Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A. Literature Search Strategy
Appendix B. Animal Studies in the AKI-CKD Transition Spectrum (Focusing on Renal Function and/or Structure Alterations for up to Three Months, Not Fulfilling the KDIGO Definition for CKD [6])
Reference /Country/Year | Studied Animal | Model | PDE5I Route | Timing | Sample | Renal Injury Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[81]/ Venezuela/2005 | Male Sprague Dawley rats | 5/6 nephrectomy | Sildenafil Orally 2.5 mg/kg/day Either immediately after nephrectomy for 8 weeks Or 4 weeks after nephrectomy for 4 weeks | POST | 8 weeks | ↑sCr, ↑SBP, ↑proteinuria ↓urinary NOX, ↓cGMP Glomerulosclerosis Tubulo-interstitial damage Macrophage accumulation Increased number of apoptotic cells | ↓sCr, ↓SBP, ↓proteinuria ↑ urinary NOX, ↑cGMP All changes improved especially if PDE5i was given early | POS |
[82]/ Spain/2007 | Laboratory large-white pigs | Right single nephrectomy after 45 min of vascular clamping + Auto-transplantation + Left nephrectomy | Sildenafil Orally 100 mg, 2 h pre-op | PRE | 0/15/30/45/60 min after unclamping | ↓RVF, ↑RVR, ↓NO Minimal differences in tubular and endothelial structure | ↑↓RVF, ↓RVR, ↑NO Minimal differences in tubular and endothelial structure | POS |
[83]/ Egypt/2008 | Adult male Wistar albino rats | L-NAME Orally 50 mg/kg/day for 4 weeks | Sildenafil Orally 5 mg/kg/day 2 weeks after L-NAME for 2 weeks | POST | At 4 weeks | ↓NO, ↓cGMP Glomerular collapse/mesangial matrix expansion with minimal cellular proliferation | ↑NO, ↑cGMP Improvement in histological alterations | POS |
[84]/ Spain/2009 | Laboratory minipigs | Right single nephrectomy after 45 min of vascular clamping +Auto-transplantation +Left nephrectomy | Sildenafil Orally 100 mg, 1.5 h pre-op | PRE | 0/15/30/45/60 min after unclamping | ↓RVF, ↓RVR | ↑RVF, ↓ RVR, ↑NO Reduced tubular edema, Improved endothelial cell integrity and mitochondrial ultrastructure | POS |
[85]/ Korea/2009 | Male Sprague Dawley | Streptozotocin Single intravenous dose 60 mg/kg | Sildenafil Orally 3 mg/kg/day For 8 weeks | POST | At 8 weeks | ↑glucose, ↑urine output ↑urine 8-OH dG ↑urine albumin ↑Kidney/BW ratio, ↑iNOS ↑Nitrotyrosine, ↑MCP-1 ↑ED-1 | ↑glucose, ↓urine output ↓urine 8-OH dG ↓urine albumin ↓Kidney/BW ratio, ↓iNOS ↓Nitrotyrosine, ↓MCP-1, ↓ED-1 | POS |
[86]/ Korea/2012 | Male Sprague Dawley rats | Unilateral Nephrectomy and 1 week later DOCA strip 200 mg/kg implantation | Sildenafil Orally 50 mg/kg/day 2 weeks after DOCA for 2 weeks | POST | At 4 weeks | ↑mortality, ↑SBP, ↑ Kidney weight ↓CrCl, ↑sCr, ↑FeNa, ↑ACR ↑ED-1, ↑BAX, ↓Bcl2, ↑aSMA, ↑TGF-b1 ↑TUNEL +ve, ↑fibronectin ↑mRNA TGF-β1/MCP-1 ↑ICAM 1t Tubular casts/Tubular obstruction/Vessel dilatation/Glomerulosclerosis/interstitial expansion | ↓mortality, ⇔ SBP, ↓Kindey weight ↑CrCl, ↓sCr, ↓FeNa, ↓ACR ↓aSMA ↓ED-1, ↓BAX, ↑Bcl2, ↓TGF-b1 ↓TUNEL +ve, ↓fibronectin ↓mRNA TGF-β1/MCP-1/↓ mRNA ICAM1 Reversed all renal injuries | POS |
[87]/ Venezuela/2012 | Male Wistar rats | 5/6 nephrectomy | Sildenafil Orally 5 mg/kg/day for 60 days 24 h after nephrectomy | POST | Every 2 weeks | ↑Kidney hypertrophy ↑Proteinuria, ↓NO2/NO3 ↓GMP (urine) ↑Nitrotyrosine | ↓Kidney hypertrophy ↓Proteinuria, ↑NO2/NO3 ↑cGMP (urine) ↓Nitrotyrosine | POS |
[19]/ Egypt/2013 | Male Wistar rats | Cyclosporine A Subcutaneously 20 mg/kg/day 21 days | Sildenafil Orally 5 mg/kg/day 21 days | POST | At 21st day–urine sample/blood sample/renal tissue excision | ↑BUN, ↑sCr, ↑MDA levels ↑Urine Albumin/Cr ↓GSH/NO/catalase activity ↑iNOS, TNF-a, Caspase 3 activity Tubular degeneration and dilation and necrosis/Glomerulat damage/Congestion Dilated Bowman’s space/Hemorrhage | ↓BUN, ↓sCr, ↓MDA levels ↓Urine Albumin/Cr, ↑eNOS ↑GSH/NO/catalase activity ↓iNOS, TNF-a, Caspase 3 activity Improved all histological changes | POS |
[88]/ United Kingdom/2014 | Porcine kidneys | 20 min warm ischemia followed by 2 or 18 h of cold storage | Sildenafil Intravenously 1.4 mg/kg 10 min prior to injury and 20min after reperfusion | PRE and POST | Samples during reperfusion | ↓RBF, ↑intrarenal resistance ↓Urine cGMP ↑ sCr Steady increase of K+ ↑Tubular injury No difference in groups Tubular dilatation and debris and interstitial edema/Ischemic changes | ↑RBF, ↓intrarenal resistance ↑Urine cGMP, ↓sCr No significant difference in K+ No effect on tubular injury regarding GAL/Endothelin1 Slight improvement of histological | POS |
[89]/ Brazil/2014 [90]/ Brazil/2014 | C57BL/6 mice | Left renal artery clamping for 2 weeks | Sildenafil Orally 40 mg/kg/day 2 weeks post op for 2 weeks | POST | 4 weeks | Left kidney atrophy (clipped) Right kidney hypertrophy ↓BW, ↑SBP, ↑HR ↑Intrarenal angiotensin I/II ⇔Plasma angiotensin I/II/1-7 ↓NO, ↑ONOO-, ↑O2- Impaired vasodilation response to Ach | ↓Left kidney atrophy ↓Right kidney hypertrophy Normal BW, ↓SBP, ↓HR ↓Intrarenal angiotensin I/II ↑Plasma angiotensin 1-7 ↑NO, ↓ONOO-, ↓O2- Normal vasodilation response to Ach | POS |
[91]/ Egypt/2016 | White albino male rats | Streptozocin Single intraperitoneal dose 55 mg/kg | Sildenafil Orally 3 mg/kg/day For 8 weeks after Diabetic nephropathy | POST | 8 weeks | ↓SOD, ↑TGF-β1, ↓NO, ↑sCr ↑BUN, ↑proteinuria ↑Kidney IL-1β ↑Advanced glycation end products (AGEPs) | ↑SOD, ↓TGF-β1, ↑NO, ↓sCr ↓BUN, ↓proteinuria ↓Kidney IL-1β ↓Advanced glycation end products (AGEPs) | POS |
[92]/ India/2016 | Sprague-Dawley rats | Streptozocin Single intraperitoneal dose 60 mg/kg | Sildenafil Orally 2.5 mg/kg/day for 6 weeks after 28 days | POST | At 28th and 70th day | ↑sCr, ↑BUN, ↓CrCl ↑Total protein excretion ↑albumin (urine) Bowman’s capsule thickening, glomerular sclerosis | ↓sCr, ↓BUN, ↑CrCl ↓Total protein excretion ↓albumin (urine) Histopathology improvement | POS |
[93]/ Italy/2017 | Male CD-1 mice | Streptozotocin Single intraperitoneal dose 150 mg/kg | Sildenafil Intraperitoneally 1.6 mg/kg 3 days after STZ, for 4 weeks | POST | ↑Glucose (urine), ↑MAP, ↓GFR ↑urinary ACR, ↑NGAL, ↑RRI ↓Renal volume, ↓BMP7 ↑suPAR, ↑Vascular leakage ↑FITC-dextran extravasation Reduced glomerular diameter/focal and segmental hyperplasia with diffuse mesangial proliferation/increased mesangial matrix deposition/acute tubular degeneration/eosinophilia/proximal tubule basal membrane thickening | ↓Urine glucose, ↓MAP, ↑GFR ↓urinary ACR, ↓NGAL, ↓RRI ↑Renal volume, ↑BMP7, ↓miR-22 ↓suPAR, ↓Vascular leakage ↓FITC-dextran extravasation Reduced mesangial matrix deposition | POS | |
[94]/ Egypt/2017 | Adult male Sprague-Dawley rats | Doxorubicin Intraperitoneally 3.5 mg/kg Twice weekly for 3 weeks | Sildenafil Orally 5 mg/kg/day for 21 days | POST | ↑Urea, ↑sCr, ↑uric acid ↑MDA, ↓GSH, ↑TNF-a ↑caspase-3 Eosinophilic casts, tubule degeneration, vacuolization, endothelial cell edema | ↓Urea, ↓sCr, ↓uric acid ↓MDA, ↑GSH, ↓TNF-a ↓caspase-3 Histological improvement | POS | |
[95]/ South Africa/2017 | Nulliparous pregnant female Sprague-Dawley rats | L-NAME Orally 0.3 g/L (drinking water) 4-8 days for EOPE + 8-14 days for LOPE | Sildenafil Orally 10 mg/kg 4-8 days for EOPE 8-14 days for LOPE | POST | Gestational Day 19 | ↑BP, ↑Urine excretion ↑Urinary nephrin mRNA ↑Podocin (urine), ↑sFlt-1(mRNA) ↓VEGF (mRNA), ↓PIGF Glomerular and tubular damage and mononuclear cell infiltration | ↓BP ↓Urinary nephrin mRNA ↓Podocin (urine) ↓sFlt-1 (mRNA) ↑VEGF (mRNA), ↑PIGF levels Attenuated histopathological changes | POS |
[96]/ Netherlands/2017 | Rats | Adriamycin Or Streptozocin | Sildenafil Orally 5 mg/kg/day for 6 weeks | POST | Immortalized mouse podocytes + Mouse kidney cortex | ↑TRPC6 expression ↓Nephrin, ↑Glomerular desmin ↑Urinary albumin ↑Glomerular lesions | ↓TRPC6 expression, ↓Ca2+ influx ↑Nephrin ↓Glomerular desmin ↓Urinary albumin | POS |
[97]/ Oman/2018 | Male Sprague-Dawley rats | Adenine (0.25% w/w) orally Daily for 5 weeks | Sildenafil Orally (0.1, 0.5 or 2.5 mg/kg) Daily for 5 weeks (alone or concomitantly with adenine) | SIM | At Day 5 | ↑BUN, sCr, uric acid, P, NGAL, ↑total NO, IS, Caspase 3 +ve cells ↑Albumin, NAG activity ↓Osmolality, CrCl in urine ↓CAT, glutathione reductase, SOD ↓TAC, ↑MAPK ↑Fibrosis ↑Adiponectin, cystatin-C, TNF-a ↓Sclerostin, ↑MDA Tubular necrosis, tubular dilatation, tubular cast formation, necrotic nuclei, tubular cells apoptosis, cellular shedding, mononuclear infiltration | ↓BUN, sCr, uric acid, ↓P, NGAL, ↓total NO, IS, ↓Caspase 3 +ve cells ↓Albumin, ↓ NAG activity ↑Osmolality, ↓CrCl in urine ↑CAT, SOD ↓glutathione reductase, ↑TAC, ↓MAPK, ↓Fibrosis ↓Adiponectin, cystatin-C, TNF-a ↑Sclerostin (not 0.1 mg/kg) ↓MDA Improved tubular necrosis, tubular dilatation, tubular cast formation, mononuclear infiltration | POS |
