Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research
Abstract
:1. Introduction
1.1. Nonalcoholic Fatty Liver Disease (NAFLD) Definitions and Burden
1.2. Sex Medicine
1.3. Sex Differences in NAFLD and Aim of This Review
1.4. Research Strategy
2. Epidemiology
2.1. General Population Studies
2.2. Studies Based on Clinical Populations
3. Key Factors Contributing to Sex Differences in NAFLD
3.1. Sex Chromosomes
3.2. Sex Hormones
3.3. Insulin Resistance
3.3.1. Muscle
3.3.2. Liver
3.3.3. Adipose Tissue
3.3.4. Ethnicity
3.3.5. Stressful Situations: Fasting, Hypoglycemia, Exercise and Post-Prandial Lipidemia
3.3.6. Obesity
3.3.7. Aging
4. Sex-Differences in Relevant Co-Morbidities and Complications Observed in NAFLD
4.1. Type 2 Diabetes
4.2. From NAFLD to T2D
4.3. From T2D to NAFLD
4.4. Uric Acid
4.5. Atherosclerosis
4.6. Arterial Hypertension and Chronic Kidney Disease (CKD)
4.7. Hepatic Fibrosis
4.8. Sub-Acute, Progressive Presentation of NASH
4.9. HCC and Other Benign and Malignant Tumors
5. Implications for Practice: Should Sex-Specific Lifestyle Changes Be Adopted?
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACOR | adjusted cumulative odds ratio |
ALT | alanine transaminase |
AMPK | adenosine monophosphate kinase |
AST | aspartate transaminase |
BAA | BMI, age, ALT and TG |
BMI | body mass index |
CKD | chronic kidney disease |
CI | 95% confidence interval |
CRN | Clinical Research Network |
CRP | C-reactive protein |
CT | computed tomography |
CVD | cardiovascular disease |
E2 | 17β estradiol |
ER | Estrogen Receptors |
FGF21 | fibroblast growth factor 21 |
Fib4 | fibrosis 4 |
GGT | gamma-glutamyl transferase |
GPER | G-protein-coupled Estrogen Receptor |
HCC | hepatocellular carcinoma |
HFD | high-fat diet |
HMDP | hybrid mouse diversity panel |
HR | hazard ratio |
MCD | methionine and choline deficient |
NA | not addressed |
NAFLD | nonalcoholic fatty liver disease |
NASH | nonalcoholic steatohepatitis |
NEFA | non-esterified fatty acids |
OLT | ortotopic liver transplantation |
OR | odds ratio |
OVX | ovariectomized |
PAT | pericardial adipose tissue |
PGC-1α | proliferator-activated receptor gamma coactivator 1 alpha |
PIVENS | Pioglitazone versus Vitamin E versus Placebo for the Treatment of Non-diabetic Patients with Nonalcoholic Steatohepatitis |
STD | standard |
TG | triglycerides |
T2D | type 2 diabetes |
VWR | voluntary wheel running |
References
- Lonardo, A.; Mantovani, A.; Lugari, S.; Targher, G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int. J. Mol. Sci. 2019, 20, 2841. [Google Scholar] [CrossRef] [Green Version]
- Italian Association for the Study of the Liver (AISF). AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis. 2017, 49, 471–483. [Google Scholar] [CrossRef]
- Chongmelaxme, B.; Phisalprapa, P.; Sawangjit, R.; Dilokthornsakul, P.; Chaiyakunapruk, N. Weight Reduction and Pioglitazone are Cost-Effective for the Treatment of Non-Alcoholic Fatty Liver Disease in Thailand. Pharmacoeconomics 2019, 37, 267–278. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Blissett, D.; Blissett, R.; Henry, L.; Stepanova, M.; Younossi, Y.; Racila, A.; Hunt, S.; Beckerman, R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016, 64, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Henry, L.; Bush, H.; Mishra, A. Clinical and Economic Burden of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Regitz-Zagrosek, V.; Kararigas, G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Reusch, J.E.B.; Kumar, T.R.; Regensteiner, J.G.; Zeitler, P.S. Conference Participants. Identifying the Critical Gaps in Research on Sex Differences in Metabolism Across the Life Span. Endocrinology 2018, 159, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in NAFLD: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, R.; Clarkson, V.; Shephard, E.G.; Marais, D.A.; Jaffer, M.A.; Woodburne, V.E.; Kirsch, R.E.; Hall Pde, L. Rodent nutritional model of non-alcoholic steatohepatitis: Species, strain and sex difference studies. J. Gastroenterol. Hepatol. 2003, 18, 1272–1282. [Google Scholar] [CrossRef]
- Stöppeler, S.; Palmes, D.; Fehr, M.; Hölzen, J.P.; Zibert, A.; Siaj, R.; Schmidt, H.H.; Spiegel, H.U.; Bahde, R. Gender and strain-specific differences in the development of steatosis in rats. Lab. Anim. 2013, 47, 43–52. [Google Scholar] [CrossRef]
- Chukijrungroat, N.; Khamphaya, T.; Weerachayaphorn, J.; Songserm, T.; Saengsirisuwan, V. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E203–E212. [Google Scholar] [CrossRef] [Green Version]
- Kurt, Z.; Barrere-Cain, R.; LaGuardia, J.; Mehrabian, M.; Pan, C.; Hui, S.T.; Norheim, F.; Zhou, Z.; Hasin, Y.; Lusis, A.J.; et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol. Sex Differ. 2018, 9, 46–60. [Google Scholar] [CrossRef]
- Camporez, J.P.; Lyu, K.; Goldberg, E.L.; Zhang, D.; Cline, G.W.; Jurczak, M.J.; Dixit, V.D.; Petersen, K.F.; Shulman, G.I. Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid-induced insulin resistance. J. Physiol. 2019, 597, 3885–3903. [Google Scholar] [CrossRef]
- McCoin, C.S.; Von Schulze, A.; Allen, J.; Fuller, K.N.Z.; Xia, Q.; Koestler, D.C.; Houchen, C.J.; Maurer, A.; Dorn, G.W., 2nd; Shankar, K.; et al. Sex modulates hepatic mitochondrial adaptations to high-fat diet and physical activity. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E298–E311. [Google Scholar] [CrossRef]
- Wong, V.W.; Chu, W.C.; Wong, G.L.; Chan, R.S.; Chim, A.M.; Ong, A.; Yeung, D.K.; Yiu, K.K.; Chu, S.H.; Woo, J.; et al. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: A population study using proton-magnetic resonance spectroscopy and transient elastography. Gut 2012, 61, 409–415. [Google Scholar] [CrossRef]
- Eguchi, Y.; Hyogo, H.; Ono, M.T.; Ono, N.; Fujimoto, K.; Chayama, K.; Saibara, T.; JSG-NAFLD. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: A multicenter large retrospective study. J. Gastroenterol. 2012, 47, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Halpern, Z.; Oren, R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int. 2006, 26, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Caballeria, L.; Pera, G.; Auladell, M.A.; Toran, P.; Munoz, L.; Miranda, D.; Aluma, A.; Casas, J.D.; Sánchez, C.; Gil, D.; et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur J. Gastroenterol. Hepatol. 2010, 22, 24–32. [Google Scholar] [CrossRef]
- Li, Z.; Xue, J.; Chen, P.; Chen, L.; Yan, S.; Liu, L. Prevalence of nonalcoholic fatty liver disease in mainland of China: A meta-analysis of published studies. J. Gastroenterol. Hepatol. 2014, 29, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Li, Y.Y.; Nie, Y.Q.; Ma, J.X.; Lu, L.G.; Shi, S.L.; Chen, M.H.; Hu, P.J. Prevalence of fatty liver disease and its risk factors in the population of South China. World J. Gastroenterol. 2007, 13, 6419–6424. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, W.R.; Kim, H.J.; Therneau, T.M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 2013, 57, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, E.H.; Amini, M.; Schreuder, T.C.; Dullaart, R.P.; Faber, K.N.; Alizadeh, B.Z.; Blokzijl, H. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: A large Dutch population cohort. PLoS ONE 2017, 12, e0171502. [Google Scholar] [CrossRef]
