Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime?
Abstract
:1. Introduction
2. Who Is at Risk?
3. Primary Prevention Strategies
3.1. ACE Inhibitors, Angiotensin Receptor Blockers, and Beta-Blockers
3.2. Statins
3.3. Mineralocorticoid Receptor Antagonists
3.4. Lifestyle Modifications
4. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howlader, N.; Noone, A.; Krapcho, M.; Garshell, J.; Miller, D.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2012; National Cancer Institute: Bethesda, MD, USA, 2015. [Google Scholar]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas., P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016. [Google Scholar] [CrossRef]
- Edwards, B.K.; Noone, A.M.; Mariotto, A.B.; Simard, E.P.; Boscoe, F.P.; Henley, S.J.; Jemal, A.; Cho, H.; Anderson, R.N.; Kohler, B.A.; et al. Annual Report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 2014, 120, 1290–1314. [Google Scholar] [CrossRef] [PubMed]
- Hooning, M.J.; Botma, A.; Aleman, B.M.; Baaijens, M.H.; Bartelink, H.; Klijn, J.G.; Taylor, C.W.; van Leeuwen, F.E. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J. Natl. Cancer Inst. 2007, 99, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buddeke, J.; Gernaat, S.A.; Bots, M.L.; van den Bongard, D.H.; Grobbee, D.E.; Vaartjes, I.; Verkooijen, H.M. Trends in the risk of cardiovascular disease in women with breast cancer in a Dutch nationwide cohort study. BMJ Open 2019, 9, e022664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accordino, M.K.; Neugut, A.I.; Hershman, D.L. Cardiac effects of anticancer therapy in the elderly. J. Clin. Oncol. 2014, 32, 2654. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L.S.; Watson, K.E.; Barac, A.; Beckie, T.M.; Bittner, V.; Cruz-Flores, S.; Dent, S.; Kondapalli, L.; Ky, B.; Okwuosa, T.; et al. Cardiovascular disease and breast cancer: Where these entities intersect: A scientific statement from the American Heart Association. Circulation 2018, 137, e30–e66. [Google Scholar] [CrossRef]
- Curigliano, G.; Cardinale, D.; Suter, T.; Plataniotis, G.; De Azambuja, E.; Sandri, M.T.; Criscitiello, C.; Goldhirsch, A.; Cipolla, C.; Roila, F.; et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann. Oncol. 2012, 23 (Suppl. S7), vii155–vii166. [Google Scholar] [CrossRef]
- Turner, N.; Biganzoli, L.; Di Leo, A. Continued value of adjuvant anthracyclines as treatment for early breast cancer. Lancet Oncol. 2015, 16, e362–e369. [Google Scholar] [CrossRef]
- Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; Gutheil, J.C.; Harris, L.N.; Fehrenbacher, L.; Slamon, D.J.; Murphy, M.; Novotny, W.F.; Burchmore, M.; et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 2002, 20, 719–726. [Google Scholar] [CrossRef]
- Pinder, M.C.; Duan, Z.; Goodwin, J.S.; Hortobagyi, G.N.; Giordano, S.H. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J. Clin. Oncol. 2007, 25, 3808–3815. [Google Scholar] [CrossRef]
- Doyle, J.J.; Neugut, A.I.; Jacobson, J.S.; Grann, V.R.; Hershman, D.L. Chemotherapy and cardiotoxicity in older breast cancer patients: A population-based study. J. Clin. Oncol. 2005, 23, 8597–8605. [Google Scholar] [CrossRef] [PubMed]