[98]/ Egypt/2018 | Male albino rats Sprague-Dawley | Streptozotocin Single intraperitoneal dose 45 mg/kg | Sildenafil Orally: 3 mg/kg/Day 3 weeks after STZ for 15 days | POST | Day 16 after initiation of Sildenafil | ↑sCr, ↑BUN ↑fasting and post prandial glucose ↓insulin levels ↑insulin resistance ↑MDA, ↓GSH, ↓CAT, ↓GPx, ↓SOD, ↓TAC | ↓sCr, ↓BUN ↓fasting and post prandial glucose ↑insulin levels ↓insulin resistance (insignificant) ↓MDA, ↑GSH, ↑CAT, ↑GPx, ↑SOD, ↑TAC | POS |
Reference/ Country/Year | Studied Animal | Model | PDE5I Route | Timing | Sample | Renal Injury Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[99]/ Turkey/2013 | Male Sprague Dawley rats | SWL model | Tadalafil Orally: 1 mg/kg Single dose 150 min prior to SWL | PRE | Nephrectomy at Day 1/3/7 | Loss of micro-villi Tubular degeneration and necrosis Interstitial edema and fibrosis ↑ HSP-70 | Reduced all histological damage ↓HSP-70 | POS |
[100]/ Turkey/2017 | Male Sprague Dawley | SWL model | Tadalafil Orally: 1 mg/kg 60 min prior to SWL | PRE | Bilateral nephrectomy 7 days post SWL | Renal tubular damage Peritubular fibrosis/Loss of microvilli ↑HSP-70 | Significantly less tissue damage ⇔HSP-70 (glomerular) ↓HSP-70 (medullar/cortical) | POS |
Reference/ Country/Year | Studied Animal | Model | PDE5I Route | Timing | Sample | Renal Injury Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[101]/ China/2011 | Male Sprague–Dawley rats | Streptozotocin Single Dose Intravenously 40 mg/kg | Icariin Orally 80 mg/kg For 8 weeks From 5th to 20th week post streptozotocin | POST | Day 7 and Week 13 | ↑sCr, ↑BUN, ↑Glucose, ↑MDA, ↑Hyp, ↓SOD, ↑Collagen IV, ↑TGF-β1 Glomerular Hypertrophy Expansion of mesangial area and ECM | ↓sCr, ↓BUN, ↓MDA, ↓Hyp ↑SOD, ↓Collagen IV, ↓TGF-β1 Inhibited these changes | POS |
[102]/ Chiana/2014 | Male Sprague-Dawley rats | 5/6 right nephrectomy model | Icariin Orally 20 + 40 mg/kg/day 1 week after AKI for 12 weeks | POST | 24 h before AKI and at Week 12 | ↑BUN,↑sCr, ↑ urinary protein ↑Apoptotic rate, ↑Bcl-2, ↑Bax ↓G0/G1 phase cells ↑S phase cells | ↓BUN, ↓sCr, ↓urinary protein ↓Apoptotic rate, ↓Bcl-2, ↓Bax ⇔G0/G1 phase cells, ↑G2/M phase ↓ S phase cells | POS |
[103]/ China/2015 | Male Sprague Dawley rats | 1st stage: Partial nephrectomy 2nd stage: Right renal ligation | Icariin Orally 40 mg/kg/day 8 weeks | POST | At 8 weeks | ↑BUN, ↑sCr, ↑uric acid Mesangial expansion/Edema Basement membrane thickening and capillary compression/occlusion. Glomerular sclerosis/fibrosis Inflammatory cell infiltration | ↓BUN, ↓sCr, ↓uric acid ↑Renal progenitor cell proliferation ↓TGF-β1 Significantly improved glomerular lesions and blunted rest of the changes | POS |
[22]/ China/2017 | Female Wistar rats | Pregnancy induced hypertension L-NAME 0.5 g/L from Day 12 of gestation | Icariin Orally 10/50/100 mg/kg 18 days of gestation | POST | BP: Days 1 and 18 Kidney tissue: Day 18 | ↑SBP (Day 18), ↑ BUN, ↑sCr ↑Proteinuria, ↓Pup weight ↓Nephrinm, ↑Ang II, ↑AGT Mesangial expansion Basement membrane thickening | ↓SBP (high dose), ↓BUN, ↓sCr ↓Proteinuria (medium/high dose) No difference in pup weight ↑Nephrin, ↓Ang II, ↓AGT Markdely reduced severity of lesions | POS |
[104]/ China/2018 | MRL/lpr mice | K/O mice | Icariin Orally 10 mg/kg/day 8 weeks | POST | Every 2 weeks | ↑Urine protein,↑IgG deposit ↑sCr, ↑BUN, ↑TNF-a ↑Serum anti-dsDNA ↑Translocation and phosphorylation of NF-kBp65 ↑F4/80, ↑NLRP3, ↑caspase 1p20 Increased glomerular proliferation/sclerosis/peripheral inflammation | ↓Urine protein, ↓IgG deposit ↓sCr, ↓BUN, ↓TNF-a ↓Serum anti-dsDNA ↓Translocation and phosphorylation of NF-kBp65 ↓F4/80, ↓NLRP3, ↓caspase 1p20 Improved all changes | POS |
Reference/ Country/Year | Studied Animal | Model | PDE5I Route | Timing | Sample | Renal Injury Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[105]/ Germany/2008 | Sprague Dawley rats | Mouse monoclonal anti-Thy 1 antibody ER-4 Single injection, 1 mg/kg | Vardenafil Orally 20 mg/kg within 18 h and 10 mg/kg/day for 48 h | PRE and POST | 24-h urine collection on Days 2 and 6 Blood sample: Day 6 | ↑PDE5-A, ⇔sCr ↑proteinuria Mesangial proliferation | ↑cGMP, ↓TSP-1, ⇔sCr ↓proliferation/cell number(glomerular) ↓collagen IV/fibronectin (glomerular) ↓TGF-β activation ⇔proteinuria | POS |
[106]/ China/2009 | New Zealand Rabbits | Invagination of ureter in renal pelvis | Vardenafil Orally 0.3 mg/kg/day For 8 weeks post op | POST | 8 weeks | Dilated renal pelvises Fibrotic PUJ ↑TGF-β1 ↓nNOS | Dilated renal pelvises Less fibrotic PUJ ↓TGF-β1 ↑nNOS | POS |
[107]/ Hungary/2013 | Sprague Dawley male rats | Streptozotocin Single intraperitoneal dose 60/mg/kg | Vardenafil Orally 10 mg/kg/day for 8 weeks 72 h post STZ | POST | 8 weeks after AKI | ↓cGMP, NCS elevated Urea levels Decreased body weight No difference in MAP ↑Urine protein/creatinine ratio ↑Fibronectin, ↑TGF-β1, ↑desmin, ↓nephrin, ↑Nitrotyrosine, ↑NOS Glomerular hypertrophy Mesangial expansion Adhesions to Bowman’s capsule Tubular dilatation and atrophy Mononuclear cell infiltration | ↑cGMP Developed kidney hypertrophy No difference in MAP ↓Urine protein/creatinine ratio ↓Fibronectin, ↓TGF-β1 ↓desmin, ↑nephrin No difference Attenuated all changes | POS |
[108]/ Turkey/2015 | Male Swiss albino mice | Cyclosporine A 30 mg/kg Subcutaneously Daily for 28 days | Vardenafil Orally 30 mg/kg/day For 28 days | PRE | At 28 days | ↓Kidney weight ↑BUN, ↑sCr, ↑TOS levels ↓TAS levels,↓tissue NO ↓COX-1, ↓COX-2, ↓TGF-β1 ↓Pgp levels, ↓PDGF-A, ↓PDGF-C Histological changes: cortex/outer medulla | No change in kidney weight ↓BUN, ↓sCr, ↓TOS levels ↑TAS levels, ↑tissue NO ↑COX-1, ↑COX-2, ⇔TGF-β1 ↑Pgp levels, ↑PDGF-A, ↑PDGF-C Normal histopathological appearances | POS |
Reference/ Country/Year | Studied Animal | Model | PDE5I Route | Timing | Sample | Renal Injury Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[109]/ Japan/1998 | Mongrel dogs | Cut left renal nerves and electrostimulation of left renal bundle (distal end) | Zaprinast Intra-renal arterial infusion 10 or 100 μg/kg/min | SIM | Simultaneously | ↓Urine flow, ↓UNaV, ↓FeNa ⇔RBF, ⇔GFR | ↑Urine flow, ↑UNaV, ↑FeNa ⇔ RBF, ⇔GFR, ↓RVR ↑Renal venous cGMP | POS |
[110]/ Korea/2010 | 10-week-old male Sprague-Dawley | Right nephrectomy + Left renal artery clamping for 45 min and Cyclosporine A 15 mg/kg subcutaneously | Udenafil Orally: 10 mg/kg For 28 days after the procedure | SIM and POST | On Day 28 blood samples and left nephrectomy | ↑BUN, ↑sCr, ↓eNOS, ⇔VEGF Decreased thickness of the proximal tubules and nuclei, vacuolization of the cytoplasm, altered cellular shape, fewer nuclei | ↓BUN, ↓sCr, ↑eNOS, ⇔VEGF ↓VEGF mRNA | POS |
References
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. [Google Scholar]
- Codorniu, A.; Lemasle, L.; Legrand, M.; Blet, A.; Mebazaa, A.; Gayat, E. Methods used to assess the performance of biomarkers for the diagnosis of acute kidney injury: A systematic review and meta-analysis. Biomarkers 2018, 23, 766–772. [Google Scholar] [CrossRef] [PubMed]
- ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media Version 10.3; ACR: Reston, VA, USA, 2020. [Google Scholar]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative workgroup. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KDIGO. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, M.; Kellum, J.A. Improving Translation from Preclinical Studies to Clinical Trials in Acute Kidney Injury. Nephron 2018, 140, 81–85. [Google Scholar] [CrossRef]
- Zarjou, A.; Sanders, P.W.; Mehta, R.L.; Agarwal, A. Enabling innovative translational research in acute kidney injury. Clin. Transl. Sci. 2012, 5, 93–101. [Google Scholar] [CrossRef]
- Skrypnyk, N.I.; Siskind, L.J.; Faubel, S.; de Caestecker, M.P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol. Renal. Physiol. 2016, 310, F972–F984. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, A.; Sanchez-Nino, M.D.; Izquierdo, M.C.; Martin-Cleary, C.; Garcia-Bermejo, L.; Moreno, J.A.; Ruiz-Ortega, M.; Draibe, J.; Cruzado, J.M.; Garcia-Gonzalez, M.A.; et al. Translational value of animal models of kidney failure. Eur. J. Pharmacol. 2015, 759, 205–220. [Google Scholar] [CrossRef]
- Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res. 2018, 39, 72–86. [Google Scholar] [CrossRef]
- Singh, A.P.; Junemann, A.; Muthuraman, A.; Jaggi, A.S.; Singh, N.; Grover, K.; Dhawan, R. Animal models of acute renal failure. Pharmacol. Rep. 2012, 64, 31–44. [Google Scholar] [CrossRef]
- Burmeister, D.M.; Gomez, B.I.; Dubick, M.A. Molecular mechanisms of trauma-induced acute kidney injury: Inflammatory and metabolic insights from animal models. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Iordache, A.M.; Docea, A.O.; Buga, A.M.; Zlatian, O.; Ciurea, M.E.; Rogoveanu, O.C.; Burada, F.; Sosoi, S.; Mitrut, R.; Mamoulakis, C.; et al. Sildenafil and tadalafil reduce the risk of contrast-induced nephropathy by modulating the oxidant/antioxidant balance in a murine model. Food Chem. Toxicol. 2020, 135, 111038. [Google Scholar] [CrossRef] [PubMed]
- Sanz, A.B.; Sanchez-Nino, M.D.; Martin-Cleary, C.; Ortiz, A.; Ramos, A.M. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin. Drug Discov. 2013, 8, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Sarica, K.; Yencilek, F. Prevention of shockwave induced functional and morphological alterations: An overview. Arch. Ital. Urol. Androl. 2008, 80, 27–33. [Google Scholar]
- Lahoud, Y.; Hussein, O.; Shalabi, A.; Nativ, O.; Awad, H.; Khamaisi, M.; Matar, I.; Nativ, O.; Abassi, Z. Effects of phosphodiesterase-5 inhibitor on ischemic kidney injury during nephron sparing surgery: Quantitative assessment by NGAL and KIM-1. World J. Urol. 2015, 33, 2053–2062. [Google Scholar] [CrossRef]
- Xie, C.; Liu, L.; Wang, Z.; Xie, H.; Feng, Y.; Suo, J.; Wang, M.; Shang, W.; Feng, G. Icariin Improves Sepsis-Induced Mortality and Acute Kidney Injury. Pharmacology 2018, 102, 196–205. [Google Scholar] [CrossRef]
- Abdel-latif, R.G.; Morsy, M.A.; El-Moselhy, M.A.; Khalifa, M.A. Sildenafil protects against nitric oxide deficiency-related nephrotoxicity in cyclosporine A treated rats. Eur. J. Pharmacol. 2013, 705, 126–134. [Google Scholar] [CrossRef]
- Georgiadis, G.; Mavridis, C.; Belantis, C.; Zisis, I.E.; Skamagkas, I.; Fragkiadoulaki, I.; Heretis, I.; Tzortzis, V.; Psathakis, K.; Tsatsakis, A.; et al. Nephrotoxicity issues of organophosphates. Toxicology 2018, 406–407, 129–136. [Google Scholar] [CrossRef]
- Ozlulerden, Y.; Toktas, C.; Aybek, H.; Kucukatay, V.; Sen Turk, N.; Zumrutbas, A.E. The renoprotective effects of mannitol and udenafil in renal ischemia-reperfusion injury model. Investig. Clin. Urol. 2017, 58, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yuan, W.; Xu, N.; Li, J.; Chang, W. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancyinduced hypertension. Mol. Med. Rep. 2017, 16, 7398–7404. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, R.M.; Wills, L.P.; Stallons, L.J.; Schnellmann, R.G. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 2013, 347, 626–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.D.; Hou, J.G.; Yang, G.; Jiang, S.; Chen, C.; Wang, Z.; Liu, Y.Y.; Ren, S.; Li, W. Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed. Pharmacother. 2019, 109, 2309–2317. [Google Scholar] [CrossRef] [PubMed]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury—Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2845–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsarouhas, K.; Tsitsimpikou, C.; Papantoni, X.; Lazaridou, D.; Koutouzis, M.; Mazzaris, S.; Rezaee, R.; Mamoulakis, C.; Georgoulias, P.; Nepka, C.; et al. Oxidative stress and kidney injury in trans-radial catheterization. Biomed. Rep. 2018, 8, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamoulakis, C.; Fragkiadoulaki, I.; Karkala, P.; Georgiadis, G.; Zisis, I.E.; Stivaktakis, P.; Kalogeraki, A.; Tsiaoussis, I.; Burykina, T.; Lazopoulos, G.; et al. Contrast-induced nephropathy in an animal model: Evaluation of novel biomarkers in blood and tissue samples. Toxicol. Rep. 2019, 6, 395–400. [Google Scholar] [CrossRef]
- Morcos, S.K. Can selective inhibitors of cyclic guanosine monophosphate (cGMP)-specific phosphadiesterase type 5 (PDE 5) offer protection against contrast induced nephropathy? Quant. Imaging Med. Surg. 2014, 4, 214–215. [Google Scholar] [CrossRef]
- El-Sisi, A.E.; Sokar, S.S.; Abu-Risha, S.E.; Ibrahim, H.A. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats. Biomed. Pharmacother. 2016, 84, 861–869. [Google Scholar] [CrossRef]
- Choi, D.E.; Jeong, J.Y.; Lim, B.J.; Chung, S.; Chang, Y.K.; Lee, S.J.; Na, K.R.; Kim, S.Y.; Shin, Y.T.; Lee, K.W. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am. J. Physiol. Renal. Physiol. 2009, 297, F362–F370. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.E.; Handa, R. Contrast Nephropathy Associated with Percutaneous Coronary Angiography and Intervention. Cardiol. Clin. 2019, 37, 287–296. [Google Scholar] [CrossRef]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury. Part 2: Risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2856–2869. [Google Scholar] [CrossRef] [Green Version]
- Mamoulakis, C.; Tsarouhas, K.; Fragkiadoulaki, I.; Heretis, I.; Wilks, M.F.; Spandidos, D.A.; Tsitsimpikou, C.; Tsatsakis, A. Contrast-induced nephropathy: Basic concepts, pathophysiological implications and prevention strategies. Pharmacol. Ther. 2017, 180, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Salonia, A.; Bettocchi, C.; Carvalho, J.; Corona, G.; Jones, T.H.; Kadioglu, A.; Martinez-Salamanca, I.; Minhas, S.; Serefoǧlu, E.C.; Verze, P.; et al. EAU Guidelines on Sexual and Reproductive Health. Edn. Presented at the EAU Annual Congress Amsterdam 2020; EAU Guidelines Office: Arnhem, The Netherlands, 2020. [Google Scholar]
- Ozbek, K.; Ceyhan, K.; Koc, F.; Sogut, E.; Altunkas, F.; Karayakali, M.; Celik, A.; Kadi, H.; Koseoglu, R.D.; Onalan, O. The protective effect of single dose tadalafil in contrast-induced nephropathy: An experimental study. Anatol. J. Cardiol. 2015, 15, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Lue, T.F. Erectile dysfunction. N. Engl. J. Med. 2000, 342, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wang, L.; Chu, X.; Cui, H.; Bian, Y. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure. Mol. Cell. Biochem. 2017, 428, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Krane, L.S.; Peyton, C.C.; Olympio, M.A.; Hemal, A.K. A randomized double blinded placebo controlled trial of sildenafil for renoprotection prior to hilar clamping in patients undergoing robotic assisted laparoscopic partial nephrectomy. J. Surg. Oncol. 2016, 114, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Polcari, A.J.; Farooq, A.V.; Woods, M.E.; Ripsch, M.S.; Picken, M.; Turk, T.M.; White, F.A. Effect of the phosphodiesterase-5 inhibitor zaprinast on ischemia-reperfusion injury in rats. J. Endourol. 2013, 27, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Jeong, J.Y.; Lim, B.J.; Chang, Y.K.; Lee, S.J.; Na, K.R.; Shin, Y.T.; Choi, D.E. Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology 2009, 257, 137–143. [Google Scholar] [CrossRef]
- Oruc, O.; Inci, K.; Aki, F.T.; Zeybek, D.; Muftuoglu, S.F.; Kilinc, K.; Ergen, A. Sildenafil attenuates renal ischemia reperfusion injury by decreasing leukocyte infiltration. Acta Histochem. 2010, 112, 337–344. [Google Scholar] [CrossRef]
- Medeiros, P.J.; Villarim Neto, A.; Lima, F.P.; Azevedo, I.M.; Leao, L.R.; Medeiros, A.C. Effect of sildenafil in renal ischemia/reperfusion injury in rats. Acta Cir. Bras. 2010, 25, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.H.; Abdelrahman, A.M.; Al-Salam, S.; Sudhadevi, M.; AlMahruqi, A.S.; Al-Husseni, I.S.; Beegam, S.; Dhanasekaran, S.; Nemmar, A.; Al-Moundhri, M. The effect of sildenafil on cisplatin nephrotoxicity in rats. Basic Clin. Pharmacol. Toxicol. 2011, 109, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Akgul, T.; Huri, E.; Yagmurdur, H.; Ayyildiz, A.; Ustun, H.; Germiyanoglu, C. Phosphodiesterase 5 inhibitors attenuate renal tubular apoptosis after partial unilateral ureteral obstruction: An experimental study. Kaohsiung J. Med. Sci. 2011, 27, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lledo-Garcia, E.; Subira-Rios, D.; Ogaya-Pinies, G.; Tejedor-Jorge, A.; Canizo-Lopez, J.F.; Hernandez-Fernandez, C. Intravenous sildenafil as a preconditioning drug against hemodynamic consequences of warm ischemia-reperfusion on the kidney. J. Urol. 2011, 186, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Cadirci, E.; Halici, Z.; Odabasoglu, F.; Albayrak, A.; Karakus, E.; Unal, D.; Atalay, F.; Ferah, I.; Unal, B. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: A biochemical and histopathological study. Clin. Exp. Immunol. 2011, 166, 374–384. [Google Scholar] [CrossRef]