- Park, S.H.; Jeon, W.K.; Kim, S.H.; Kim, H.J.; Park, D.I.; Cho, Y.K.; Sung, I.K.; Sohn, C.I.; Keum, D.K.; Kim, B.I. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J. Gastroenterol. Hepatol. 2006, 21, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Pedley, A.; Massaro, J.M.; Hoffmann, U.; Ma, J.; Loomba, R.; Chung, R.T.; Benjamin, E.J. A simple clinical model predicts incident hepatic steatosis in a community-based cohort: The Framingham Heart Study. Liver Int. 2018, 38, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Hartleb, M.; Baranski, K.; Zejda, J.; Chudek, J.; Wiecek, A. Non-alcoholic fatty liver and advanced fibrosis in the elderly: Results from a community-based Polish survey. Liver Int. 2017, 37, 1706–1714. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, H.; Hyogo, H.; Ono, M.; Oza, N.; Kitajima, Y.; Kawanaka, M.; Chayama, K.; Saibara, T.; Anzai, K.; et al. Epidemiological survey of hemoglobin A1c and liver fibrosis in a general population with nonalcoholic fatty liver disease. Hepatol. Res. 2019, 49, 296–303. [Google Scholar] [CrossRef]
- Caballeria, L.; Pera, G.; Arteaga, I.; Rodriguez, L.; Aluma, A.; Morillas, R.M.; de la Ossa, N.; Díaz, A.; Expósito, C.; Miranda, D.; et al. High Prevalence of Liver Fibrosis Among European Adults With Unknown Liver Disease: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2018, 16, 1138–1145. [Google Scholar] [CrossRef] [Green Version]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef]
- Cho, H.C. Prevalence and Factors Associated with Nonalcoholic Fatty Liver Disease in a Nonobese Korean Population. Gut Liver 2016, 10, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, S.; Wu, Y.; Ye, J.; Cao, X.; Liu, J.; Sun, Y.; Zhong, B. Prevalence of Insulin Resistance in Subjects with Nonalcoholic Fatty Liver Disease and Its Predictors in a Chinese Population. Dig. Dis. Sci. 2015, 60, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Trande, P. Are there any sex differences in fatty liver? A study of glucose metabolism and body fat distribution. J. Gastroenterol. Hepatol. 2000, 15, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Ortega, E.; Garcés-Hernández, M.J.; Herrera-Rosas, A.; López-Alvarenga, J.C.; Laresgoiti-Servitje, E.; Escobedo, G.; Queipo, G.; Cuevas-Covarrubias, S.; Garibay-Nieto, G.N. Gender-specific differences in clinical and metabolic variables associated with NAFLD in a Mexican pediatric population. Ann. Hepatol. 2019, 18, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, E.; Eguchi, Y.; Eguchi, T.; Matsunobu, A.; Oza, N.; Nakashita, S.; Kitajima, Y.; Kuroki, S.; Ozaki, I.; Kawaguchi, Y.; et al. Waist circumference correlates with hepatic fat accumulation in male Japanese patients with non-alcoholic fatty liver disease, but not in females. J. Gastroenterol. Hepatol. 2008, 23, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D. Sex differences in the metabolic syndrome: Implications for cardiovascular health in women. Clin. Chem. 2014, 60, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Després, J.P. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [Green Version]
- Lonardo, A.; Carani, C.; Carulli, N.; Loria, P. ‘Endocrine NAFLD’ a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J. Hepatol. 2006, 44, 1196–1207. [Google Scholar] [CrossRef]
- Sarkar, M.; Yates, K.; Suzuki, A.; Lavine, J.; Gill, R.; Ziegler, T.; Terrault, N.; Dhindsa, S. Low Testosterone Is Associated With Nonalcoholic Steatohepatitis (NASH) and Severity of NASH Fibrosis in Men With NAFLD. Clin. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Miyaaki, H.; Ichikawa, T.; Nakao, K.; Yatsuhashi, H.; Furukawa, R.; Ohba, K.; Omagari, K.; Kusumoto, Y.; Yanagi, K.; Inoue, O.; et al. Clinicopathological study of nonalcoholic fatty liver disease in Japan: The risk factors for fibrosis. Liver Int. 2008, 28, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Sakhuja, P.; Malhotra, V.; Gondal, R.; Sarin, S.K. Independent predictors of steatohepatitis and fibrosis in Asian Indian patients with non-alcoholic steatohepatitis. Dig. Dis. Sci. 2008, 53, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Bambha, K.; Belt, P.; Abraham, M.; Wilson, L.A.; Pabst, M.; Ferrell, L.; Unalp-Arida, A.; Bass, N.; Nonalcoholic Steatohepatitis Clinical Research Network Research Group. Ethnicity and nonalcoholic fatty liver disease. Hepatology 2012, 55, 769–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapper, E.B.; Krajewski, K.; Lai, M.; Challies, T.; Kane, R.; Afdhal, N.; Lau, D. Simple non-invasive biomarkers of advanced fibrosis in the evaluation of non-alcoholic fatty liver disease. Gastroenterol. Rep. 2014, 2, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Hossain, N.; Afendy, A.; Stepanova, M.; Nader, F.; Srishord, M.; Rafiq, N.; Goodman, Z.; Younossi, Z. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1224–1229. [Google Scholar] [CrossRef]
- Yang, J.D.; Abdelmalek, M.F.; Pang, H.; Guy, C.D.; Smith, A.D.; Diehl, A.M.; Suzuki, A. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 2014, 59, 1406–1414. [Google Scholar] [CrossRef]
- Yatsuji, S.; Hashimoto, E.; Tobari, M.; Tokushige, K.; Shiratori, K. Influence of age and gender in Japanese patients with non-alcoholic steatohepatitis. Hepatol. Res. 2007, 37, 1034–1043. [Google Scholar] [CrossRef]
- Labenz, C.; Huber, Y.; Kalliga, E.; Nagel, M.; Ruckes, C.; Straub, B.K.; Galle, P.R.; Wörns, M.A.; Anstee, Q.M.; Schuppan, D.; et al. Predictors of advanced fibrosis in non-cirrhotic non-alcoholic fatty liver disease in Germany. Aliment. Pharmacol. Ther. 2018, 48, 1109–1116. [Google Scholar] [CrossRef]
- Tobari, M.; Hashimoto, E. Characteristic Features of Nonalcoholic Fatty Liver Disease in Japan with a Focus on the Roles of Age, Sex and Body Mass Index. Gut Liver 2020. [Google Scholar] [CrossRef] [Green Version]
- Turola, E.; Petta, S.; Vanni, E.; Milosa, F.; Valenti, L.; Critelli, R.; Miele, L.; Maccio, L.; Calvaruso, V.; Fracanzani, A.L.; et al. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis. Dis. Model Mech. 2015, 8, 1037–1046. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, M.; Thomas, E.; Sumida, Y.; Eguchi, Y.; Schiff, E.R. The influence of menopause on the development of hepatic fibrosis in nonobese women with nonalcoholic fatty liver disease. Hepatology 2014, 60, 1792. [Google Scholar] [CrossRef] [PubMed]
