Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Low, J.A.; Pickersgill, H.; Killen, H.; Derrick, E.J. The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am. J. Obstet. Gynecol. 2001, 184, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Janbu, T.; Nesheim, B.I. Uterine artery blood velocities during contractions in pregnancy and labour related to intrauterine pressure. Br. J. Obstet. Gynaecol. 1987, 94, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.M.; Mitchell, M.D.; Kumar, S.S. The physiology of intrapartum fetal compromise at term. Am. J. Obstet. Gynecol. 2020, 222, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Lawn, J.E.; Blencowe, H.; Oza, S.; You, D.; Lee, A.C.; Waiswa, P.; Lalli, M.; Bhutta, Z.; Barros, A.J.D.; Christian, P.; et al. Every Newborn: Progress, priorities, and potential beyond survival. Lancet 2014, 384, 189–205. [Google Scholar] [CrossRef]
- Lawn, J.; Shibuya, K.; Stein, C. No cry at birth: Global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull. World Health Organ. 2005, 83, 409–417. [Google Scholar] [PubMed]
- Maltepe, E.; Fisher, S.J. Placenta: The forgotten organ. Annu. Rev. Cell Dev. Biol. 2015, 31, 523–552. [Google Scholar] [CrossRef]
- Fisher, S.J. Why is placentation abnormal in preeclampsia? Am. J. Obstet. Gynecol. 2015, 213, S115–S122. [Google Scholar] [CrossRef] [Green Version]
- Madden, J.V.; Flatley, C.J.; Kumar, S. Term small-for-gestational-age infants from low-risk women are at significantly greater risk of adverse neonatal outcomes. Am. J. Obstet. Gynecol. 2018, 218, 525.e1–525.e9. [Google Scholar] [CrossRef] [Green Version]
- Bonno, M.; Oxvig, C.; Kephart, G.M.; Wagner, J.M.; Kristensen, T.; Sottrup-Jensen, L.; Gleich, G.J. Localization of pregnancy-associated plasma protein-A and colocalization of pregnancy-associated plasma protein-A messenger ribonucleic acid and eosinophil granule major basic protein messenger ribonucleic acid in placenta. Lab. Investig. J. Tech. Methods Pathol. 1994, 71, 560–566. [Google Scholar]
- Guibourdenche, J.; Frendo, J.L.; Pidoux, G.; Bertin, G.; Luton, D.; Muller, F.; Porquet, D.; Evain-Brion, D. Expression of pregnancy-associated plasma protein-A (PAPP-A) during human villous trophoblast differentiation in vitro. Placenta 2003, 24, 532–539. [Google Scholar] [CrossRef]
- Giudice, L.C.; Conover, C.A.; Bale, L.; Faessen, G.H.; Ilg, K.; Sun, I.; Imani, B.; Suen, L.-F.; Irwin, J.C.; Christiansen, M.; et al. Identification and regulation of the IGFBP-4 protease and its physiological inhibitor in human trophoblasts and endometrial stroma: Evidence for paracrine regulation of IGF-II bioavailability in the placental bed during human implantation. J. Clin. Endocrinol. Metab. 2002, 87, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- NICE. Antenatal Care for Uncomplicated Pregnancies: CG62; National Institute for Health and Clinical Excellence: London, UK, 2019. [Google Scholar]
