Scholar] [CrossRef]
- Bertram, A.; Ley, K. Protein kinase C isoforms in neutrophil adhesion and activation. Arch. Immunol. Ther. Exp. 2011, 59, 79–87. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Kawahito, K.; Kobayashi, E.; Ohmori, M.; Harada, K.; Kitoh, Y.; Fujimura, A.; Fuse, K. Enhanced responsiveness of circulatory neutrophils after cardiopulmonary bypass: Increased aggregability and superoxide producing capacity. Artif. Organs 2000, 24, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Castillo, L.A.; Birnberg-Weiss, F.; Rodriguez-Rodrigues, N.; Martire-Greco, D.; Bigi, F.; Landoni, V.I.; Gomez, S.A.; Fernandez, G.C. Klebsiella pneumoniae ST258 Negatively Regulates the Oxidative Burst in Human Neutrophils. Front. Immunol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Whyte, M.K.; Meagher, L.C.; MacDermot, J.; Haslett, C. Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol. 1993, 150, 5124–5134. [Google Scholar] [PubMed]
- Cendoroglo, M.; Jaber, B.L.; Balakrishnan, V.S.; Perianayagam, M.; King, A.J.; Pereira, B.J.G. Neutrophil apoptosis and dysfunction in uremia. J. Am. Soc. Nephrol. 1999, 10, 93–100. [Google Scholar]
- BURSTEST™, (PHAGOBURST™), IFU, CE/IVD-341058|BD Biosciences-Europe. Available online: http://www.bdbiosciences.com/eu/reagents/clinical/systems-kits/macrophage-functionality-kits/burstest-phagoburst/p/341058 (accessed on 2 June 2018).
- Xue, J.; Huang, W.; Chen, X.; Li, Q.; Cai, Z.; Yu, T.; Shao, B. Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 650–657. [Google Scholar] [CrossRef]
- Jones, D.H.; Anderson, D.C.; Burr, B.L.; Rudloff, H.E.; Smith, C.W.; Krater, S.S.; Schmalstieg, F.C. Quantitation of intracellular Mac-1 (CD11b/CD18) pools in human neutrophils. J. Leukoc. Biol. 1988, 44, 535–544. [Google Scholar] [CrossRef]
- Montecucco, F.; Steffens, S.; Burger, F.; da Costa, A.; Bianchi, G.; Bertolotto, M.; Mach, F.; Dallegri, F.; Ottonello, L. Tumor necrosis factor-alpha (TNF-α) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1α) on human neutrophils through defined signalling pathways. Cell. Signal. 2008, 20, 557–568. [Google Scholar] [CrossRef]
- Lukácsi, S.; Nagy-Baló, Z.; Erdei, A.; Sándor, N.; Bajtay, Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett. 2017, 189, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Kuuliala, K.; Orpana, A.; Leirisalo-Repo, M.; Repo, H. Neutrophils of healthy subjects with a history of reactive arthritis show enhanced responsiveness, as defined by CD11b expression in adherent and non-adherent whole blood cultures. Rheumatology 2007, 46, 934–937. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, P.; Fifadara, N.; Nagarajan, S.; Cimino, A.; Wang, G. Functional regulation of human neutrophil Fc gamma receptors. Immunol. Res. 2004, 29, 219–230. [Google Scholar] [CrossRef]
- Unkeless, J.C.; Shen, Z.; Lin, C.-W.; DeBeus, E. Function of human FcγRIIA and FcγRIIIB. Semin. Immunol. 1995, 7, 37–44. [Google Scholar] [CrossRef]
- Nagarajan, S.; Venkiteswaran, K.; Anderson, M.; Sayed, U.; Zhu, C.; Selvaraj, P. Cell-specific, activation-dependent regulation of neutrophil CD32A ligand-binding function. Blood 2000, 95, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Emsley, H.C.; Hopkins, S.J. Acute ischaemic stroke and infection: Recent and emerging concepts. Lancet Neurol. 2008, 7, 341–353. [Google Scholar] [CrossRef]