- Arun, J.; Clements, R.H.; Lazenby, A.J.; Leeth, R.R.; Abrams, G.A. The prevalence of nonalcoholic steatohepatitis is greater in morbidly obese men compared to women. Obes. Surg. 2006, 16, 1351–1358. [Google Scholar] [CrossRef]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blekhman, R.; Marioni, J.C.; Zumbo, P.; Stephens, M.; Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 2010, 20, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, J.C.; Chen, X.; Arnold, A.P.; Reue, K. Metabolic impact of sex chromosomes. Adipocyte 2013, 2, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reue, K. Sex differences in obesity: X chromosome dosage as a risk factor for increased food intake, adiposity and co-morbidities. Physiol. Behav. 2017, 176, 174–182. [Google Scholar] [CrossRef]
- Lebenthal, Y.; Levy, S.; Sofrin-Drucker, E.; Nagelberg, N.; Weintrob, N.; Shalitin, S.; de Vries, L.; Tenenbaum, A.; Phillip, M.; Lazar, L. The Natural History of Metabolic Comorbidities in Turner Syndrome from Childhood to Early Adulthood: Comparison between 45,X Monosomy and Other Karyotypes. Front. Endocrinol. 2018, 9, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Shadid, S.; Abosi-Appeadu, K.; De Maertelaere, A.S.; Defreyne, J.; Veldeman, L.; Holst, J.J.; Lapauw, B.; Vilsbøll, T.; T’Sjoen, G. Effects of Gender-Affirming Hormone Therapy on Insulin Sensitivity and Incretin Responses in Transgender People. Diabetes Care 2020, 43, 411–417. [Google Scholar] [CrossRef]
- Grossmann, M.; Wierman, M.E.; Angus, P.; Handelsman, D.J. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr. Rev. 2019, 40, 417–446. [Google Scholar] [CrossRef]
- Chen, K.L.; Madak-Erdogan, Z. Estrogens and female liver health. Steroids 2018, 133, 38–43. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227–256. [Google Scholar]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Loria, P. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology 2002, 36, 514–515. [Google Scholar] [CrossRef]
- Lonardo, A.; Lombardini, S.; Ricchi, M.; Loria, P. Review article: Hepatic steatosis and insulin resistance. Aliment. Pharmacol. Ther. 2005, 22, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabetologia 2005, 48, 634–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, I.A.; Da Silva Morais, A.; Schroyen, B.; Van Hul, N.; Geerts, A. Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences. J. Hepatol. 2007, 47, 142–156. [Google Scholar] [CrossRef]
- Su, Q.; Tsai, J.; Xu, E.; Qiu, W.; Bereczki, E.; Santha, M.; Adeli, K. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. Hepatology 2009, 50, 77–84. [Google Scholar] [CrossRef]
- Lanthier, N.; Horsmans, Y.; Leclercq, I.A. The metabolic syndrome: How it may influence hepatic stellate cell activation and hepatic fibrosis. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 404–411. [Google Scholar] [CrossRef]
- Lopaschuk, G.D. Fatty Acid Oxidation and Its Relation with Insulin Resistance and Associated Disorders. Ann. Nutr. Metab. 2016, 68, 15–20. [Google Scholar] [CrossRef]
- Moon, Y.A. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis. Endocrinol. Metab. 2017, 32, 6–10. [Google Scholar] [CrossRef]
- Leibowitz, A.; Bier, A.; Gilboa, M.; Peleg, E.; Barshack, I.; Grossman, E. Saccharin Increases Fasting Blood Glucose but Not Liver Insulin Resistance in Comparison to a High Fructose-Fed Rat Model. Nutrients 2018, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Nascimbeni, F.; Bedossa, P.; Fedchuk, L.; Pais, R.; Charlotte, F.; Lebray, P.; Poynard, T.; Ratziu, V.; LIDO (Liver Injury in Diabetes and Obesity) Study Group. Clinical validation of the FLIP algorithm and the SAF score in patients with non-alcoholic fatty liver disease. J. Hepatol. 2019, 72, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science 2011, 332, 1519–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebbard, L.; George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Semple, R.K.; Sleigh, A.; Murgatroyd, P.R.; Adams, C.A.; Bluck, L.; Jackson, S.; Vottero, A.; Kanabar, D.; Charlton-Menys, V.; Durrington, P.; et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J. Clin. Invest. 2009, 119, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, R.; Senior, P.A.; Ackerman, T.E.; Ryan, E.A.; Paty, B.W.; Lakey, J.R.; Shapiro, A.M. Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes 2004, 53, 1311–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wagner, L.B.; Rinella, M.E. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Ther. Adv. Gastroenterol. 2011, 4, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Rosso, C.; Mezzabotta, L.; Gaggini, M.; Salomone, F.; Gambino, R.; Marengo, A.; Saba, F.; Vanni, E.; Younes, R.; Saponaro, C.; et al. Peripheral insulin resistance predicts liver damage in nondiabetic subjects with nonalcoholic fatty liver disease. Hepatology 2016, 63, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Imajo, K.; Yoneda, M.; Nakahara, T.; Hyogo, H.; Takahashi, H.; Hara, T.; Tanaka, S.; Sumida, Y.; Eguchi, Y.; et al. Japan Study Group of Nonalcoholic Fatty Liver Disease. HOMA-IR: An independent predictor of advanced liver fibrosis in nondiabetic non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2019, 34, 1390–1395. [Google Scholar] [CrossRef]
- Vanni, E.; Bugianesi, E.; Kotronen, A.; De Minicis, S.; Yki-Järvinen, H.; Svegliati-Baroni, G. From the metabolic syndrome to NAFLD or vice versa? Dig. Liver Dis. 2010, 42, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Lonardo, A.; Ballestri, S.; Marchesini, G.; Angulo, P.; Loria, P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Dig. Liver Dis. 2015, 47, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballestri, S.; Zona, S.; Targher, G.; Romagnoli, D.; Baldelli, E.; Nascimbeni, F.; Roverato, A.; Guaraldi, G.; Lonardo, A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016, 31, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J. Hepatol. 2018, 68, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Lugari, S.; Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Maurantonio, M. A round trip from nonalcoholic fatty liver disease to diabetes: Molecular targets to the rescue? Acta Diabetologica 2019, 56, 385–396. [Google Scholar] [CrossRef]
- Morselli, E.; Santos, R.S.; Criollo, A.; Nelson, M.D.; Palmer, B.F.; Clegg, D.J. The effects of oestrogens and their receptors on cardiometabolic health. Nat. Rev. Endocrinol. 2017, 13, 352–364. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2009, 317, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491. [Google Scholar] [CrossRef]
- Høeg, L.D.; Sjøberg, K.A.; Lundsgaard, A.M.; Jordy, A.B.; Hiscock, N.; Wojtaszewski, J.F.; Richter, E.A.; Kiens, B. Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. J. Appl. Physiol. 2013, 114, 592–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christen, T.; Trompet, S.; Noordam, R.; van Klinken, J.B.; van Dijk, K.W.; Lamb, H.J.; Cobbaert, C.M.; den Heijer, M.; Jazet, I.M.; Jukema, J.W.; et al. Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides 2018, 107, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuutila, P.; Knuuti, M.J.; Mäki, M.; Laine, H.; Ruotsalainen, U.; Teräs, M.; Haaparanta, M.; Solin, O.; Yki-Järvinen, H. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes 1995, 44, 31–36. [Google Scholar] [CrossRef]