- RANZCOG. Prenatal Screening and Diagnostic Testing for Fetal Chromosomal and Genetic Conditions; RANZCOG: Sydney, Australia, 2018. [Google Scholar]
- PHE PHE. NHS Fetal Anomaly Screening Programme Handbook; Wellington House: London, UK, 2018. [Google Scholar]
- Morris, R.K.; Bilagi, A.; Devani, P.; Kilby, M.D. Association of serum PAPP-A levels in first trimester with small for gestational age and adverse pregnancy outcomes: Systematic review and meta-analysis. Prenat. Diagn. 2017, 37, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Hoffman, B.; Meschino, W.; Kingdom, J.; Okun, N. Prediction of adverse pregnancy outcomes by combinations of first and second trimester biochemistry markers used in the routine prenatal screening of Down syndrome. Prenat. Diagn. 2010, 30, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Krantz, D.; Goetzl, L.; Simpson, J.L.; Thom, E.; Zachary, J.; Hallahan, T.W.; Silver, R.; Pergament, E.; Platt, L.D.; Filkins, K.; et al. Association of extreme first-trimester free human chorionic gonadotropin-beta, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2004, 191, 1452–1458. [Google Scholar] [CrossRef]
- Yaron, Y.; Heifetz, S.; Ochshorn, Y.; Lehavi, O.; Orr-Urtreger, A. Decreased first trimester PAPP-A is a predictor of adverse pregnancy outcome. Prenat. Diagn. 2002, 22, 778–782. [Google Scholar] [CrossRef]
- Spencer, K.; Cowans, N.J.; Molina, F.; Kagan, K.O.; Nicolaides, K.H. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of preterm or early preterm delivery. Ultrasound Obstet. Gynecol. 2008, 31, 147–152. [Google Scholar] [CrossRef]
- Spencer, K.; Cowans, N.J.; Nicolaides, K.H. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat. Diagn. 2008, 28, 7–10. [Google Scholar] [CrossRef]
- Spencer, C.A.; Allen, V.M.; Flowerdew, G.; Dooley, K.; Dodds, L. Low levels of maternal serum PAPP-A in early pregnancy and the risk of adverse outcomes. Prenat. Diagn. 2008, 28, 1029–1036. [Google Scholar] [CrossRef]
- Wyatt, P.R.; Owolabi, T.; Meier, C.; Huang, T. Age-specific risk of fetal loss observed in a second trimester serum screening population. Am. J. Obstet. Gynecol. 2005, 192, 240–246. [Google Scholar] [CrossRef]
- RCOG. Green-Top Guideline No. 17: The Investigation and Treatment of Couples with Recurrent First-Trimester and Second-Trimester Miscarriage; RCOG: London, UK, 2011. [Google Scholar]
- RANZCOG. Intrapartum Fetal Surveillance. 2014. Available online: https://wwwranzcogeduau/RANZCOG_SITE/media/RANZCOG-MEDIA/Women%27s%20Health/Statement%20and%20guidelines/Clinical-Obstetrics/Intrapartum-Fetal-Surveillance-Guideline-Third-edition-Aug-2014pdf?ext=pdf (accessed on 14 December 2019).
- Dobbins, T.A.; Sullivan, E.A.; Roberts, C.L.; Simpson, J.M. Australian national birthweight percentiles by sex and gestational age, 1998–2007. Med. J. Aust. 2012, 197, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.S.; Carlos-Alves, M.; Trocado, V.; Arteiro, D.; Pinheiro, P. Prediction of adverse pregnancy outcomes by extreme values of first trimester screening markers. Obstet. Med. 2017, 10, 132–137. [Google Scholar] [CrossRef]