- Seidman, A.; Hudis, C.; Pierri, M.K.; Shak, S.; Paton, V.; Ashby, M.; Murphy, M.; Stewart, S.J.; Keefe, D. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol. 2002, 20, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; Hall, P. Ischemic heart disease after breast cancer radiotherapy. N. Engl. J. Med. 2013, 368, 2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.Y.; Jellis, C.L.; Kotecha, R.; Johnston, D.R.; Griffin, B.P. Radiation-associated cardiac disease: A practical approach to diagnosis and management. JACC Cardiovasc. Imaging 2018, 11, 1132–1149. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Bush, T.L. Estrogen and coronary heart disease in women. JAMA 1991, 265, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Manson, J.E.; Rosner, B.; Speizer, F.E.; Hennekens, C.H. Postmenopausal estrogen therapy and cardiovascular disease: Ten-year follow-up from the Nurses’ Health Study. N. Engl. J. Med. 1991, 325, 756–762. [Google Scholar] [CrossRef]
- Ross, R.K.; Paganini-Hill, A.; Mack, T.M.; Henderson, B.E. Cardiovascular benefits of estrogen replacement therapy. Am. J. Obstet. Gynecol. 1989, 160, 1301–1306. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Khouri, M.; Mackey, J.R.; Douglas, P.S.; Jones, L.W. Running on empty: Cardiovascular reserve capacity and late effects of therapy in cancer survivorship. J. Clin. Oncol. 2012, 30, 4458. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.W.; Haykowsky, M.J.; Swartz, J.J.; Douglas, P.S.; Mackey, J.R. Early breast cancer therapy and cardiovascular injury. J. Am. Coll. Cardiol. 2007, 50, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Dent, S.F. Practical Cardio-Oncology; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Romond, E.H.; Jeong, J.-H.; Rastogi, P.; Swain, S.M.; Geyer, C.E., Jr.; Ewer, M.S.; Rathi, V.; Fehrenbacher, L.; Brufsky, A.; Azar, C.A.; et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2–positive breast cancer. J. Clin. Oncol. 2012, 30, 3792. [Google Scholar]
- Ezaz, G.; Long, J.B.; Gross, C.P.; Chen, J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J. Am. Heart Assoc. 2014, 3, e000472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, H.-T.; Isaacs, C.; Fu, A.; Warren, J.; Freedman, A.; Barac, A.; Huang, C.Y.; Potosky, A.L. Risk of cardiovascular adverse events from trastuzumab (Herceptin®) in elderly persons with breast cancer: A population-based study. Breast Cancer Res. Treat. 2014, 144, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Guenancia, C.; Lefebvre, A.; Cardinale, D.; Yu, A.F.; Ladoire, S.; Ghiringhelli, F.; Zeller, M.; Rochette, L.; Cottin, Y.; Vergely, C. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: A systematic review and meta-analysis. J. Clin. Oncol. 2016, 34, 3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosalka, P.; Johnson, C.; Turek, M.; Sulpher, J.; Law, A.; Botros, J.; Dent, S.; Aseyev, O. Effect of obesity, dyslipidemia, and diabetes on trastuzumab-related cardiotoxicity in breast cancer. Curr. Oncol. 2019, 26, e314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armenian, S.H.; Xu, L.; Ky, B.; Sun, C.; Farol, L.T.; Pal, S.K.; Douglas, P.S.; Bhatia, S.; Chao, C. Cardiovascular disease among survivors of adult-onset cancer: A community-based retrospective cohort study. J. Clin. Oncol. 2016, 34, 1122–1130. [Google Scholar] [CrossRef]
- Arps, K.; Pallazola, V.A.; Cardoso, R.; Meyer, J.; Jones, I.I.R.; Latina, J.; Gluckman, T.J.; Stone, N.J.; Blumenthal, R.S.; McEvoy, J.W. Clinician’s guide to the updated ABCs of cardiovascular disease prevention: A review part 1. Am. J. Med. 2019, 132, e569–e580. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 74, 1376–1414. [Google Scholar] [CrossRef]
- Wolf, I.; Sadetzki, S.; Catane, R.; Karasik, A.; Kaufman, B. Diabetes mellitus and breast cancer. Lancet Oncol. 2005, 6, 103–111. [Google Scholar] [CrossRef]
- Jawa, Z.; Perez, R.M.; Garlie, L.; Singh, M.; Qamar, R.; Khandheria, B.K.; Jahangir, A.; Shi, Y. Risk factors of trastuzumab-induced cardiotoxicity in breast cancer: A meta-analysis. Medicine 2016, 95, e5195. [Google Scholar] [CrossRef]