- Basu, R.; Breda, E.; Oberg, A.L.; Powell, C.C.; Dalla Man, C.; Basu, A.; Vittone, J.L.; Klee, G.G.; Arora, P.; Jensen, M.D.; et al. Mechanisms of the age-associated deterioration in glucose tolerance: Contribution of alterations in insulin secretion, action, and clearance. Diabetes 2003, 52, 1738–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakelides, H.; Irving, B.A.; Short, K.R.; O’Brien, P.; Nair, K.S. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 2010, 59, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loria, P.; Marchesini, G.; Nascimbeni, F.; Ballestri, S.; Maurantonio, M.; Carubbi, F.; Ratziu, V.; Lonardo, A. Cardiovascular risk, lipidemic phenotype and steatosis. A comparative analysis of cirrhotic and non-cirrhotic liver disease due to varying etiology. Atherosclerosis 2014, 232, 99–109. [Google Scholar] [CrossRef]
- Lonardo, A.; Ballestri, S.; Guaraldi, G.; Nascimbeni, F.; Romagnoli, D.; Zona, S.; Targher, G. Fatty liver is associated with an increased risk of diabetes and cardiovascular disease—Evidence from three different disease models: NAFLD, HCV and HIV. World J. Gastroenterol. 2016, 22, 9674–9693. [Google Scholar] [CrossRef]
- Zhu, L.; Martinez, M.N.; Emfinger, C.H.; Palmisano, B.T.; Stafford, J.M. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1188–E1197. [Google Scholar] [CrossRef] [Green Version]
- Maffei, L.; Murata, Y.; Rochira, V.; Tubert, G.; Aranda, C.; Vazquez, M.; Clyne, C.D.; Davis, S.; Simpson, E.R.; Carani, C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: Effects of testosterone, alendronate, and estradiol treatment. J. Clin. Endocrinol. Metab. 2004, 89, 61–70. [Google Scholar] [CrossRef]
- Maffei, L.; Rochira, V.; Zirilli, L.; Antunez, P.; Aranda, C.; Fabre, B.; Simone, M.L.; Pignatti, E.; Simpson, E.R.; Houssami, S.; et al. A novel compound heterozygous mutation of the aromatase gene in an adult man: Reinforced evidence on the relationship between congenital oestrogen deficiency, adiposity and the metabolic syndrome. Clin. Endocrinol. 2007, 67, 218–222. [Google Scholar] [CrossRef]
- Zhu, L.; Brown, W.C.; Cai, Q.; Krust, A.; Chambon, P.; McGuinness, O.P.; Stafford, J.M. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 2013, 62, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Chan, Z.; Chooi, Y.C.; Ding, C.; Choo, J.; Sadananthan, S.A.; Michael, N.; Velan, S.S.; Leow, M.K.; Magkos, F. Sex differences in glucose and fatty acid metabolism in asians who are nonobese. J. Clin. Endocrinol. Metab. 2019, 104, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, C.M.; Azevedo, D.C.; Oliveira, A.L.; Martinez-Salazar, E.L.; Torriani, M.; Bredella, M.A. Sex differences in pericardial adipose tissue assessed by PET/CT and association with cardiometabolic risk. Acta Radiologica 2018, 59, 1203–1209. [Google Scholar] [CrossRef]
- Sumner, A.E.; Kushner, H.; Sherif, K.D.; Tulenko, T.N.; Falkner, B.; Marsh, J.B. Sex differences in African-Americans regarding sensitivity to insulin’s glucoregulatory and antilipolytic actions. Diabetes Care 1999, 22, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Bakir, S.M.; Jarrett, R.J. The effects of a low-dose intravenous insulin infusion upon plasma glucose and non-esterified fatty acid levels in very obese and non-obese human subjects. Diabetologia 1981, 20, 592–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrington, M.S.; Davis, S.N. Sexual Dimorphism in Glucose and Lipid Metabolism during Fasting, Hypoglycemia, and Exercise. Front. Endocrinol. 2015, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Fallah, J.; Coyle, E.F. The effects of fasting on metabolism and performance. Br. J. Sports Med. 2010, 44, 490–494. [Google Scholar] [CrossRef]
- Frias, J.P.; Macaraeg, G.B.; Ofrecio, J.; Yu, J.G.; Olefsky, J.M.; Kruszynska, Y.T. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes 2001, 50, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Soeters, M.R.; Sauerwein, H.P.; Groener, J.E.; Aerts, J.M.; Ackermans, M.T.; Glatz, J.F.; Fliers, E.; Serlie, M.J. Gender-related differences in the metabolic response to fasting. J. Clin. Endocrinol. Metab. 2007, 92, 3646–3652. [Google Scholar] [CrossRef] [Green Version]
- Mahfouz, R.; Khoury, R.; Blachnio-Zabielska, A.; Turban, S.; Loiseau, N.; Lipina, C.; Stretton, C.; Bourron, O.; Ferré, P.; Foufelle, F.; et al. Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models: A mechanistic insight. PLoS ONE 2014, 9, e101865. [Google Scholar] [CrossRef]
- Roepstorff, C.; Helge, J.W.; Vistisen, B.; Kiens, B. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc. Nutr. Soc. 2004, 63, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hevener, A.; Reichart, D.; Janez, A.; Olefsky, J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes 2002, 51, 1907–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ståhlberg, N.; Rico-Bautista, E.; Fisher, R.M.; Wu, X.; Cheung, L.; Flores-Morales, A.; Tybring, G.; Norstedt, G.; Tollet-Egnell, P. Female-predominant expression of fatty acid translocase/CD36 in rat and human liver. Endocrinology 2004, 145, 1972–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauvais-Jarvis, F. Gender differences in glucose homeostasis and diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Cox-York, K.A.; Sharp, T.A.; Stotz, S.A.; Bessesen, D.H.; Pagliassotti, M.J.; Horton, T.J. The effects of sex, metabolic syndrome and exercise on postprandial lipemia. Metabolism 2013, 62, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Della Torre, S.; Mitro, N.; Meda, C.; Lolli, F.; Pedretti, S.; Barcella, M.; Ottobrini, L.; Metzger, D.; Caruso, D.; Maggi, A. Short-Term Fasting Reveals Amino Acid Metabolism as a Major Sex-Discriminating Factor in the Liver. Cell Metab. 2018, 28, 256–267. [Google Scholar] [CrossRef]
- Pogribny, I.P.; Kutanzi, K.; Melnyk, S.; de Conti, A.; Tryndyak, V.; Montgomery, B.; Pogribna, M.; Muskhelishvili, L.; Latendresse, J.R.; James, S.J.; et al. Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury. FASEB J. 2013, 27, 2233–2243. [Google Scholar] [CrossRef]
- Lu, S.C.; Alvarez, L.; Huang, Z.Z.; Chen, L.; An, W.; Corrales, F.J.; Avila, M.A.; Kanel, G.; Mato, J.M. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc. Natl. Acad. Sci. USA 2001, 98, 5560–5565. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.W.; Mehedint, M.G.; Garrow, T.A.; Zeisel, S.H. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem. 2011, 286, 36258–36267. [Google Scholar] [CrossRef] [Green Version]