- Livrinova, V.; Petrov, I.; Samardziski, I.; Jovanovska, V.; Simeonova-Krstevska, S.; Todorovska, I.; Atanasova-Boshku, A.; Gjeorgjievska, M. Obstetric Outcome in Pregnant Patients with Low Level of Pregnancy-Associated Plasma Protein A in First Trimester. Open Access Maced. J. Med. Sci. 2018, 6, 1028–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avşar, A.F.; Seçen, E.İ.; Akçay, G.F.Y.; Keskin, H.L.; Taş, E.E.; Dalgacı, A.F. The relationship between first-trimester pregnancy-associated plasma protein-A levels and intrapartum fetal distress development. J. Turk. Ger. Gynecol. Assoc. 2016, 17, 139. [Google Scholar] [CrossRef]
- Uccella, S.; Colombo, G.F.; Bulgheroni, C.M.; Serati, M.; Bogani, G.; Salvatore, S.; Ghezzi, F.; Bolis, P. First-trimester maternal serum screening and the risk for fetal distress during labor. Am. J. Obstet. Gynecol. 2009, 201, 166.e1–166.e6. [Google Scholar] [CrossRef] [PubMed]
- Bowman, C.J.; Streck, R.D.; Chapin, R.E. Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development. Birth Defects Res. B Dev. Reprod. Toxicol. 2010, 89, 339–349. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, T.; Chakraborty, C.; Gleeson, L.M.; Chidiac, P.; Lala, P.K. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J. Clin. Endocrinol. Metab. 2001, 86, 3665–3674. [Google Scholar] [CrossRef]
- Han, V.K.; Bassett, N.; Walton, J.; Challis, J.R. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: Evidence for IGF-IGFBP interactions at the feto-maternal interface. J. Clin. Endocrinol. Metab. 1996, 81, 2680–2693. [Google Scholar]
- Qiu, Q.; Bell, M.; Lu, X.; Yan, X.; Rodger, M.; Walker, M.; Wen, S.-W.; Bainbridge, S.; Wang, H.; Gruslin, A. Significance of IGFBP-4 in the development of fetal growth restriction. J. Clin. Endocrinol. Metab. 2012, 97, E1429–E1439. [Google Scholar] [CrossRef] [Green Version]
- Odibo, A.O.; Patel, K.R.; Spitalnik, A.; Odibo, L.; Huettner, P. Placental pathology, first-trimester biomarkers and adverse pregnancy outcomes. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2014, 34, 186–191. [Google Scholar] [CrossRef]
- Scifres, C.M.; Nelson, D.M. Intrauterine growth restriction, human placental development and trophoblast cell death. J. Physiol. 2009, 587 Pt 14, 3453–3458. [Google Scholar] [CrossRef]
- Adamsons, K.; Myers, R.E. Circulation in the intervillous space; obstetrical considerations in fetal deprivation. In The Placenta and Its Maternal Supply Line. Effects of Insufficiency on the Fetus; Gruenwald, P., Ed.; Medical and Technical Publishing Co. Ltd.: Lancaster, UK, 1975; pp. 158–177. [Google Scholar]
- Fleischer, A.; Anyaegbunam, A.A.; Schulman, H.; Farmakides, G.; Randolph, G. Uterine and umbilical artery velocimetry during normal labor. Am. J. Obstet. Gynecol. 1987, 157, 40–43. [Google Scholar] [CrossRef]