- Wang, X.; Sun, C.-L.; Quiñones-Lombraña, A.; Singh, P.; Landier, W.; Hageman, L.; Mather, M.; Rotter, J.I.; Taylor, K.D.; Chen, Y.-D.I.; et al. CELF4 variant and anthracycline-related cardiomyopathy: A children’s oncology group genome-wide association study. J. Clin. Oncol. 2016, 34, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, J.G.; Sun, C.-L.; Landier, W.; Chen, L.; Esparza-Duran, D.; Leisenring, W.; Mays, A.; Friedman, D.L.; Ginsberg, J.P.; Hudson, M.M.; et al. Anthracycline-related cardiomyopathy after childhood cancer: Role of polymorphisms in carbonyl reductase genes—A report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoodley, P.W.; Richards, D.A.; Boyd, A.; Hui, R.; Harnett, P.R.; Meikle, S.R.; Byth, K.; Stuart, K.; Clarke, J.L.; Thomas, L. Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: A comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months. Eur. J. Cancer 2013, 49, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Fallah-Rad, N.; Walker, J.R.; Wassef, A.; Lytwyn, M.; Bohonis, S.; Fang, T.; Tian, G.; Kirkpatrick, I.D.C.; Singal, P.K.; Krahn, M.; et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II–positive breast cancer treated with adjuvant trastuzumab therapy. J. Am. Coll. Cardiol. 2011, 57, 2263–2270. [Google Scholar] [PubMed]
- Ho, E.; Brown, A.; Barrett, P.; Morgan, R.B.; King, G.; Kennedy, M.J.; Murphy, R.T. Subclinical anthracycline-and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: A speckle tracking echocardiographic study. Heart 2010, 96, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Zardavas, D.; Suter, T.M.; Van Veldhuisen, D.J.; Steinseifer, J.; Noe, J.; Lauer, S.; Al-Sakaff, N.; Piccart-Gebhart, M.J.; de Azambuja, E. Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: A herceptin adjuvant study cardiac marker substudy. J. Clin. Oncol. 2017, 35, 878–884. [Google Scholar]
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1063–1093. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Torrisi, R.; Sandri, M.T.; Civelli, M.; Salvatici, M.; Lamantia, G.; Colombo, N.; Cortinovis, S.; Dessanai, M.A.; et al. Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. J. Clin. Oncol. 2010, 28, 3910–3916. [Google Scholar] [CrossRef]
- Sandri, M.T.; Salvatici, M.; Cardinale, D.; Zorzino, L.; Passerini, R.; Lentati, P.; Leon, M.; Civelli, M.; Martinelli, G.; Cipolla, C.M. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: A marker predictive of cardiac dysfunction? Clin. Chem. 2005, 51, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.M.; Toomu, A.; Anzenberg, P.; Getz, T.; Eghtedari, M.; Daniels, L. Breast Arterial Calcification and Risk of Heart Failure. Circulation 2019, 140 (Suppl. S1), A11552. [Google Scholar]
- Quispe, R.; Al-Rifai, M.; Di Carlo, P.A.; Michos, E.D.; Amin, N.P.; Kianoush, S.; Handy, C.E.; McEvoy, J.W.; Blaha, M.J.; Lima, J.A.C.; et al. Breast Arterial Calcium: A Game Changer in Women’s Cardiovascular Health? JACC Cardiovasc. Imaging 2019, 12, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