- Milaciu, M.V.; Vesa, Ș.C.; Bocșan, I.C.; Ciumărnean, L.; Sâmpelean, D.; Negrean, V.; Pop, R.M.; Matei, D.M.; Pașca, S.; Răchișan, A.L.; et al. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2019, 8, 2200. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, J.; Dong, X.; Xu, Y.; Leng, S.; Wang, G. Clinical Study of Serum Homocysteine and Non-Alcoholic Fatty Liver Disease in Euglycemic Patients. Med. Sci. Monit. 2016, 22, 4146–4151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, S.C.; Muniz, M.T.; Siqueira, M.D.; Siqueira, E.R.; Gomes, A.V.; Silva, K.A.; Bezerra, L.C.; D’Almeida, V.; de Oliveira, C.P.; Pereira, L.M. Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease (NAFLD). Nutr. J. 2013, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Sadre-Marandi, F.; Dahdoul, T.; Reed, M.C.; Nijhout, H.F. Sex differences in hepatic one-carbon metabolism. BMC Syst. Biol. 2018, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Chitneni, S.K.; Suzuki, A.; Wang, Y.; Henao, R.; Hyun, J.; Premont, R.T.; Naggie, S.; Moylan, C.A.; Bashir, M.R.; et al. Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression. Cell Mol. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, A.D.; Novak, P.; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 2015, 47, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Grzych, G.; Vonghia, L.; Bout, M.A.; Weyler, J.; Verrijken, A.; Dirinck, E.; Joncquel, M.; Van Gaal, L.; Paumelle, R.; Francque, S.; et al. Plasma BCAA changes in Patients with NAFLD are Sex Dependent. J. Clin. Endocrinol. Metab. 2020. [Google Scholar] [CrossRef]
- Vistisen, B.; Hellgren, L.I.; Vadset, T.; Scheede-Bergdahl, C.; Helge, J.W.; Dela, F.; Stallknecht, B. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur. J. Endocrinol. 2008, 158, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Ter Horst, K.W.; Gilijamse, P.W.; de Weijer, B.A.; Kilicarslan, M.; Ackermans, M.T.; Nederveen, A.J.; Nieuwdorp, M.; Romijn, J.A.; Serlie, M.J. Sexual Dimorphism in Hepatic, Adipose Tissue, and Peripheral Tissue Insulin Sensitivity in Obese Humans. Front. Endocrinol. 2015, 6, 182–188. [Google Scholar] [CrossRef]
- Borissova, A.M.; Tankova, T.; Kirilov, G.; Koev, D. Gender-dependent effect of ageing on peripheral insulin action. Int. J. Clin. Pract. 2005, 59, 422–426. [Google Scholar] [CrossRef]
- Loria, P.; Lonardo, A.; Anania, F. Liver and diabetes. A vicious circle. Hepatol. Res. 2013, 43, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura-Clapier, R.; Moulin, M.; Piquereau, J.; Lemaire, C.; Mericskay, M.; Veksler, V.; Garnier, A. Mitochondria: A central target for sex differences in pathologies. Clin. Sci. 2017, 131, 803–822. [Google Scholar] [CrossRef] [PubMed]
- Akuta, N.; Kawamura, Y.; Arase, Y.; Saitoh, S.; Fujiyama, S.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; Suzuki, Y.; et al. Hepatocellular carcinoma is the most common liver-related complication in patients with histopathologically-confirmed NAFLD in Japan. BMC Gastroenterol. 2018, 18, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björkström, K.; Stål, P.; Hultcrantz, R.; Hagström, H. Histologic scores for fat and fibrosis associate with development of type 2 diabetes in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2017, 15, 1461–1468. [Google Scholar] [CrossRef]
- Sung, K.C.; Seo, D.C.; Lee, S.J.; Lee, M.Y.; Wild, S.H.; Byrne, C.D. Non alcoholic fatty liver disease and risk of incident diabetes in subjects who are not obese. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, S.H.; Morling, J.R.; McAllister, D.A.; Kerssens, J.; Fischbacher, C.; Parkes, J.; Roderick, P.J.; Sattar, N.; Byrne, C.D.; Scottish and Southampton Diabetes and Liver Disease Group; et al. Type 2 diabetes and risk of hospital admission or death for chronic liver diseases. .J. Hepatol. 2016, 64, 1358–1364. [Google Scholar] [PubMed] [Green Version]
- Dai, W.; Ye, L.; Liu, A.; Wen, S.W.; Deng, J.; Wu, X.; Lai, Z. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: A meta-analysis. Medicine 2017, 96, e8179. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Maurantonio, M.; Marrazzo, A.; Rinaldi, L.; Adinolfi, L.E. Nonalcoholic fatty liver disease: Evolving paradigms. World J. Gastroenterol. 2017, 23, 6571–6592. [Google Scholar] [CrossRef]
- Shih, M.H.; Lazo, M.; Liu, S.H.; Bonekamp, S.; Hernaez, R.; Clark, J.M. Association between serum uric acid and nonalcoholic fatty liver disease in the US population. J. Formos. Med. Assoc. 2015, 114, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Fan, N.; Zhang, L.; Xia, Z.; Peng, L.; Wang, Y.; Peng, Y. Sex-Specific Association between Serum Uric Acid and Nonalcoholic Fatty Liver Disease in Type 2 Diabetic Patients. J. Diabetes Res. 2016, 2016, 3805372. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.C.; Suh, S.Y.; Suh, A.R.; Ahn, H.Y. The relationship between normal serum uric acid and nonalcoholic fatty liver disease. J. Korean Med. Sci. 2011, 26, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Lonardo, A.; Ballestri, S.; Targher, G.; Loria, P. Diagnosis and management of cardiovascular risk in nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 629–650. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Askling, J.; Hultcrantz, R.; Kechagias, S. Cardiovascular risk factors in non-alcoholic fatty liver disease. Liver Int. 2019, 39, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.M.; Therneau, T.M.; Mara, K.C.; Larson, J.J.; Watt, K.D.; Hayes, S.N.; Kamath, P.S. Women with Nonalcoholic Fatty Liver Disease lose protection against cardiovascular disease: A longitudinal cohort study. Am. J. Gastroenterol. 2019, 114, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Qiu, B.H.; Su, F.C.; Sun, S.X. Gender impacts on the correlations between nonalcoholic fatty liver disease and hypertension in a Chinese population aged 45–60 y. Clin. Exp. Hypertens. 2016, 38, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Fussner, L.A.; Charlton, M.R.; Heimbach, J.K.; Fan, C.; Dierkhising, R.; Coss, E.; Watt, K.D. The impact of gender and NASH on chronic kidney disease before and after liver transplantation. Liver Int. 2014, 34, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Mizobuchi, Y.; Yasuda, M.; Shiba, M.; Ma, Y.R.; Horie, T.; Liu, F.; Ito, S. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells In Vivo and In Vitro. Gut 1999, 44, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.H.; Li, D.G.; Huang, X.; Zong, C.H.; Xu, Q.F.; Lu, H.M. Suppressive effects of 17beta-estradiol on hepatic fibrosis in CCl4-induced rat model. World J. Gastroenterol. 2004, 10, 1315–1320. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, C.G.; Ji, L.H.; Zhao, G.; Wu, Z.Y. Estrogen receptor β selective agonist ameliorates liver cirrhosis in rats by inhibiting the activation and proliferation of hepatic stellate cells. J. Gastroenterol. Hepatol. 2018, 33, 747–755. [Google Scholar] [CrossRef]
- Tobari, M.; Hashimoto, E.; Taniai, M.; Ikarashi, Y.; Kodama, K.; Kogiso, T.; Tokushige, K.; Takayoshi, N.; Hashimoto, N. Characteristics of non-alcoholic steatohepatitis among lean patients in Japan: Not uncommon and not always benign. J. Gastroenterol. Hepatol 2019, 34, 1404–1410. [Google Scholar] [CrossRef]