- Brar, H.S.; Platt, L.D.; DeVore, G.R.; Horenstein, J.; Medearis, A.L. Qualitative assessment of maternal uterine and fetal umbilical artery blood flow and resistance in laboring patients by Doppler velocimetry. Am. J. Obstet. Gynecol. 1988, 158, 952–956. [Google Scholar] [CrossRef]
- Mott, J.C. The ability of young mammals to withstand total oxygen lack. Br. Med. Bull. 1961, 17, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Shelley, H.J. Glycogen reserves and their changes at birth and in anoxia. Br. Med. Bull. 1961, 17, 137–143. [Google Scholar] [CrossRef]
PAPP-A ≤ 0.4 MoM | PAPP-A > 0.4 MoM | p Value | |
---|---|---|---|
n | 301 | 8760 | |
PAPP-A MoM (median(IQR)) | 0.34 (0.29–0.37) | 1.18 (0.83–1.69) | |
Age (mean(sd)) | 31.5 (4.8) | 31.1 (4.8) | 0.16 |
BMI (median(IQR)) | 23.6 (21.0–27.0) | 23.0 (20.6–26.5) | 0.04 |
Ethnicity | |||
Caucasian | 48.8 (147) | 50.6 (4428) | 0.56 |
ATSI | 2.3 (7) | 1.5 (130) | 0.24 |
Asian | 19.9 (60) | 23.5 (2059) | 0.15 |
Other | 9.0(27) | 6.3 (551) | 0.06 |
Nulliparous | 45.5 (137) | 49.1 (4300) | 0.22 |
Previous cesarean section | 18.9 (57) | 14.9 (1309) | 0.06 |
Trial of labor after CS | 28.1 (16) | 34.7 (454) | 0.30 |
Diabetes | 15.3 (46) | 13.1 (1144) | 0.26 |
Hypertension (current) | 8.0 (24) | 3.9 (342) | < 0.001 |
Pre-existing hypertension | 1.1 (3) | 0.7 (62) | 0.003 |
Gestational hypertension | 0.4 (1) | 0.3 (22) | |
Pre-eclampsia | 3.5 (10) | 1.1 (94) | |
Smoker | 5.0 (15) | 3.9 (337) | 0.32 |
Induction of labor | 16.6 (50) | 16.8 (1470) | 0.94 |
PAPP-A ≤ 0.4 MoM | PAPP-A > 0.4 MoM | p | Unadjusted OR (95% CI) | Adjusted OR (95% CI) | p | |
---|---|---|---|---|---|---|
n | 301 | 8760 | ||||
Mode of Birth | ||||||
Spontaneous vaginal * | 49.2 (148) | 55.3 (4843) | 0.04 | 0.78 (0.62–0.98) | 0.79 (0.63–0.99) | 0.045 |
Instrumental * | 14.6 (44) | 15.3 (1336) | 0.76 | 0.95 (0.69–1.32) | 0.98 (0.70–1.35) | 0.88 |
All vaginal births * | 63.8 (192) | 70.5 (6179) | 0.01 | 0.74 (0.58–0.93) | 0.75 (0.59–0.96) | 0.02 |
Planned CS * | 17.3 (52) | 12.1 (1062) | 0.007 | 1.51 (1.11–2.06) | 1.46 (1.07–1.98) | 0.02 |
Emergency CS * | 18.9 (57) | 17.3 (1519) | 0.47 | 1.11 (0.83–1.49) | 1.10 (0.82–1.48) | 0.52 |
EmCS intrapartum fetal compromise | 5.3 (3) | 7.3 (111) | 0.56 | 0.70 (0.22–2.29) | 0.71 (0.22–2.29) | 0.56 |
Gestation at birth (weeks) | 38 (37–39) | 39 (38–40) | <0.001 | - | - | - |
Extreme preterm birth (< 28 weeks) * | 0.3 (1) | 0.3 (29) | 1.00 | 1.00 (0.14–7.39) | 0.91 (0.12–6.89) | 0.93 |
Early preterm birth (28.0–31.6 weeks) * | 2.0 (6) | 0.5 (43) | <0.001 | 4.12 (1.74–9.76) | 3.59 (1.47–8.75) | <0.001 |
Late preterm birth (32.0–36.6 weeks) * | 10.6 (32) | 4.5 (392) | <0.001 | 1.54 (1.72–3.75) | 2.41 (1.65–3.52) | <0.001 |
Early Term (37.0–38.6 weeks) * | 39.2 (118) | 28.7 (2513) | <0.001 | 1.60 (1.26–2.03) | 1.56 (1.23–1.99) | <0.001 |
Term (39.0–40.6 weeks) * | 43.2 (130) | 53.6 (4691) | <0.001 | 0.66 (0.52–0.83) | 0.68 (0.54–0.86) | 0.001 |
Late Term (41.0–41.6 weeks) * | 4.7 (14) | 12.2 (1069) | <0.001 | 0.35 (0.20–0.60) | 0.36 (0.21–0.61) | <0.001 |
Post Term (≥ 42.0 weeks) * | 0 | 0.3 (23) | 1.00 | n/a | - | - |