- Rushton, M.; Johnson, C.; Dent, S. Trastuzumab-induced cardiotoxicity: Testing a clinical risk score in a real-world cardio-oncology population. Curr. Oncol. 2017, 24, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Qadir, H.; Thavendiranathan, P.; Austin, P.C.; Lee, D.S.; Amir, E.; Tu, J.V.; Fung, K.; Anderson, G.M. Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: A population-based cohort study. Eur. Heart J. 2019, 40, 3913–3920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.A.; Okwuosa, T.M.; Barac, A.; Volgman, A.S. The Role of Angiotensin-Converting Enzyme Inhibitors and β-Blockers in Primary Prevention of Cardiac Dysfunction in Breast Cancer Patients. J. Am. Heart Assoc. 2020, 9, e015327. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.V.; Hajjar, L.A.; Lyon, A.R.; Nascimento, B.R.; Putzu, A.; Rossi, L.; Costa, R.B.; Landoni, G.; Nogueira-Rodrigues, A.; Riberio, A.L.P. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol. 2019, 1, 68–79. [Google Scholar] [CrossRef]
- Venturini, M.; Michelotti, A.; Del Mastro, L.; Gallo, L.; Carnino, F.; Garrone, O.; Tibadli, C.; Molea, N.; Bellina, R.C.; Pronzato, P.; et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J. Clin. Oncol. 1996, 14, 3112–3120. [Google Scholar] [CrossRef]
- Tebbi, C.K.; London, W.B.; Friedman, D.; Villaluna, D.; De Alarcon, P.A.; Constine, L.S.; Mendenhall, N.P.; Sposto, R.; Chauvenet, A.; Schwartz, C.L. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J. Clin. Oncol. 2007, 25, 493–500. [Google Scholar] [CrossRef]
- Vejpongsa, P.; Yeh, E.T. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol. 2014, 64, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso, M.; Burgess, M.A.; Ewer, M.; Mackay, B.; Wallace, S.; Benjamin, R.; Ali, M.K.; Bodey, G.P.; Freireich, E.J. Increased therapeutic index of weekly doxorubicin in the therapy of non-small cell lung cancer: A prospective, randomized study. J. Clin. Oncol. 1984, 2, 207–214. [Google Scholar] [CrossRef]
- Gabizon, A.A. Stealth Liposomes and Tumor Targeting: One Step Further in the Quest for the Magic Bullet; American Association of Cancer Research: Philadelphia, PA, USA, 2001. [Google Scholar]
- Food, U.; Administration, D. Drug safety and availability. In FDA Statement on DOXIL (Doxorubicin HCl Liposome Injection) for Intravenous Infusion; Janssen Products, L.P.: Beerse, Belgium, 2014. [Google Scholar]
- Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R.; das Dores Cruz, F.; Brandão, S.M.G.; Rigaud, V.O.C.; Higuchi-dos-Santos, M.H.; Hajjar, L.A.; Filho, R.K.; Hoff, P.M.; et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: The CECCY trial. J. Am. Coll. Cardiol. 2018, 71, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, A.H.; Gietema, J.A.; Kerklaan, B.M.; van Werkhoven, E.D.; Altena, R.; Honkoop, A.; Los, M.; Smitt, W.M.; Nieboer, P.; Smorenburg, C.H.; et al. Angiotensin II–receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: A randomized clinical trial. JAMA Oncol. 2016, 2, 1030–1037. [Google Scholar] [CrossRef]
- Gulati, G.; Heck, S.L.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; von Knobelsdorff-Brenkenhoff, F.; Brastland, A.; Storas, T.H.; et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016, 37, 1671–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pituskin, E.; Mackey, J.R.; Koshman, S.; Jassal, D.; Pitz, M.; Haykowsky, M.J.; Pagano, J.J.; Chow, K.; Thompson, R.B.; Vos, L.J.; et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–Breast): A randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J. Clin. Oncol. 2016, 35, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients With Breast Cancer. J. Am. Coll. Cardiol. 2019, 73, 2859–2868. [Google Scholar] [CrossRef]
- Geuna, E.; Lombardi, P.; Martinello, R.; Garino, D.; Bonzano, A.; Galizia, D.; Nuzzo, A.; Berchialla, P.; Becco, P.; Mangioni, M.; et al. Treatment with Beta-Blockers and ACE-Inhibitors in Breast Cancer Patients Receiving Adjuvant Trastuzumab-Based Therapy and Developing Mild Cardiac Toxicity: A Prospective Study. Cancers 2020, 12, 327. [Google Scholar] [CrossRef] [Green Version]