- Machado, M.; Marques-Vidal, P.; Cortez-Pinto, H. Hepatic histology in obese patients undergoing bariatric surgery. J. Hepatol. 2006, 45, 600–606. [Google Scholar] [CrossRef]
- Marcos, R.; Correia-Gomes, C.; Miranda, H.; Carneiro, F. Liver gender dimorphism—insights from quantitative morphology. Histol. Histopathol. 2015, 30, 1431–1437. [Google Scholar] [PubMed]
- McCullough, A.J. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin. Liver Dis. 2004, 8, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, S.H.; Hespenheide, E.E. Subacute liver failure in obese women. Am. J. Gastroenterol. 2002, 97, 2058–2062. [Google Scholar] [CrossRef] [PubMed]
- Kranidiotis, G.; Angelidi, A.; Sevdalis, E.; Telios, T.N.; Gougoutsi, A.; Melidonis, A. Acute steatohepatitis, due to extreme metabolic dysregulation, as the first presentation of non-alcoholic fatty liver disease. Clin. Pract. 2013, 3, e17. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.H.; Ferrell, L.D.; Tan, V.; Yeh, M.M.; Sarkar, M.; Gill, R.M. Aggressive non-alcoholic steatohepatitis following rapid weight loss and/or malnutrition. Mod. Pathol. 2017, 30, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Sanna, C.; Rosso, C.; Marietti, M.; Bugianesi, E. Non-Alcoholic Fatty Liver Disease and Extra-Hepatic Cancers. Int. J. Mol. Sci. 2016, 17, 717. [Google Scholar] [CrossRef] [Green Version]
- Ballestri, S.; Mantovani, A.; Nascimbeni, F.; Lugari, S.; Lonardo, A. Extra-hepatic manifestations and complications of nonalcoholic fatty liver disease. Future Med. Chem. 2019, 11, 2171–2192. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, D.H.; Han, K.D.; Yoon, H.; Shin, C.M.; Park, Y.S.; Kim, N. Is nonalcoholic fatty liver disease associated with the development of prostate cancer? A nationwide study with 10,516,985 Korean men. PLoS ONE 2018, 13, e0201308. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, G.N.; Green, P.; Lowy, E.; Mun, E.J.; Berry, K. Differences in hepatocellular carcinoma risk, predictors and trends over time according to etiology of cirrhosis. PLoS ONE 2018, 13, e0204412. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.F.; Zhou, X.D.; Sun, Y.J.; Fang, D.H.; Zhao, Q.; Huang, J.H.; Jin, Y.; Wu, J.S. Sex-influenced association of non-alcoholic fatty liver disease with colorectal adenomatous and hyperplastic polyps. World J. Gastroenterol. 2017, 23, 5206–5215. [Google Scholar] [CrossRef]
- Kwak, M.S.; Yim, J.Y.; Yi, A.; Chung, G.E.; Yang, J.I.; Kim, D.; Kim, J.S.; Noh, D.Y. Nonalcoholic fatty liver disease is associated with breast cancer in nonobese women. Dig. Liver Dis. 2019, 51, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Henstridge, D.C.; Abildgaard, J.; Lindegaard, B.; Febbraio, M.A. Metabolic control and sex: A focus on inflammatory-linked mediators. Br. J. Pharmacol. 2019, 176, 4193–4207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; HCC-NAFLD Italian Study Group. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016, 63, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stine, J.G.; Wentworth, B.J.; Zimmet, A.; Rinella, M.E.; Loomba, R.; Caldwell, S.H.; Argo, C.K. Systematic review with meta-analysis: Risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment. Pharmacol. Ther. 2018, 48, 696–703. [Google Scholar] [CrossRef]
- Lee, T.Y.; Wu, J.C.; Yu, S.H.; Lin, J.T.; Wu, M.S.; Wu, C.Y. The occurrence of hepatocellular carcinoma in different risk stratifications of clinically noncirrhotic nonalcoholic fatty liver disease. Int. J. Cancer 2017, 141, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- Ascha, M.S.; Hanouneh, I.A.; Lopez, R.; Tamimi, T.A.; Feldstein, A.F.; Zein, N.N. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010, 51, 1972–1978. [Google Scholar] [CrossRef]
- Younes, R.; Bugianesi, E. Should we undertake surveillance for HCC in patients with NAFLD? J. Hepatol. 2018, 68, 326–334. [Google Scholar] [CrossRef]
- Tobari, M.; Hashimoto, E.; Taniai, M.; Kodama, K.; Kogiso, T.; Tokushige, K.; Yamamoto, M.; Takayoshi, N.; Satoshi, K.; Tatsuo, A. The characteristics and risk factors of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis. J. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef]
- Kane, A.E.; Sinclair, D.A.; Mitchell, J.R.; Mitchell, S.J. Sex differences in the response to dietary restriction in rodents. Curr. Opin. Physiol. 2018, 6, 28–34. [Google Scholar] [CrossRef]
- Cochran, J.; Taufalele, P.V.; Lin, K.D.; Zhang, Y.; Abel, E.D. Sex Differences in the Response of C57BL/6 Mice to Ketogenic Diets. Am. Diabetes Assoc. 2018, 67. [Google Scholar] [CrossRef]
- Christensen, P.; Meinert Larsen, T.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A.; et al. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönnqvist, F.; Thörne, A.; Large, V.; Arner, P. Sex differences in visceral fat lipolysis and metabolic complications of obesity. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Doucet, E.; St-Pierre, S.; Alméras, N.; Imbeault, P.; Mauriège, P.; Pascot, A.; Després, J.P.; Tremblay, A. Reduction of visceral adipose tissue during weight loss. Eur. J. Clin. Nutr. 2002, 56, 297–304. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378. [Google Scholar] [CrossRef]
- Beaudry, K.M.; Devries, M.C. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism 1. Appl. Physiol. Nutr. Metab. 2019, 44, 805–813. [Google Scholar] [CrossRef]
- Steffensen, C.H.; Roepstorff, C.; Madsen, M.; Kiens, B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E634–E642. [Google Scholar] [CrossRef] [Green Version]
- Lundsgaard, A.M.; Kiens, B. Gender differences in skeletal muscle substrate metabolism—molecular mechanisms and insulin sensitivity. Front. Endocrinol. 2014, 5, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Malenfant, P.; Joanisse, D.R.; Thériault, R.; Goodpaster, B.H.; Kelley, D.E.; Simoneau, J.A. Fat content in individual muscle fibers of lean and obese subjects. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- van Loon, L.J. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J. Appl. Physiol. 2004, 97, 1170–1187. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.C. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front. Endocrinol. 2014, 5, 162. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Vazquez-Montesino, L.M.; Li, A.A.; Cholankeril, G.; Ahmed, A. Inadequate Physical Activity and Sedentary Behavior Are Independent Predictors of Nonalcoholic Fatty Liver Disease. Hepatology 2020. [Google Scholar] [CrossRef] [PubMed]
Author, Year [Ref] | Method | Findings | Conclusions |
---|---|---|---|
Kirsch, 2003 [10] | Male and female Wistar, Long-Evans and Sprague-Dawley rats, and C57/BL6 mice (n = 6 per group) were fed a methionine-choline-deficient (MCD) diet for 4 weeks. | Compared to females, male rats fed the MCD diet developed greater steatosis (p < 0.001), had higher liver lipid content (p < 0.05) and had higher serum alanine transaminase (ALT) levels (p < 0.005). Compared to Wistar rats, male C57/BL6 mice exhibited more inflammatory foci (p < 0.001), end products of lipid peroxidation (p < 0.005) and mitochondrial injury, despite the fact that they had less steatosis (p < 0.005) and lower products of lipid peroxidation. | The Wistar strain and the male sex are associated with the greatest degree of steatosis in rats subjected to the MCD diet. Male C57/BL6 mice develop a histological picture more faithfully resembling NASH, with necro-inflammatory changes, lipid peroxidation and ultrastructural injury. |