- Patel, N.N.; Lin, H.; Toth, T.; Jones, C.; Ray, P.; Welsh, G.I.; Satchell, S.C.; Sleeman, P.; Angelini, G.D.; Murphy, G.J. Phosphodiesterase-5 inhibition prevents postcardiopulmonary bypass acute kidney injury in swine. Ann. Thorac. Surg. 2011, 92, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, A.; Yucel, M.; Erkasap, N.; Tosun, M.; Koken, T.; Ozkurt, M.; Erkasap, S. The effects of PDE5 inhibitory drugs on renal ischemia/reperfusion injury in rats. Mol. Biol. Rep. 2012, 39, 9775–9782. [Google Scholar] [CrossRef]
- Stegbauer, J.; Friedrich, S.; Potthoff, S.A.; Broekmans, K.; Cortese-Krott, M.M.; Quack, I.; Rump, L.C.; Koesling, D.; Mergia, E. Phosphodiesterase 5 attenuates the vasodilatory response in renovascular hypertension. PLoS ONE 2013, 8, e80674. [Google Scholar] [CrossRef] [Green Version]
- Helmy, M.W.; Helmy, M.M.; Abd Allah, D.M.; Abo Zaid, A.M.; Mohy El-Din, M.M. Role of nitrergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. J. Physiol. Pharmacol. 2014, 65, 393–399. [Google Scholar]
- Gokakin, A.K.; Atabey, M.; Deveci, K.; Sancakdar, E.; Tuzcu, M.; Duger, C.; Topcu, O. The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: A biochemical and histopathological study. Ulus Travma Acil Cerrahi Derg 2014, 20, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Morsy, M.A.; Ibrahim, S.A.; Amin, E.F.; Kamel, M.Y.; Rifaai, R.A.; Hassan, M.K. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS. J. Toxicol. 2014, 2014, 489382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.; Maimaitiyiming, H.; Qi, X.; Norman, H.; Zhou, Q.; Wang, X.; Fu, J.; Wang, S. Increasing cGMP-dependent protein kinase activity attenuates unilateral ureteral obstruction-induced renal fibrosis. Am. J. Physiol. Renal. Physiol. 2014, 306, F996–F1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauver, D.A.; Carey, E.G.; Bergin, I.L.; Lucchesi, B.R.; Gurm, H.S. Sildenafil citrate for prophylaxis of nephropathy in an animal model of contrast-induced acute kidney injury. PLoS ONE 2014, 9, e113598. [Google Scholar] [CrossRef] [Green Version]
- Zahran, M.H.; Hussein, A.M.; Barakat, N.; Awadalla, A.; Khater, S.; Harraz, A.; Shokeir, A.A. Sildenafil activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in a rat model of renal ischemia/reperfusion injury. Int. Urol. Nephrol. 2015, 47, 1907–1915. [Google Scholar] [CrossRef]
- de Almeida, L.S.; Barboza, J.R.; Freitas, F.P.; Porto, M.L.; Vasquez, E.C.; Meyrelles, S.S.; Gava, A.L.; Pereira, T.M. Sildenafil prevents renal dysfunction in contrast media-induced nephropathy in Wistar rats. Hum. Exp. Toxicol. 2016, 35, 1194–1202. [Google Scholar] [CrossRef]
- Mohey, V.; Singh, M.; Puri, N.; Kaur, T.; Pathak, D.; Singh, A.P. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor gamma agonism in rats. J. Surg. Res. 2016, 201, 69–75. [Google Scholar] [CrossRef]
- Altintop, I.; Tatli, M.; Karakukcu, C.; Soyer Sarica, Z.; Hanim Yay, A.; Balcioglu, E.; Ozturk, A. Serum and Tissue HIF-2 Alpha Expression in CIN, N-Acetyl Cysteine, and Sildenafil-Treated Rat Models: An Experimental Study. Medicina 2018, 54, 54. [Google Scholar] [CrossRef] [Green Version]
- Behiry, S.; Rabie, A.; Kora, M.; Ismail, W.; Sabry, D.; Zahran, A. Effect of combination sildenafil and gemfibrozil on cisplatin-induced nephrotoxicity; role of heme oxygenase-1. Ren. Fail. 2018, 40, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Zahran, M.H.; Barakat, N.; Khater, S.; Awadalla, A.; Mosbah, A.; Nabeeh, A.; Hussein, A.M.; Shokeir, A.A. Renoprotective effect of local sildenafil administration in renal ischaemia-reperfusion injury: A randomised controlled canine study. Arab J. Urol. 2019, 17, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Ayyildiz, A.; Kaya, M.; Karaguzel, E.; Bumin, A.; Akgul, T.; Aklan, Z.; Germiyanoglu, C. Effect of tadalafil on renal resistivity and pulsatility index in partial ureteral obstruction. Urol. Int. 2009, 83, 75–79. [Google Scholar] [CrossRef]
- Gasanov, F.; Aytac, B.; Vuruskan, H. The effects of tadalafil on renal ischemia reperfusion injury: An experimental study. Bosn. J. Basic Med. Sci. 2011, 11, 158–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzeloglu, M.; Yalcinkaya, F.; Atmaca, S.; Bagriyanik, A.; Oktar, S.; Yuksel, O.; Fansa, I.; Hazan, E. The beneficial effects of tadalafil on renal ischemia-reperfusion injury in rats. Urol. Int. 2011, 86, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Faddegon, S.; Best, S.L.; Olweny, E.O.; Tan, Y.K.; Park, S.K.; Mir, S.A.; Cadeddu, J.A. Tadalafil for prevention of renal dysfunction secondary to renal ischemia. Can. J. Urol. 2012, 19, 6274–6279. [Google Scholar] [PubMed]
- Sohotnik, R.; Nativ, O.; Abbasi, A.; Awad, H.; Frajewicki, V.; Bishara, B.; Sukhotnik, I.; Armaly, Z.; Aronson, D.; Heyman, S.N.; et al. Phosphodiesterase-5 inhibition attenuates early renal ischemia-reperfusion-induced acute kidney injury: Assessment by quantitative measurement of urinary NGAL and KIM-1. Am. J. Physiol. Renal. Physiol. 2013, 304, F1099–F1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.Y.; Liu, M.; Liu, Y.Z.; Li, W.; Zhai, W.; Che, J.P.; Yan, Y.; Wang, G.C.; Zheng, J.H. Preventive effect of phosphodiesterase 5 inhibitor tadalafil on experimental post-pyelonephritic renal injury in rats. J. Surg. Res. 2014, 186, 253–261. [Google Scholar] [CrossRef]
- Amasyali, A.S.; Akkurt, A.; Kazan, E.; Yilmaz, M.; Erol, B.; Yildiz, Y.; Erol, H. The protective effect of tadalafil on IMA (ischemia modified albumin) levels in experimental renal ischemia-reperfusion injury. Int. J. Clin. Exp. Med. 2015, 8, 15766–15772. [Google Scholar]
- Erol, B.; Turker, T.; Tok, A.; Bektas, S.; Mungan, G.; Ozkanli, S.; Karakas, B.; Tokgoz, H.; Akduman, B.; Mungan, A. The protective effects of tadalafil on renal damage following ischemia reperfusion injury in rats. Kaohsiung J. Med. Sci. 2015, 31, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Adeneye, A.A.; Benebo, A.S. Chemopreventive Effect of Tadalafil in Cisplatin-Induced Nephrotoxicity in Rats. Niger. J. Physiol. Sci. 2016, 31, 1–10. [Google Scholar]
- Benli, E.; Ayyildiz, S.N.; Cirrik, S.; Kokturk, S.; Cirakoglu, A.; Noyan, T.; Ayyildiz, A.; Germiyanoglu, C. The effect of tadalafil therapy on kidney damage caused by sepsis in a polymicrobial septic model induced in rats: A biochemical and histopathological study. Int. Braz. J. Urol. 2017, 43, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Wietzikoski, E.G.G.; Foiatto, J.C.; Czeczko, N.G.; Malafaia, O.; Koleski, F.C.; Mierzwa, T.C.; Gomes, R.P.X. Tadalafil protector effect during ischemia-reperfusion in rats. Acta Cir. Bras. 2017, 32, 973–983. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, V.F.; Azevedo, I.M.; Carvalho, M.D.; Oliveira, C.N.; Egito, E.S.; Medeiros, A.C. The renoprotective effect of oral Tadalafil pretreatment on ischemia/reperfusion injury in rats. Acta Cir. Bras. 2017, 32, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokturk, S.; Benli, E.; Ayyildiz, A.; Cirrik, S.; Cetinkol, Y.; Ayyildiz, S.N.; Noyan, T. Positive outcomes of phosphodiesterase type 5 inhibitor on histopathologic and biochemical changes induced by ureteral obstruction. Rev. Assoc. Med. Bras. (1992) 2019, 65, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Zhang, S.; Su, X.; Qiu, G.; Wu, Z. Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am. J. Transl. Res. 2015, 7, 2105–2114. [Google Scholar] [PubMed]
- Chen, H.A.; Chen, C.M.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. Phytomedicine 2019, 59, 152917. [Google Scholar] [CrossRef]