- Riad, A.; Bien, S.; Westermann, D.; Becher, P.M.; Loya, K.; Landmesser, U.; Kroemer, H.K.; Schultheiss, H.P.; Tschope, C. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res. 2009, 69, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Seicean, S.; Seicean, A.; Plana, J.C.; Budd, G.T.; Marwick, T.H. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: An observational clinical cohort study. J. Am. Coll. Cardiol. 2012, 60, 2384–2390. [Google Scholar] [CrossRef]
- Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, C.E.; Silverio, D.; Sourlas, A.; Montan, P.D.; Guzman, E. Role of spironolactone in the treatment of heart failure with preserved ejection fraction. Ann. Transl. Med. 2018, 6, 461. [Google Scholar] [CrossRef]
- Akpek, M.; Ozdogru, I.; Sahin, O.; Inanc, M.; Dogan, A.; Yazici, C.; Berk, V.; Karaca, H.; Kalay, N.; Oguzhan, A.; et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur. J. Heart Fail. 2015, 17, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; GulAcsi-BArdos, P.; CserEp, Z.; Hangody, L.; Forster, T. Late cardiac effect of anthracycline therapy in physically active breast cancer survivors-a prospective study. Neoplasma 2017, 64, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Habel, L.A.; Weltzien, E.; Castillo, A.; Gupta, D.; Kroenke, C.H.; Kwan, M.L.; Quesenberry, C.P., Jr.; Scott, J.; Sternfeld, B.; et al. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. J. Clin. Oncol. 2016, 34, 2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, M.L.; Smith, A.W.; McTiernan, A.; Ballard-Barbash, R.; Cronin, K.; Gilliland, F.D.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L. Influence of pre-and postdiagnosis physical activity on mortality in breast cancer survivors: The health, eating, activity, and lifestyle study. J. Clin. Oncol. 2008, 26, 3958. [Google Scholar] [CrossRef]
- Gilchrist, S.C.; Barac, A.; Ades, P.A.; Alfano, C.M.; Franklin, B.A.; Jones, L.W.; la Gerche, A.; Ligibel, J.A.; Lopez, G.; Maden, K.; et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: A scientific statement from the American Heart Association. Circulation 2019, 139, e997–e1012. [Google Scholar] [CrossRef]
- Bhansali, R.; Prabhu, N.; Golemi, L.; Okwuosa, T.; Saleem, S. A meta-analysis of cardioprotective agents in preventing cancer therapy-related cardiotoxicity. J. Am. Coll. Cardiol. 2019, 73 (Suppl. S1), 809. [Google Scholar] [CrossRef]
Trial (N) | Intervention | Primary Outcome | Benefit (Yes/No) |
---|---|---|---|
PRADA [57] (130, all anthracycline, 22% trastuzumab) | 1:1:1:1, metoprolol, candesartan, metoprolol and candesartan, or placebo | Changes in LVEF by CMR at 10 to 64 weeks | Yes, absolute LVEF change: 2.6% in placebo, 0.8% in candesartan (p = 0.026) |
MANTICORE [58] (94, all trastuzumab, 12–33% anthracycline) | 1:1:1 bisoprolol, perindopril, or placebo | Changes in LV end diastolic volume Indexby CMR at 1 year | Yes, small reduction in LVEF decline with bisoprolol compared with perindopril and placebo (–1% vs. –3% vs. –5%, p = 0.001) |
Guglin et al. [59] (468, all trastuzumab, 40% doxorubicin) | 1:1:1 carvedilol, lisinopril, or placebo | LVEF > 10% or LVEF decline > 5% with absolute LVEF < 50% | Yes, >10% LVEF decline in subset with prior anthracycline exposure: 47% placebo, 31% carvedilol, 37% lisinopril (p = 0.009) |
CECCY [55] (200, all doxorubicin) | 1:1 carvedilol or placebo | LVEF > 10% decline from baseline to 6 months | No, LVEF decline: 13.5% placebo,14.5% carvedilol (p = 1.00) |