Stöppeler, 2013 [11] | Lewis and Sprague-Dawley rats of both sexes were fed either a standard or high-fat diet (HFD) for three weeks. | Female rats of both Lewis and Sprague-Dawley strains had lower steatosis grade, lower fibrosis and higher proliferation rate of non-parenchymal cells than males (p, 0.05). Lewis female rats on a HFD had lower serum alkaline phosphatase, cholesterol, triglyceride and leptin levels and a more favorable low-density/high-density (LDL/HDL) cholesterol ratio than males (p < 0.05). HFD induced downregulation of proangiogenic genes (p < 0.05) in males but not in females. | Together with strain, sex plays a major role in the development and progression of experimental NAFLD. |
Chukijrungroat, 2017 [12] | Male, female and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFD for 12 weeks. | HFD induced: A higher degree of hepatic steatosis, with significant increases in proteins involved in hepatic lipogenesis in females than males, Liver injury, inflammation and oxidative stress in males, but not females. A significant increase in hepatic FGF21 protein expression was found in HFD-fed males (but not in females). The deprivation of estrogen per se was associated with a significant reduction in fibroblast growth factor (FGF)21 with hepatic steatosis, and HFD further aggravated steatosis in OVX rats. Conversely, estrogen replacement reduced hepatic steatosis in HFD-fed OVX rats by restoring hepatic FGF21 levels. | Male rats are more susceptible to HFD-induced hepatitis, while females developed a higher degree of hepatic steatosis. The latter was associated with the hepatic expression level of FGF21. |
Kurt, 2018 [13] | A comprehensive multi-omics approach, integrating genomics and transcriptomics of liver and adipose tissue with phenotypic data of hybrid mouse diversity panel (HMDP), was adopted. The NAFLD molecular pathways and gene networks were compared between sexes. | Adaptive immunity, branched chain amino acid metabolism, oxidative phosphorylation and cell cycle/apoptosis were shared between sexes. Vitamins’ and cofactors’ metabolism and ion channel transport were specific for females, and phospholipid, lysophospholipid and phosphatidylinositol metabolism and insulin signaling for males. Moreover, several pathways controlling lipid- and insulin-metabolism and inflammatory processes in the adipose and liver tissue were more prominently associated with NAFLD in male HMDP. | Both shared and sex-specific biological processes for NAFLD were identified. NAFLD pathways are regulated in a sex- and tissue-specific manner. |
Camporez, 2019 [14] | Age-matched or body weight-matched female and male mice were fed an HFD or regular chow for four weeks. HFD-fed male mice were also treated with either estradiol or vehicle. | Compared to HFD-fed male mice, HFD-fed female mice and estradiol-administered HFD-fed male mice were associated with increased whole-body insulin sensitivity and decreased hepatic and muscle lipid content. The decreased ectopic lipid content in HFD-fed female mice and estradiol-administered HFD-fed male mice was associated with increased insulin-stimulated suppression of WAT lipolysis and decreased WAT inflammation. | Estradiol mediated reductions in WAT inflammation and subsequent increase in insulin-induced suppression of WAT lipolysis and reduced deposition of intra-hepatic and intra-muscular fat protects HFD-fed mice from insulin resistance (IR) associated with obesity and explains the protection from IR in females. |
McCoin, 2019 [15] | Male and female wild-type (WT), liver-specific proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) heterozygote (LPGC-1α) and BNIP3 null mice were housed at thermoneutral conditions. Mice were then divided into three groups: sedentary-low-fat diet (LFD), 16 weeks of HFD, or 16 weeks of HFD with voluntary wheel running (VWR) for the final 8 weeks (HFD + VWR). | Females were associated with higher hepatic mitochondrial respiratory coupling control, lower mitochondrial respiratory H2O2 emission and were protected from steatosis and fibrosis compared with males in all conditions. VWR was required in male mice to elicit those mitochondrial adaptations. Steatosis and markers of liver injury, which occurred in sedentary male mice fed a HFD, were effectively reduced by VWR despite persistent hepatic steatosis. HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Loss of BNIP-3-mediated mitophagy blunted these responses in females, while males only had a non-significant increase in mitochondrial respiration with HFD plus VWR. | Sex was the primary determinant for mitochondrial adaptations to a chronic HFD and HFD plus increased physical activities in the diet-induced fatty liver model. Effects of reduction/deficit in PGC-1α or BNIP3 on mitochondrial adaptation to HFD and increased physical activities significantly differ between males and females. |
Author | Study Population/Ethnicity. Menopausal Status | Diagnostic Criteria | Findings |
---|---|---|---|
Risk of NASH and advanced fibrosis higher in women than in men | |||
Miyaaki, 2008 [41] | 182 Japanese (74 men and 108 women). Age 50.81 ± 15.22 years. Menopausal status not addressed (NA) | Ultrasonography. Exclusion of competing liver diseases. Liver histology | Female sex (p = 0.002), older age (≥60 years old) (p = 0.020), T2D (p = 0.020) and arterial hypertension (p = 0.002) were significantly associated with severe fibrosis at multivariate analysis. |
Singh, 2008 [42] | 71 Asian-Indians (54 men and 17 women). Age range 9–57 years. Menopausal status or pubertal stage NA | Liver histology | Female sex (p = 0.02), serum alkaline phosphatase (p = 0.018), total cholesterolemia (p = 0.048) and LDL serum cholesterol concentrations (p = 0.025) were independent predictors of the stage of fibrosis at multivariate analysis. |
Bambha, 2012 [43] | 628 USA adults (201 men and 427 women) with NASH out of a larger cohort of 1026 adults enrolled in the NASH Clinical Research Network (CRN) database from 2004 to 2008 (483 were non-Latino whites and 74 were Latinos, 28 Asians, 14 non-Latino Blacks, 29 other ethnicities). Aged 50 years (49.1–50.9). Menopausal status NA. | Liver histology | Age (Odds Ratio (OR) 1.02 Confidence Interval (C.I.) 1.01–1.04)); female sex (OR 1.59 (C.I. 1.04–2.41)); AST (OR 1.07 (C.I. 1.03–1.12)); ALT (OR 0.95 (C.I. 0.92–0.99)); Platelet count (OR 0.91 (C.I. 0.88–0.94)); arterial hypertension (OR 2.20 (C.I. 1.41–3.42)); Homeostasis Model Assessment (HOMA)-IR (OR 1.08 (C.I. 1.04–1.12)); Alkaline phosphatase (OR 1.09 (C.I. 1.03–1.15)) and total cholesterol (OR 0.94 (C.I. 0.89–0.98)) were associated with advanced fibrosis at multivariate logistic regression analysis. |