- Kyriazis, I.; Kagadis, G.C.; Kallidonis, P.; Georgiopoulos, I.; Marazioti, A.; Geronasiou, A.; Liourdi, D.; Loudos, G.; Schinas, V.; Apostolopoulos, D.; et al. PDE5 inhibition against acute renal ischemia reperfusion injury in rats: Does vardenafil offer protection? World J. Urol. 2013, 31, 597–602. [Google Scholar] [CrossRef]
- Sousa, R.C.; Moreira Neto, A.A.; Capelozzi, V.L.; Ab’Saber, A.M.; Rodrigues, O.R. Effects of vardenafil on the kidney of Wistar rats submitted to acute ischemia and reperfusion. Acta Cir. Bras. 2015, 30, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.; Miller, S.B.; Greenwald, J.E. Zaprinast accelerates recovery from established acute renal failure in the rat. Kidney Int. 1995, 47, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Wetzl, V.; Schinner, E.; Kees, F.; Faerber, L.; Schlossmann, J. Differences in the renal antifibrotic cGMP/cGKI-dependent signaling of serelaxin, zaprinast, and their combination. Naunyn. Schmiedebergs. Arch. Pharmacol. 2017, 390, 939–948. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Ferrebuz, A.; Vanegas, V.; Quiroz, Y.; Espinoza, F.; Pons, H.; Vaziri, N.D. Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int. 2005, 68, 2131–2142. [Google Scholar] [CrossRef] [Green Version]
- Lledo-Garcia, E.; Rodriguez-Martinez, D.; Cabello-Benavente, R.; Moncada-Iribarren, I.; Tejedor-Jorge, A.; Dulin, E.; Hernandez-Fernandez, C.; Del Canizo-Lopez, J.F. Sildenafil improves immediate posttransplant parameters in warm-ischemic kidney transplants: Experimental study. Transplant. Proc. 2007, 39, 1354–1356. [Google Scholar] [CrossRef]
- Aboutabl, M.E.; Raafat, M.; Maklad, Y.A.; Kenawy, S.A.; El Din, A.G. Sildenafil augments the beneficial hemodynamic and histopathological effects of amlodipine in nitric oxide-deficient hypertensive rats: Role of nitric oxide-cyclic GMP pathway. Pharmacol. Res. 2008, 57, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Lledo-Garcia, E.; Subira-Rios, D.; Rodriguez-Martinez, D.; Dulin, E.; Alvarez-Fernandez, E.; Hernandez-Fernandez, C.; del Canizo-Lopez, J.F. Sildenafil as a protecting drug for warm ischemic kidney transplants: Experimental results. J. Urol. 2009, 182, 1222–1225. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Lee, S.H.; Moon, J.Y.; Lim, S.J. Effects of sildenafil on oxidative and inflammatory injuries of the kidney in streptozotocin-induced diabetic rats. Am. J. Nephrol. 2009, 29, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.H.; Kim, I.J.; Joo, S.Y.; Kim, E.Y.; Kim, C.S.; Choi, J.S.; Ma, S.K.; Kim, S.H.; Lee, J.U.; Kim, S.W. Renoprotective effects of sildenafil in DOCA-salt hypertensive rats. Kidney Blood Press. Res. 2012, 36, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Tapia, E.; Sanchez-Lozada, L.G.; Soto, V.; Manrique, A.M.; Ortiz-Vega, K.M.; Santamaria, J.; Medina-Campos, O.N.; Cristobal, M.; Avila-Casado, C.; Pedraza-Chaverri, J.; et al. Sildenafil treatment prevents glomerular hypertension and hyperfiltration in rats with renal ablation. Kidney Blood Press. Res. 2012, 35, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Randle, L.V.; Patel, M.; Watson, C.J.; Bradley, J.A.; Nicholson, M.L. Sildenafil citrate in a donation after circulatory death experimental model of renal ischemia-reperfusion injury. Transplantation 2014, 98, 612–617. [Google Scholar] [CrossRef]
- Dias, A.T.; Rodrigues, B.P.; Porto, M.L.; Gava, A.L.; Balarini, C.M.; Freitas, F.P.; Palomino, Z.; Casarini, D.E.; Campagnaro, B.P.; Pereira, T.M.; et al. Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension. J. Transl. Med. 2014, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.T.; Cintra, A.S.; Frossard, J.C.; Palomino, Z.; Casarini, D.E.; Gomes, I.B.; Balarini, C.M.; Gava, A.L.; Campagnaro, B.P.; Pereira, T.M.; et al. Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J. Transl. Med. 2014, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- El-Mahdy, N.A.; El-Sayad, M.E.; El-Kadem, A.H. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed. Pharmacother. 2016, 81, 136–144. [Google Scholar] [CrossRef]
- Tripathi, A.S.; Mazumder, P.M.; Chandewar, A.V. Sildenafil, a phosphodiesterase type 5 inhibitor, attenuates diabetic nephropathy in STZ-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 57–62. [Google Scholar] [CrossRef]
- Pofi, R.; Fiore, D.; De Gaetano, R.; Panio, G.; Gianfrilli, D.; Pozza, C.; Barbagallo, F.; Xiang, Y.K.; Giannakakis, K.; Morano, S.; et al. Phosphodiesterase-5 inhibition preserves renal hemodynamics and function in mice with diabetic kidney disease by modulating miR-22 and BMP7. Sci. Rep. 2017, 7, 44584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khames, A.; Khalaf, M.M.; Gad, A.M.; Abd El-Raouf, O.M. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur. J. Pharmacol. 2017, 805, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Baijnath, S.; Murugesan, S.; Mackraj, I.; Gathiram, P.; Moodley, J. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia. Mol. Cell. Biochem. 2017, 427, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, R.; Hoenderop, J.G.; Isidori, A.M.; Henique, C.; Dijkman, H.B.; Berden, J.H.; Tharaux, P.L.; van der Vlag, J.; Nijenhuis, T. Sildenafil Prevents Podocyte Injury via PPAR-gamma-Mediated TRPC6 Inhibition. J. Am. Soc. Nephrol. 2017, 28, 1491–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.H.; Al Za’abi, M.; Adham, S.A.; Al Suleimani, Y.; Karaca, T.; Manoj, P.; Al Kalbani, J.; Yasin, J.; Nemmar, A. The effect of sildenafil on rats with adenine-Induced chronic kidney disease. Biomed. Pharmacother. 2018, 108, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, O.M.; El Askary, A.; Al-Shehri, S.; El-Esawy, B. Effect of phosphodiesterase inhibitors on renal functions and oxidant/antioxidant parameters in streptozocin-induced diabetic rats. Arch. Physiol. Biochem. 2018, 124, 424–429. [Google Scholar] [CrossRef]
- Danisoglu, M.E.; Aytac, B.; Kilicaslan, H.; Dogan, S.; Vuruskan, H. Reduction of shock wave lithotripsy-induced renal tubular injury by tadalafil. Bratisl. Lek. Listy 2013, 114, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Ozmerdiven, G.; Vuruskan, B.A.; Kaygisiz, O.; Vuruskan, H. Protective effects of diltiazem and tadalafil on shock wave-induced kidney injury in rats. Bratisl. Lek. Listy 2017, 118, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.Y.; Kai, C.; Liu, H.R.; Su, Y.H.; Yu, S.Q. Protective effect of Icariin on the early stage of experimental diabetic nephropathy induced by streptozotocin via modulating transforming growth factor beta1 and type IV collagen expression in rats. J. Ethnopharmacol. 2011, 138, 731–736. [Google Scholar] [CrossRef]
- Liang, S.R.; Bi, J.W.; Guo, Z.L.; Bai, Y.; Hu, Z. Protective effect of icariin on kidney in 5/6 nephrectomized rats and its mechanism. Genet. Mol. Res. 2014, 13, 6466–6471. [Google Scholar] [CrossRef]
- Huang, Z.; He, L.; Huang, D.; Lei, S.; Gao, J. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells. BMC Complement. Altern. Med. 2015, 15, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, B.; Ye, H.; You, X.; Ni, H.; Chen, X.; Li, L. Icariin alleviates murine lupus nephritis via inhibiting NF-kappaB activation pathway and NLRP3 inflammasome. Life Sci. 2018, 208, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, B.; Daniel, C.; Wittmann, S.; Hugo, C. PDE-5 inhibition impedes TSP-1 expression, TGF-beta activation and matrix accumulation in experimental glomerulonephritis. Nephrol. Dial. Transplant. 2008, 23, 3427–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.G.; Yan, X.Y.; Cai, Y.M.; Wang, H.G.; Chen, J.Y. The effect of phosphodiesterase isoenzyme 5 inhibitors on ureteropelvic junction obstruction in rabbits. Urol. Int. 2009, 83, 316–322. [Google Scholar] [CrossRef]
- Fang, L.; Radovits, T.; Szabo, G.; Mozes, M.M.; Rosivall, L.; Kokeny, G. Selective phosphodiesterase-5 (PDE-5) inhibitor vardenafil ameliorates renal damage in type 1 diabetic rats by restoring cyclic 3′,5′ guanosine monophosphate (cGMP) level in podocytes. Nephrol. Dial. Transplant. 2013, 28, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Essiz, D.; Sozmen, M.; Sudagidan, M.; Devrim, A.K. Phosphodiesterase type 5 inhibition attenuates cyclosporine A induced nephrotoxicity in mice. Biotech. Histochem. 2015, 90, 167–178. [Google Scholar] [CrossRef]