Boekhout et al. [56] (206, all epirubicin with trastuzumab) | 1:1 candesartan or placebo | LVEF decline of >15% or a decrease below the absolute value of 45% | No, LVEF decline: 19% in candesartan, 16% in placebo (p = 0.58) |
Trial Name (PI) | Trial Intervention | Population | Primary Outcomes |
---|---|---|---|
Pharmacological Interventions | |||
PREVENT (NCT01988571) (Hundley, Wake Forest) | Statins (Atorvastatin) vs. Placebo | Breast cancer, lymphoma, chemotherapy with anthracyclines | MRI, biomarkers, symptoms at 2 years |
STOP-CA (NCT02943590) (Neilan, Scherrer Crosbie, MGH) | Statins vs. Placebo | Non-Hodgkin’s Lymphoma, chemotherapy with anthracyclines | MRI, echo at 12 months |
SWOG S1501 (NCT03418961) (Floyd, Leja, Fabian, SWOG) | Carvedilol vs. No Intervention | Metastatic HER2+ breast cancer | Time to first indication of cardiac dysfunction as measured by changes in LVEF by echo |
ICOS-ONE (NCT01968200) (Cipolla, European Institute of Oncology) | Enalapril preventatively vs. After indication of cardiotoxicity | Cancer, chemotherapy with anthracyclines | Cardiac troponin level elevation above threshold |
PROACT (NCT03265574) (Change, Newcastle University) | Enalapril vs. No Intervention | Post-surgical breast cancer to be treated with epirubicin | Cardiac troponin T release during epirubicin treatment |
CARDIAC CARE (ISRCTN24439460) (Maclean, The Queen’s Medical Research Institute) | Angiotensin Receptor Blockers and B-blocker or No Intervention | Breast cancer, chemotherapy with anthracyclines, increased cardiac troponin levels | MRI at 6 months |
PRADA II (NCT03760588) (Omland, Gulati) | Entresto vs. Placebo | Breast cancer, chemotherapy with anthracyclines | Left ventricular ejection fraction by cardiovascular magnetic resonance at 18 months |
Lifestyle Interventions | |||
EQUAL (NCT02244411) (Tonorezos) | Web-based diet and activity intervention | Adult aged, obese survivors of childhood acute lymphoblastic leukemia | Weight loss at 2 years |
NCT03223753 (Ness) | Web-based physical activity intervention | Childhood acute lymphoblastic leukemia patients within 3 months of completing therapy | Physiologic cost index at 6 months |
NCT03104543 (Chow) | Survivorship care plan counseling intervention | Adult-aged survivors at high risk of cardiovascular disease | Blood pressure, cholesterol, glucose, and lipids at 1 year |
NCT03386383 (Valle) | Mobile intervention with tailored feedback | Young adult (18–39) cancer survivors | Physical activity (ActiGraph) |
CARDAPAC (NCT02433067) (Mougin-Guillaume) | Three months individualized physical activity (45 min, 3 times per week) | HER2+ breast cancer patients treated only by trastuzumab | LVEF, body composition, muscle function, metabolic, hormonal and inflammatory responses, pain, fatigue, quality of life |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, R.; Shah, N.P.; Dent, S.F. Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime? J. Clin. Med. 2020, 9, 896. https://doi.org/10.3390/jcm9040896
Kikuchi R, Shah NP, Dent SF. Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime? Journal of Clinical Medicine. 2020; 9(4):896. https://doi.org/10.3390/jcm9040896
Chicago/Turabian StyleKikuchi, Robin, Nishant P. Shah, and Susan F. Dent. 2020. "Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime?" Journal of Clinical Medicine 9, no. 4: 896. https://doi.org/10.3390/jcm9040896
APA StyleKikuchi, R., Shah, N. P., & Dent, S. F. (2020). Strategies to Prevent Cardiovascular Toxicity in Breast Cancer: Is It Ready for Primetime? Journal of Clinical Medicine, 9(4), 896. https://doi.org/10.3390/jcm9040896