Tapper, 2014 [44] | 358 individuals (225 men, of whom 149 were Caucasians, and 133 Women, 108 of whom were Caucasians). Mean age: men 45.3 ± 11.2 years, women 51.4 ± 10.6 years. Menopausal status NA. | Ultrasonography. Liver histology | Female sex (OR 1.76 (C.I. 1.01–3.10)), BMI ≥ 30 kg/m2 (OR 2.21 (C.I. 1.23–4.08)) and AST (>40 IU/L) (OR 2.00 (C.I. 1.14–3.55)) were the independent predictors of advanced NASH (NAFLD Activiy Score (NAS) >4)) at multivariate analysis. |
Risk of NASH and advanced fibrosis higher in men than in women | |||
Hossain, 2009 [45] | 432 USA patients. Male 22.86%: Age 43.6 ± 11.4 years. Menopausal status NA. | Liver histology | The multivariate analysis model used to predict moderate-to-severe fibrosis included male sex, Caucasian ethnicity, T2D and increased aspartate transaminase (AST) and ALT levels (p < 0.0001). |
Risk of NASH and advanced fibrosis depends on both sex and age (e.g., menopausal status) | |||
Yang, 2014 [46] | Cross-sectional study conducted on 541 adults with biopsy proven NASH. Menopausal state and synthetic hormone use were identified based on self-reported information. Men (average age 45.9 ± 11.7 years), pre-menopausal women (average age 40.1 ± 7.8 years) and post-menopausal women 56.0 ± 7.4 years) comprised 35%, 28% and 37% of the study population, respectively. | Liver histology | After adjusting for covariates (enrolling site, grades of portal inflammation and hepatocyte ballooning) and potential confounders (race, body mass index, diabetes/pre-diabetes, hypertension), adjusted cumulative OR (ACOR) and 95% confidence interval (CI) for greater fibrosis severity was 1.4 (0.9, 2.1) (p = 0.17) for post-menopausal women and 1.6 (1.0, 2.5) (p = 0.03) for men, having pre-menopausal women as a reference. After adjusting for the covariates (the site of enrollment, grade of portal inflammation and hepatocyte ballooning), estrogen replacement was associated with a 50% risk reduction, although the association did not reach statistical significance (ACOR = 0.5; 95% CI: 0.2-1.2; p = 0.11). |
No sex differences in risk of NASH and advanced fibrosis | |||
Yatsuji, 2007 [47] | 193 biopsy proven NASH patients (86 women and 107 men) with mean age of 53 years in Japan. | Liver histology | Overall, 38.3% showed advanced fibrosis (23.8% under 55 years old, 54.3% 55 years or older). Among patients with advanced fibrosis (stage 3 or 4), men were more prevalent in the younger group (75%), while, in the older group, women were more prevalent (66%). The gender difference in advanced fibrosis was not statistically significant. In a multivariable model, older age and BMI were significantly associated with advanced fibrosis in the younger group. In the older group, the lack of hyperlipidemia was associated with advanced fibrosis. |
Labenz, 2018 [48] | 261 patients with biopsy proven non-cirrhotic NAFLD (mean age 51, ranging from 19 to 93, with equal sex distribution) in Germany. | Liver histology | 15.7% showed advanced fibrosis (stage 3). Patients with advanced fibrosis were older, had higher BMI and a higher prevalence of hypertension and type 2 diabetes. Gender was not associated with advanced fibrosis. In a multivariable model, hypertension and type 2 diabetes were significantly associated with advanced fibrosis. |
Author, Year [Ref] | Method | Subacute Liver Failure/Hyper-Acute NASH | Conclusions |
---|---|---|---|
Caldwell, 2002 [153] | Out of a cohort of 2380 patients with liver disease, 167 had NASH and 215 had cryptogenic cirrhosis. Five cases followed a sub-acute course. | In 5 middle-aged obese women (one had T2D and one had glucose intolerance), their previously unrecognized liver disease followed a sub-acute course and, over a 4–16 week period, 4 died of liver failure and the fifth patient underwent ortotopic liver transplantation (OLT). Histology revealed previously unrecognized cirrhosis with ballooned hepatocytes in all 5 patients, frank steatohepatitis in 3, necrosis in 2 and micro-macrovesicular steatosis in 1. | These obese and middle-aged women had previously unrecognized cirrhosis and sudden deterioration of uncertain cause. Clinical and histological findings support the notion that these ladies had undiagnosed NASH, silent progression to cirrhosis and, finally, subacute liver failure. |
Kranidiotis, [154] | Case-report | A 50-year old man with MetS experienced acute liver failure as the first manifestation of NASH. The patient was submitted to be insulin treated. This, together with lifestyle changes, resulted into a dramatic improvement of clinical and laboratory data. | |
Tsai, 2017 [155] | All cases suggesting rapidly progressing liver disease were retrieved by searching for ‘steatohepatitis.’ files from 2000 to 2015. Criteria for exclusion: any history of alcohol or drug abuse. One case was received from another Institution. | In 6 women with a median age of 39 years, with no history of excess alcohol consumption nor of prior liver disease, severe hepatic failure was observed after rapid weight loss (18 to 91 kg) following Roux-en-Y gastric bypass (in 4 patients) and starvation-like dieting or hypoalbuminemia (in 2 patients). Four patients either died or were submitted to OLT. Liver histology disclosed severe steatohepatitis, including extensive/circumferential centrizonal pericellular fibrosis, central scar with perivenular sclerosis/veno-occlusion with superimposed hepatocellular dropout, abundant/prominent hepatocellular balloons and numerous Mallory–Denk bodies. | Aggressive NASH is associated with rapid weight loss/malnutrition. While it may not be possible to entirely exclude an alcohol etiology, the observed histological findings should not specifically be attributed to alcohol and may represent an acute to sub-acute response to central zone injury during rapid weight loss/malnutrition. Histological findings pointing to a similarity of histogenic and pathogenic mechanisms in alcoholic and NASH. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonardo, A.; Suzuki, A. Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research. J. Clin. Med. 2020, 9, 1278. https://doi.org/10.3390/jcm9051278
Lonardo A, Suzuki A. Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research. Journal of Clinical Medicine. 2020; 9(5):1278. https://doi.org/10.3390/jcm9051278
Chicago/Turabian StyleLonardo, Amedeo, and Ayako Suzuki. 2020. "Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research" Journal of Clinical Medicine 9, no. 5: 1278. https://doi.org/10.3390/jcm9051278
APA StyleLonardo, A., & Suzuki, A. (2020). Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research. Journal of Clinical Medicine, 9(5), 1278. https://doi.org/10.3390/jcm9051278