Patients (n = 95) | Controls (n = 24) | |||
---|---|---|---|---|
Infection = yes (n = 27) | Infection = no (n = 68) | p | ||
Female (%) | 12 (44.44) | 26 (38.24) | 0.577 | 14 (58.33) |
Age in years (IQR) | 76 (68.00–84.00) | 75.00 (64.00–82.00) | 0.255 | 75.50 (68.00–79.00) |
Arterial hypertension (%) | 21 (77.78) | 53 (77.94) | 0.986 | 10 (41.67) |
Smoking (%) | 6 (22.22) | 19 (27.94) | 0.568 | 5 (20.83) |
Hyperlipoproteinemia (%) | 8 (29.63) | 16 (23.53) | 0.537 | 6 (25.00) |
Diabetes mellitus (%) | 2 (7.41) | 13 (19.12) | 0.158 | 3 (12.50) |
Atrial fibrillation (%) | 11 (40.74) | 17 (25.00) | 0.129 | 1 (4.17) |
Obesity (BMI ≥ 30 kg/m2) (%) | 8 (30.77) | 7 (10.45) | 0.015 * | 3 (12.50) |
Coronary heart disease (%) | 6 (22.22) | 16 (23.53) | 0.892 | 2 (8.33) |
Renal dysfunction (%) | 5 (18.52) | 17 (25.00) | 0.499 | n.a. |
NIHSS on admission (IQR) | 11 (7.00–17.00) | 5 (3.00–7.75) | <0.001 *** | n.a. |
S100B in µg/L on day 3 (IQR) | 0.135 (0.096–1.410) | 0.075 (0.050–0.116) | <0.001 *** | n.a. |
Stroke subtype Cardioembolic (%) Large vessel (%) Small vessel (%) Other (%) Undetermined (%) | 16 (59.26) 2 (7.41) 0 (0.00) 1 (3.70) 8 (29.63) | 26 (38.24) 3 (4.41) 12 (17.65) 0 (0.00) 27 (39.71) | 0.063 0.555 0.020 * 0.111 0.358 | n.a. |
Affected brain regions Anterior cerebral artery (ACA) (%) Middle cerebral artery (MCA) (%) Posterior cerebral artery (PCA) (%) Cerebellum (%) Brainstem (%) | 5 (18.52) 25 (92.59) 2 (7.41) 2 (7.41) 0 (0.00) | 4 (5.88) 53 (77.94) 8 (11.76) 6 (8.82) 5 (7.35) | 0.058 0.093 0.533 0.823 0.148 | n.a. |
Mechanical thrombectomy (%) | 4 (14.81) | 6 (8.82) | 0.391 | n.a. |
Intravenous Thrombolysis (%) | 9 (33.33) | 18 (26.47) | 0.504 | n.a. |
CRP on admission (mg/L) (IQR) | 3.30 (1.80–7.50) | 3.10 (1.80–5.90) | 0.454 | 1.30 (0.50–3.28) |
WBC on admission (1000/µL) (IQR) | 9.60 (8.10–11.80) | 7.30 (6.28–9.28) | 0.001 ** | 6.65 (5.68–8.05) |
Neutrophil–lymphocyte ratio (NLR) on admission (IQR) | 5.87 (3.21–9.31) | 2.87 (2.00–4.36) | 0.001 ** | 2.20 (1.66–3.29) |
Infection-risk score (IQR) | 3.00 (2.00–5.50) | 1.00 (0.00–2.00) | <0.001 *** | n.a. |
Unfavorable outcome | 17 (68.00) | 9 (14.52) | <0.001 *** | n.a. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gemmeren, T.; Schuppner, R.; Grosse, G.M.; Fering, J.; Gabriel, M.M.; Huber, R.; Worthmann, H.; Lichtinghagen, R.; Weissenborn, K. Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes. J. Clin. Med. 2020, 9, 872. https://doi.org/10.3390/jcm9030872
van Gemmeren T, Schuppner R, Grosse GM, Fering J, Gabriel MM, Huber R, Worthmann H, Lichtinghagen R, Weissenborn K. Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes. Journal of Clinical Medicine. 2020; 9(3):872. https://doi.org/10.3390/jcm9030872
Chicago/Turabian Stylevan Gemmeren, Till, Ramona Schuppner, Gerrit M. Grosse, Jessica Fering, Maria M. Gabriel, René Huber, Hans Worthmann, Ralf Lichtinghagen, and Karin Weissenborn. 2020. "Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes" Journal of Clinical Medicine 9, no. 3: 872. https://doi.org/10.3390/jcm9030872
APA Stylevan Gemmeren, T., Schuppner, R., Grosse, G. M., Fering, J., Gabriel, M. M., Huber, R., Worthmann, H., Lichtinghagen, R., & Weissenborn, K. (2020). Early Post-Stroke Infections Are Associated with an Impaired Function of Neutrophil Granulocytes. Journal of Clinical Medicine, 9(3), 872. https://doi.org/10.3390/jcm9030872