Preterm Birth | ||||||
Spontaneous Preterm birth | 79.5 (31) | 81.7 (379) | 0.74 | 0.87 (0.38–1.97) | 0.88 (0.37–2.14) | 0.78 |
Medically indicated preterm birth | 20.5 (8) | 18.3 (85) | 1.15 (0.51–2.61) | 1.13 (0.47–2.74) | 0.78 |
PAPP-A ≤ 0.4 MoM | PAPP-A > 0.4 MoM | p | Unadjusted OR (95% CI) | Adjusted OR (95% CI) | p | |
---|---|---|---|---|---|---|
n | 301 | 8760 | ||||
Birthweight | 3037.8 (630.5) | 3365.8 (5253.6) | <0.001 | - | - | - |
Birthweight < 10th centile * | 22.9 (69) | 9.1 (800) | <0.001 | 2.96 (2.24–3.91) | 2.93 (2.22–3.88) | < 0.001 |
Birthweight < 5th centile * | 14.3 (43) | 4.0 (354) | <0.001 | 3.96 (2.81–5.56) | 3.97 (2.83–5.60) | < 0.001 |
5 min Apgar < 7 ^ | 1.7 (5) | 2.0 (178) | 0.84 | 0.81 (0.33–1.99) | 0.45 (0.17–1.15) | 0.10 |
5 min Apgar < 3 ^ | 0 | 0.3 (24) | 1.00 | - | - | - |
Acidosis ^ | 0.3 (1) | 0.4 (35) | 1.00 | 0.83 (0.11–6.09) | 0.68 (0.09–4.99) | 0.71 |
NICU admission ^ | 6.3 (19) | 5.3 (462) | 0.43 | 1.21 (0.75–1.94) | 0.77 (0.47–1.26) | 0.30 |
Respiratory distress syndrome ^ | 17.9 (54) | 17.1 (1497) | 0.71 | 1.06 (0.78–1.44) | 0.81 (0.60–1.08) | 0.15 |
Perinatal death ^ | 0.7 (2) | 0.4 (37) | 0.37 | 1.58 (0.38–6.57) | 0.75 (0.18–3.17) | 0.70 |
Intrauterine fetal demise | 0 | 0.3 (24) | 1.00 | n/a | - | - |
Neonatal death ^ | 0.7 (2) | 0.2 (13) | 0.09 | 4.50 (1.01–20.04) | 2.20 (0.45–10.7) | 0.33 |
SCNO ^ | 6.3 (19) | 5.8 (508) | 0.71 | 1.09 (0.68–1.75) | 0.65 (0.39–1.07) | 0.09 |
PAPP-A ≤ 0.4 MoM | PAPP-A > 0.4 MoM | p | Adjusted OR (95% CI) | P | |
---|---|---|---|---|---|
n | 39 | 464 | |||
Pre-eclampsia | 2.6 (1) | 1.7 (8) | 0.70 | 1.5 (0.18–12.34) | 0.71 |
Mode of Birth | |||||
All vaginal births * | 48.7 (19) | 54.7 (254) | 0.51 | 0.86 (0.43–1.75) | 0.69 |
Planned CS * | 10.3 (4) | 9.7 (45) | 0.78 | 1.08 (0.37–3.12) | 0.89 |
Emergency CS * | 41.0 (16) | 35.6 (165) | 0.49 | 1.13 (0.53–2.40) | 0.75 |
Emergency CS IFC * | 5.1 (2) | 2.2 (10) | 0.24 | 2.35 (0.46–12.04) | 0.30 |
Gestation at birth (weeks) | 35 (33–36) | 35 (34–36) | 0.18 | - | - |
Birthweight | 2108.4 (662.0) | 2372.7 (738.5) | 0.03 | - | - |
Birthweight < 10th centile * | 30.8 (12) | 10.0 (46) | < 0.001 | 3.72 (1.73–8.04) | 0.001 |
SCNO ^ | 28.2 (11) | 31.5 (146) | 0.67 | 0.67 (0.30–1.51) | 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, J.M.; Kumar, S. Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study. J. Clin. Med. 2020, 9, 1108. https://doi.org/10.3390/jcm9041108
Turner JM, Kumar S. Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study. Journal of Clinical Medicine. 2020; 9(4):1108. https://doi.org/10.3390/jcm9041108
Chicago/Turabian StyleTurner, Jessica M., and Sailesh Kumar. 2020. "Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study" Journal of Clinical Medicine 9, no. 4: 1108. https://doi.org/10.3390/jcm9041108
APA StyleTurner, J. M., & Kumar, S. (2020). Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study. Journal of Clinical Medicine, 9(4), 1108. https://doi.org/10.3390/jcm9041108