- Sekizawa, T.; Shima, Y.; Yoshida, K.; Tanahashi, M.; Yoshida, M.; Suzuki-Kusaba, M.; Hisa, H.; Satoh, S. Effects of zaprinast on renal nerve stimulation-induced anti-natriuresis in anaesthetized dogs. Clin Exp Pharmacol. Physiol. 1998, 25, 1008–1012. [Google Scholar] [CrossRef]
- Yang, J.W.; Han, S.T.; Kim, Y.S.; Song, S.H.; Kim, B.R.; Eom, M.S.; Jung, S.H.; Choi, S.O.; Han, B.G. Effects of a cGMP-specific phosphodiesterase inhibitor on expression of endothelial nitric oxide synthase and vascular endothelial growth factor in rats with cyclosporine-induced nephrotoxicity. Transplant. Proc. 2010, 42, 4625–4632. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, R.; Yang, Z.; Lee, J.; Liu, Y.; Tian, J.; Qin, X.; Ren, Z.; Ding, H.; Chen, Q.; et al. Comparative effectiveness and safety of oral phosphodiesterase type 5 inhibitors for erectile dysfunction: A systematic review and network meta-analysis. Eur. Urol. 2013, 63, 902–912. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Gupta, M. PDE5 Inhibitor; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Tzoumas, N.; Farrah, T.E.; Dhaun, N.; Webb, D.J. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. Br. J. Pharmacol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Oelke, M.; Weiss, J.P.; Mamoulakis, C.; Cox, D.; Ruff, D.; Viktrup, L. Effects of tadalafil on nighttime voiding (nocturia) in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: A post hoc analysis of pooled data from four randomized, placebo-controlled clinical studies. World J. Urol. 2014, 32, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Sakalis, V.I.; Karavitakis, M.; Bedretdinova, D.; Bach, T.; Bosch, J.; Gacci, M.; Gratzke, C.; Herrmann, T.R.; Madersbacher, S.; Mamoulakis, C.; et al. Medical Treatment of Nocturia in Men with Lower Urinary Tract Symptoms: Systematic Review by the European Association of Urology Guidelines Panel for Male Lower Urinary Tract Symptoms. Eur. Urol. 2017, 72, 757–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Agli, M.; Galli, G.V.; Dal Cero, E.; Belluti, F.; Matera, R.; Zironi, E.; Pagliuca, G.; Bosisio, E. Potent inhibition of human phosphodiesterase-5 by icariin derivatives. J. Nat. Prod. 2008, 71, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, A.E.; Lappin, J.E.; Taylor, D.L.; Nicklin, S.A.; Milligan, G. GPR35 as a Novel Therapeutic Target. Front. Endocrinol. (Lausanne) 2011, 2, 68. [Google Scholar] [CrossRef] [Green Version]
- Keswani, A.N.; Peyton, K.J.; Durante, W.; Schafer, A.I.; Tulis, D.A. The cyclic GMP modulators YC-1 and zaprinast reduce vessel remodeling through antiproliferative and proapoptotic effects. J. Cardiovasc. Pharmacol. Ther. 2009, 14, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.H.; Zhang, X.H. Clinical and preclinical treatment of urologic diseases with phosphodiesterase isoenzymes 5 inhibitors: An update. Asian J. Androl. 2016, 18, 723–731. [Google Scholar] [CrossRef]
- Kang, S.G.; Kim, J.J. Udenafil: Efficacy and tolerability in the management of erectile dysfunction. Ther. Adv. Urol. 2013, 5, 101–110. [Google Scholar] [CrossRef]
- Aujla, H.; Kumar, T.; Wozniak, M.; Dott, W.; Sullo, N.; Joel-David, L.; Morris, T.; Brookes, C.; Barber, S.; Murphy, G.J. Effect of sildenafil (Revatio) on postcardiac surgery acute kidney injury: A randomised, placebo-controlled clinical trial: The REVAKI-2 trial protocol. Open Heart 2018, 5, e000838. [Google Scholar] [CrossRef]
- Paick, J.S.; Ahn, T.Y.; Choi, H.K.; Chung, W.S.; Kim, J.J.; Kim, S.C.; Kim, S.W.; Lee, S.W.; Min, K.S.; Moon, K.H.; et al. Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction. J. Sex. Med. 2008, 5, 2672–2680. [Google Scholar] [CrossRef]
- Glina, S.; Fonseca, G.N.; Bertero, E.B.; Damiao, R.; Rocha, L.C.; Jardim, C.R.; Cairoli, C.E.; Teloken, C.; Torres, L.O.; Faria, G.E.; et al. Efficacy and tolerability of lodenafil carbonate for oral therapy of erectile dysfunction: A phase III clinical trial. J. Sex. Med. 2010, 7, 1928–1936. [Google Scholar] [CrossRef]
- Tzortzis, V.; Mitrakas, L.; Gravas, S.; Mamoulakis, C.; Meissner, A.; Kyriakou, D.; Melekos, M.D. Oral phosphodiesterase type 5 inhibitors alleviate recurrent priapism complicating thalassemia intermedia: A case report. J. Sex. Med. 2009, 6, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Sofikitis, N.; Kaltsas, A.; Dimitriadis, F.; Rassweiler, J.; Grivas, N.; Zachariou, A.; Kaponis, A.; Tsounapi, P.; Paterakis, N.; Karagiannis, A.; et al. The Effect of PDE5 Inhibitors on the Male Reproductive Tract. Curr. Pharm. Des. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [PubMed]
- Afsar, B.; Ortiz, A.; Covic, A.; Gaipov, A.; Esen, T.; Goldsmith, D.; Kanbay, M. Phosphodiesterase type 5 inhibitors and kidney disease. Int. Urol. Nephrol. 2015, 47, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Johnson, D.W.; Gobe, G.C. The role of cGMP and its signaling pathways in kidney disease. Am. J. Physiol. Renal. Physiol. 2016, 311, F671–F681. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, R.; Shindo, Y.; Hotta, K.; Suzuki, K.; Oka, K. NO/cGMP/PKG signaling pathway induces magnesium release mediated by mitoKATP channel opening in rat hippocampal neurons. FEBS Lett. 2013, 587, 2643–2648. [Google Scholar] [CrossRef] [Green Version]
Reference Country/Year | Type of Study | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[24]/ China/2019 | Preclinical study on HEK-293 cell culture | Cisplatin Various doses Finally chosen 20 μΜ dose 24 h | Icariin Various doses (0.25–2.0 μΜ) 24 h prior to cisplatin | PRE | Centrifuged at 4 °C, 10,000 g, for 20 min | Reduced viability, ↑p-NF-Kb ↓GSH concentration ↑MDA levels,↑Bax, ↓Bcl-2 ↑ROS generation, ↑Caspace 3 ↑iNOS/TNF-a/IL-1β Nuclear fragmentation and cellular condensation | Improved viability, ↓p-NF-kB ↑GSH concentration ↓MDA levels, ↓Bax, ↑Bcl-2 ↓ ROS generation, ↓Caspace 3 ↓iNOS/TNF-a/IL-1β Blunted apoptotic changes Antiapoptotic action (PI3K/Akt pathway) | POS |
[38]/ China/2017 | Preclinical study using huMSCs in adult male Wistar rats | 2.5% Adenine Orally 4 weeks +4th generation huMSCs | Icariin huMSCs were pretreated with 100 uM ICA for 1 week | PRE | 3, 7, 14 days after treatment | ↑Urine outputm, ↑Urea, ↑Cr ↑Damage renal tissue, ↑TNF-a ↓SOD, ↑MDA, ↑IL-6, ↑IL-10 | ↓Urine output,↓Urea, ↓Cr ↓Damage renal tissue, ↓TNF-a ↑SOD, ↓MDA, ↓IL-6, ↓IL-10 ↑BMP-7, ↑bFGF | POS |
[17]/ Israel/2015 | Clinical trial (non-RCT) | PN with 20 min cold ischemia | Tadalafil Orally: 20 mg/day 1 day pre-operatively and 2 days postoperatively | PRE and POST | Pre-op and at 1,3,8, 24, 48, 72 h post op | ↑NGAL, ↑KIM-1,↑sCr, ↓GFR | Attenuated all studied parameters | POS |
[39]/ USA/2016 | Clinical trial (RCT) | RAPN | Sildenafil Orally 100 mg prior to RAPN | PRE | ↓GFR | ↓GFR (No improvement) | NEUT |
Reference /Country/Year | Studied Animal | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[41]/ South Korea/2009 | Male Sprague Dawley rats | Cisplatin Single intraperitoneal injection 5 mg/kg | Sildenafil Intraperitoneal 0.4 mg/kg Just after the injection of cisplatin | POST | Left nephrectomy 96 h post cisplatin | ↑BUN, ↑sCr, ↑Bax/Bcl-2 ratio ↑Caspase 3 expression ↑TUNEL positive cells Loss of brush border Vacuolation/Desquamation | ↓sCr, ↓Bax/Bcl-2 ratio ↓Caspase 3 expression ↓TUNEL positive cells ↑eNOS and iNOS Significantly attenuated renal changes | POS |
[30]/ Korea/2009 | Male Sprague Dawley rats | IR renal injury model | Sildenafil Intraperitoneal 0.5 mg/kg 1 h prior to ischemia | PRE | Depending on the group 0-168 h after reperfusion | ↑BUN, ↑sCr, ↑cGMP ↑Bax/Bcl-2 ratio, ↑Caspase 3 activity ↑TUNEL positive cells Loss of brush border Vacuolation/Desquamation | ↓BUN, ↓sCr, ↑↑ cGMP ↓Bax/Bcl-2 ratio, ↓Caspase 3 activity ↓TUNEL positive cells ↑↑ ERK activity Attenuated all histological changes | POS |
[42]/ Turkey/2010 | Male Wistar albino rats | IR renal injury model | Sildenafil Orally 60 min pre-operatively | PRE | Left nephrectomy either at 45 min post occlusion or at 105 min post occlusion and reperfusion injury | ↑MPO enzyme level and activity ↑TBARS Sclerosis of glomeruli Enlargement of Bowman space Loss of microvilli/Pyknotic nuclei Tubular necrosis/Interstitial edema Leucocyte infiltration Glomerular and tubular degeneration | ↓MPO enzyme level and activity ⇔TBARS Attenuated tubular damage Preserved normal morphology Significantly decreased neutrophil infiltration | POS |
[43]/ Brazil/2010 | Wistar rats | IR renal injury model | Sildenafil Orally 1 mg/kg 60 min prior to ischemia | PRE | At 24 h and 7 days scintigraphy and nephrectomy | Scintigraphy: functional deficit representing ATN No PDE5i: ↑ cellular necrosis Vacuolation Intratubular cast formation | Reversed effect to normal split function PDE5i: just dilatation of tubular lumen No significant change in histology | POS |
[44]/ Oman/2011 | Male Wistar rats | Cisplatin Single intraperitoneal injection 5 mg/kg | Sildenafil Intraperitoneally 0.4 mg/kg for 5 days or Sildenafil Subcutaneously 10 mg/kg for 5 days | POST | Blood samples and bilateral nephrectomy 5 days post treatment | ↓RBF, ↓BP, ↓Body weight ↑Urine output ↑BUN, ↑sCr, ↓CrCl ↑N-acetyl-β-D-glycosaminidase ↑TNF-a (plasma and renal) ↑Renal platinum concentration Acute Tubular Necrosis/Apoptotic cells | ↑RBF, ↑BP (i.p.) No improvement in b.w. and u.o. ↓BUN, ↓sCr, ↑CrCl (i.p.) ↓N-acetyl-β-D-glycosaminidase Minimal improvement in TNF-a No change in platinum concentration Improvement of histological changes | POS |
[45]/ Turkey/2011 | Wistar albino rats | UUO model | Sildenafil-orally-1 mg/day Vardenafil-orally-0.5 mg/day Tadalafil-orally-10 mg/72 h For 30 days | POST | 30 days | ↑Tubular cell apoptosis ↑ eNOS ↑ iNOS | ↓ Tubular cell apoptosis ↓ eNOS ↓ iNOS Sildenafil better results | POS |
[46]/ Spain/2011 | Minipigs | IR renal injury model | Sildenafil Intravenously 0.7 or 1.4 mg/kg 30 min prior to or during warm ischemia | PRE OR SIM | Monitoring of hemodynamics up to 45 min following unclamping | ↓Systemic MAP (especially 1.4 mg/kg) ↑RVF (0.7 mg/kg) | POS | |
[47]/ Turkey/2011 | Male Wistar rats | CLP model | Sildenafil Orally 10 or 20 mg/kg After the procedure | POST | 16 h after CLP | ↓SOD, ↓GSH, ↑MPO, ↑LPO ↑Mean inflammation score ↑TNF-a | ↑SOD, ↑GSH, ↓MPO, ↓LPO ↓Mean inflammation score ↓TNF-a | POS |
[48]/ United Kingdom | Female Large White Landrace crossbred pigs | Cardiopulmonary bypass 2.5 h | Sildenafil Intravenously 10 mg in 50 mL saline 0.9% | SIM | 90 min pre-op 90 min post-op 24 h post-op | ↓CCl, ↑Proteinuria, ↑IL-18 ↓ NO Pseudodilation of proximal tubules ↑iNOS ↑ cortical expression endothelin-1 Inflammatory cell infiltration | ↑CCl ↓Proteinuria ↓IL-18 Significantly increased RBF (24 h) ↑NO Prevented phenotypic changes in proximal tubular cells ↓cortical expression endothelin-1 Preserved eNOS ↓iNOS ↓ inflammatory cell infiltration | POS |
[49]/ Turkey/2012 | Male Sprague Dawley rats | IR renal injury model | Sildenafil Orally: 1 mg/kg 60 min pre-operatively Tadalafil Orally: 1 mg/kg 60 min pre-operatively | PRE | Nephrectomy post procedure | ↑MPO levels ↑MDA levels ↑iNOS gen, ↑eNOS expression ↑ apoptotic cells ↑p53 positive cells Leucocyte migration Edema/Tubular dilatation | MPO: no significant improvement ↓MDA (Sdf), ⇔ MDA (Tdf) levels ↓iNOS gen, ↓eNOS expression ↓apoptotic cell death ( Sdf > Tdf) ↓p53 positive cells All changes were attenuated | POS |
[50]/ Germany/2013 | NO-GC1 KO mice C57Bl/6Rj | UUO model | Sildenafil Orally 100 mg/kg In the 4th week post op | POST | 4 weeks post op | ↓cGMP ↓NO-stimulated guanyle cyclase activity (KO mice) | ↑cGMP ↑NO sensitivity ↓SBP (more efficient in operated group rather than KO group) | POS |
[23]/ USA/2013 | Female New Zealand white rabbits | Folic Acid Intraperitoneally Single dose 250 mg/kg | Sildenafil Intraperitoneally 24 h after injury 0.3 mg/kg/day For 6 days | POST | Blood samples and kidneys were harvested 24 h post treatment | ↓mRNA expression COX1 and Tfam ↓mtDNA copy number ↑KIM-1 | ↑mRNA expression COX1 and Tfam ↑mtDNA copy number ↓KIM-1 | POS |
[51]/ Egypt/2014 | Sprague Dawley male rats | Cisplatin Intraperitoneally 6 mg/kg | Sildenafil Intraperitoneally 2 mg/kg 1 h before and 24 h after cisplatin injection | PRE and POST | 96 h after cisplatin injection | ↑BUN, ↑sCr, ↑MDA, ↑TNF-a ↑Caspase-3, ↓SOD ↓Nitrite/nitrate level Acute tubular necrosis | ↓BUN, ↓sCr, ↓MDA, ↓TNF-a ↓Caspase-3, ↑SOD ↑Nitrite/nitrate | POS |
[52]/ Turkey/2014 | Adult female Wistar albino rats | Burn model | Sildenafil Orally 10 or 20 mg/kg just after burn | POST | 24 h after the scald burn | Renal: ↑MDA, ↓Gpx, ↑VEGF ⇔ Flt-1, ⇔TAC, ⇔OSI, ⇔TOS Serum: ↑MDA, ↓Gpx, ⇔VEGF, ⇔Flt-1, ↓TAC, ⇔OSI, ↑TOS, ⇔Flt-1/VEGF ratio | Renal: ↓MDA, ↑Gpx, ↓VEGF ⇔Flt-1 (T10), ⇔TAC, ⇔OSI, ⇔TOS(T20) Serum: ↓MDA, ↑Gpx, ⇔VEGF ⇔Flt-1, ↑TAC, ↓OSI (T10) ↑Flt-1/VEGF ratio (T10) ↓TOS (T10) ↓Histopathological scores (no significant difference in T20) | POS |
[53]/ Egypt/2014 | Male Wistar rats | Gentamicin Intraperitoneally 100 mg/kg/day for 6 days | Sildenafil Orally 5 mg/kg/day for 6 days 1 h before gentamycin | PRE | 24 h after last gentamycin injection | ↑Cr, ↑Urea, ↑urinary albumin ↑MDA, ↑nitrite/nitrate levels ↓CAT (renal), ↓SOD, ↑iNOS, ↓eNOS Degeneration and necrobiosis in epithelial cells | ↓Cr, ↓Urea, ↓urinary albumin ↓MDA, ↓nitrite/nitrate levels ↑CAT (renal), ↑SOD ↓iNOS, ↑eNOS Reversed histological alterations | POS |
[54]/ USA/2014 | Male wild-type (WT) littermates or PKG Tg mice | UUO model | Sildenafil Subcutaneously 12 mg/kg twice daily for 14 days | POST | 14 days | ↓Renal PKG activity Increase (↑) at Ang II, Collagen type I, III mRNA, α-SMA, E-cadherin, TNF-a, TGF-β1, pSmad2, ICAM-1 ↑Macrophage infiltration | ↑Renal PKG activity Decrease (↓) at Ang II, Collagen type I, III mRNA, α-SMA, E-cadherin, TNF-a, TGF-β1, pSmad2, ICAM-1 ↓Macrophage infiltration | POS |
[55]/ Brazil/2014 | New Zealand white rabbits | CIN model | Sildenafil Orally 6 mg/kg before CM or 6 mg/kg before CM and 8 hourly for 48 h | PRE and POST | 1/2/24/48 h | No changes in kidney to body weight ratio ↑sCr ↓Na, ↑K Multifocal tubular necrosis Tubular degeneration Luminal protein casts | No significant changes in kidney to body weight ratio ↓↓sCr (continuous) ↑Na, ↓K Continuous treatment blunted all changes | POS |
[56]/ Egypt/2015 | Male Sprague-Dawley rats | IR renal injury model | Sildenafil Orally (1 mg/kg) 60 min before anesthesia | PRE | Blood + urine samples (basal, at 2, 24, 48 h and 7 days) + Kidney tissue | ↑sCr, ↑BUN, ↓Bcl-2 ↓Nrf2/HO-1/NQO-1 (genes) ↑ Proinflammatory cytokine genes (TNF-a, ICAM-1, IL-β) ↓Nrf 2 protein expression Acute tubular necrosis, detachment of epithelial cells from basement membrane, intracellular cast formation, loss of brush border, neutrophil infiltration | No improvement in BUN/sCr, ↑Bcl-2 ↑Nrf2/HO-1/NQO-1 (genes) ↓ Proinflamamtory cytokine genes (TNF-a, ICAM-1, IL-β) ↑ Nrf 2 protein expression Improved histological features of renal injury (mild tubular necrosis) | POS |
[57]/ Brazil/2016 | Male Wistar rats | CIN model | Sildenafil Orally 50 mg/kg/d 7 days (started 5 days before CM) | PRE and POST | 48 h after CM administration | ↑BUN, ↑sCr, ↑urine protein ↓GFR, ↓RPF, ↑RVR ↑superoxide anions production ↑H2O2 production ↑peroxynitrite and hydroxyl production ⇔ NO Reduced body weight Renal hypertrophy | ↓BUN, ↓sCr, ↓urine protein ↑GFR, ↑RPF, ↓RVR ⇔superoxide anions production ↓ H2O2 production ↓peroxynitriteand hydroxyl production ⇔ NO No effect of PDE5 on histological changes | POS |
[58]/ Egypt/2016 | Male Wistar albino rats | IR renal injury model | Sildenafil Intraperitoneally (0.5 + 1.0 mg/kg) 1 h before ischemia | PRE | Blood/kidney tissue samples 24 h after reperfusion | ↓CrCl, ↑ BUN, ↑Uric acid, ↑FeNa ↑Plasma potassium ↓GSH levels,↑TBARS, ↑SAG levels Glomerular damage, detachment of basement membrane, loss of brush border, tubular dilation, atroprhy, neutrophil accumulation | ↑CrCl, ↓BUN, ↓Uric acid ↓FeNa ↓Plasma potassium ↑GSH levels, ↓TBARS ↓ SAG levels ↓Renal tissue damage | POS |
[59]/ Turkey/2018 | Female Wistar albino rats | CIN model | Sildenafil Orally 50 mg/kg 48 h prior to CM | PRE | 48 h after CM administration | ↑HIF-2a (serum and tissue) ↑ BUN, ↑Cr (serum and urine) Hemorrhage, shedding of brush border, tubular vacuolization, degeneration, inflammatory cell infiltration, intratubulat cast obstruction | ↓HIF-2a (serum and tissue) ↓ sCr Sildenafil improved all histological changes | POS |
[60]/ Egypt/2018 | Male albino rats | Cisplatin 5 mg/kg Single dose intraperitoneally | Combination Sildenafil, Orally 40 mg/kg Gemfibrozil-Orally– 100 mg/kg 14 days prior or after | PRE OR POST | Day 17 | ↑sCr, ↓HO-1, ↓GSH ↓eNOS, ↓TNF-a ↑Tubular injury/tubular necrosis | All changes improved with sildenafil and gemfibrozil especially in the group given after cisplatin | POS |
[61]/ Egypt/2019 | Mongrel dogs (aged 2-3 years) | IR renal injury model | Sildenafil Orally 1 mg/kg 1 h prior to operation or In the perfusion fluid 0.5 mg/kg during the operation | PRE OR SIM | Prior and at the end of the experiment (Day 1,3,7,14) | ↑sCr, ↑BUN, ↓GFR ↑caspase 3, ↑Nrf2 ↑TNF-a, ↑ IL-1Β, ↑ICAM -1 ↓eNOS Renal degeneration Cortical and medullary interstitial fibrosis | ↓sCr, ↓BUN, ↑GFR ↓caspase 3, ↑↑Nrf2 ↓TNF-a, ↓IL-1Β, ↓ICAM -1 ↑eNOS Significantly improved all histological changes | POS |
Reference/ Country/Year | Studied Animal | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[62]/ Turkey/2019 | New Zealand rabbits | UUO model | Tadalafil Orally 10 mg/72 h for 30 days prior to obstruction | PRE | 4th hour and 1st and 3rd day | ↑Resistivity index ↑Pulsatility index | ↓Resistivity index ↓Pulsatility index In the non-obstructed kidney reduced resistivity index at 4th hour then normal | POS |
[63]/ Turkey/2011 | Male Sprague Dawley rats | IR renal injury model | Tadalafil Orally 1 mg/kg 60 min pre-operatively | PRE | At 45 min post occlusion or at 105 min post occlusion and reperfusion injury | Sclerosis of glomeruli Enlargement of Bowman space Loss of microvilli/Tubular necrosis Interstitial edema/Leucocyte infiltration Hyaline degeneration | Attenuated histological changes and decreased neutrophil infiltration | POS |
[45]/ Turkey/2011 | Wistar albino rats | UUO model | Sildenafil-orally-1 mg/day Vardenafil-orally-0.5 mg/day Tadalafil-orally-10 mg/72 h For 30 days | POST | 30 days | ↑Tubular cell apoptosis ↑eNOS ↑iNOS | ↓Tubular cell apoptosis ↓eNOS ↓iNOS Sildenafil better results | POS |
[64]/ Turkey/2011 | Male Wistar albino rats | IR renal injury model | Tadalafil Orally 10 mg/kg 60 min pre-operatively | PRE | Left nephrectomy at 120 min post-operatively | ↑Total oxidant status Tubular necrosis/Vacuolization Congestion/Mononuclear cell infiltration | ↑ Total antioxidant status Reduced all injuries to the renal tissue. | POS |
[65]/ USA/2012 | Adult female pigs | IR renal injury model | Tadalafil 40 mg Two doses (12 h before and just prior to surgery) | PRE | Induction and Days 1, 3, 7 post occlusion | ↑Creatinine after nephrectomy ↑↑ Creatinine Day 1 post ischemia | ↓Creatinine after nephrectomy No significant change in creatinine Day 1 post ischemia | POS |
[49]/ Turkey/2012 | Male Sprague Dawley rats | IR renal injury model | Sildenafil Orally: 1 mg/kg 60 min pre-operatively Tadalafil Orally: 1 mg/kg 60 min pre-operatively | PRE | Nephrectomy post procedure | ↑ MPO levels ↑MDA levels ↑iNOS gen, ↑eNOS expression ↑apoptotic cells ↑p53 positive cells Leucocyte migration Edema/Tubular dilatation | MPO: no significant improvement ↓MDA (Sdf), ⇔MDA (Tdf) levels ↓iNOS gen, ↓eNOS expression ↓apoptotic cell death (Sdf > Tdf) ↓p53 positive cells All changes were attenuated | POS |
[66]/ Israel/2013 | Male Sprague Dawley rats | IR renal injury model | Tadalafil Orally 10 mg/kg 24-hr prior to ischemia | PRE | 30/60 min after nephrectomy 60/120/180/240 min after clamping | ↑V, ↑UNaV, ↑FeNa, ↓GFR, ⇔RPF, ↑NGAL, ↑KIM-1 Tubular dilatation/Loss of brush border Necrosis and cast formation | ↓V, ↓UNaV, ↓FeNa, ↑GFR, ↑RPF, ↓NGAL, ↓KIM-1 Blunted all changes | POS |
[67]/ China/2014 | Male Wistar rats | Sepsis model | Tadalafil Orally 10 mg/kg 24 h prior to procedure for 28 days | PRE and POST | Nephrectomy and samples at: 8 days post treatment and 6 weeks post treatment | ↑Systolic and diastolic BP, ↑NO ↑BUN, ↑sCr, ↑MDA levels ↓SOD, ↑TGF-β | ↓Systolic and diastolic BP, ↓NO, ↓BUN, ↓sCr, ↓MDA levels, ↑SOD ↑IL-10, ↓TNF-a, ↓IL-1β, ↓TGF-β ↓RANTES, ↓MIP-1β, ↓MCP-1 | POS |
[68]/ Turkey/2015 | Female Wistar albino rats | IR renal injury model | Tadalafil Orally 10 mg/kg 24 h prior to procedure | PRE | Cardiac blood samples and nephrectomy after reperfusion injury | No significant difference Severe tubular dilatation degeneration and necrosis/Enlargement of Bowman capsule | in IMA/NO/MDA levels Blunted all changes | POS |
[69]/Turkey/2015 | Wistar albino rats | IR renal injury model | Tadalafil Intraperitoneally 10 mg/kg Immediately prior to procedure | PRE | Blood samples and nephrectomy following 60 min of reperfusion injury | ↑MDA levels (serum/renal) ↓TAC levels (serum/renal) ↑APAF-1, ↑iNOS, ↑eNOS Loss of nucleus/Cellular edema Vacuolization/Brush border loss Tubular dilatation/edema Interstitial congestion | ⇔MDA (renal), ↓MDA (serum) ⇔TAC (renal), ↑TAC (serum) ↓APAF-1, ↓iNOS, ↓eNOS Damage was significantly less after tadalafil treatment | POS |
[35]/Turkey/2015 | Female Wistar albino rats | CIN model | Tadalafil Orally 10 mg/kg immediately after contrast | POST | 48 h after CM administration | Significant weight loss after dehydration ↑Serum cystatin C ↑BUN, ↑sCr, ↑MDA Medullary congestion | Significant weight loss after dehydration ↓Serum cystatin C ↓BUN, ↓sCr, ↓MDA Similar histological findings | POS |
[29]/ Egypt/2016 | Adult male albino rats | IR renal injury model | Tadalafil Orally (5 mg/kg) Pre-treatment | PRE | Blood/kidney tissue samples 6 h after reperfusion | ↑sCr, ↑BUΝ, ↑MDA levels ↓SOD activity, ↑MPO activity ↑ICAM-1, ↑TNF-a, ↑IL-1β ↑Caspase-3 activity Congestion and interstitial hemorrhage, proximal and tubular necrosis | ↓sCr, ↓BUΝ, ↓MDA levels ↑SOD activity, ↓MPO activity ↓ICAM-1, ↓TNF-a, ↓IL-1β ↓Caspase-3 activity Dilated proximal, distal, and collecting tubules and interstitial connection | POS |
[70]/ Nigeria/2016 | Male Wistar rats | Cisplatin Intraperitoneal 5 mg/kg | Tadalafil Orally: 2 or 5 mg/kg for 7 days pretreatment | PRE | Blood samples and renal tissue obtained 3 days post cisplatin | ↓Na/K/HCO3/Ca2+/P ↑BUN, ↑sCr, ↑MDA/GPx ↓GSH/SOD/CAT (renal) | Significant attenuation of all histological and biochemical alterations | POS |
[71]/ Israel/2017 | Male albino Wistar rats | CLP model | Tadalafil Orally 5 or 10 mg/kg End of the procedure | POST | Left nephrectomy + Blood samples 16 h postoperatively | ↓CAT, ↓SOD, ↑IL-6, ↑sCr, ↑MPO, ↑MDA, ↑Cystatin C ↑Mac387 antibody ↑Tubular injury, glomerulus deformities ↑Inflammatory cell infiltration | ↑CAT, ↑SOD, ↓IL-6, ↓sCr, ↓MPO, ↓MDA, ↓Cystatin C ↓Mac387 antibody ↓Tubular injury, glomerulus deformities ↓Inflammatory cell infiltration | POS |
[72]/ Brazil/2017 | Male Wistar rats | IR renal injury model | Tadalafil Orally 10 mg/kg 1 h pre-procedure | PRE | After nephrectomy | Interstitial Leucocyte accumulation | Successful reversal by tadalafil | POS |
[73]/ Brazil/2017 | Male Wistar rats | IR renal injury model | Tadalafil Orally: 10 mg/kg 1 h before ischemia | PRE | Fluorescence imaging (ICG) Blood samples | ↓ICG signal, ↑TNF-a, ↑IL-1β ↑IL-6 ↑BUN, ↑sCr, ↑CRP | ↑ICG signal, ↓TNF-a, ↓IL-1β ↓IL-6 ↓BUN, ↓sCr, ↓CRP | POS |
[74]/ Turkey/2019 | Male Sprague Dawley rats | UUO model | Tadalafil Orally 10 mg/72 h | --- | 15 days post ligation | ↑aSMA, ↑TGF-β Partial: inflammatory cell infiltration/severe epithelial atrophy/edema of epithelial cells/vacuolation Complete: macrophage infiltration/hemorrhage/irregular dark nuclei/thinner epithelium/denuded epithelial cells | ↓aSMA, ↓TGF-β Attenuation of all changes with tadalafil | POS |
Reference/ Country/Year | Studied Animal | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[75]/ China/2015 | Male BALB/c mice | Cisplatin 15 mg/kg Intraperitoneal | Icariin Orally 30 or 60 mg/kg/day For 6 days | PRE | At 6 days | ↑BUN, ↑sCr, ↑MDA ↓GSH concentration, ↓Catalase ↓SOD activity, ↑TNF-a, ↑NF-Kb ↑TUNEL positive cells ↑Caspase-3, ↓Bcl-2 Tubular congestion/edema Loss of brush border/Tubular cell flattening and necrosis/nuclear pyknosis Severe invasion of inflammatory cells | ↓BUN, ↓sCr,↓MDA ↑GSH concentration, ↑Catalase ↑SOD activity, ↓TNF-a, ↓NF-kB ↓TUNEL positive cells ↓Caspase-3, ↑Bcl-2 Partial improvement of the features (dose dependent) | POS |
[18]/ China/2018 | Male C57BL/6N mice | CLP model | Icariin Orally 30 or 60 mg/kg 3 days prior to surgery | PRE | Observed for 5 days | ↑BUN, ↑sCr, ↑MDA levels ↑IL-1β/IL-6/TNF-a ↑ NF-κB ↓ GSH concentration ↓Catalase, ↓SOD activity ↑TUNEL +ve cells ↑Renal vascular permeability ↑Bax,↓Bcl-2, ↑Caspase 3 Extensive tubular necrosis/Loss of brush border | ↓BUN, ↓sCr, ↓MDA levels ↓IL-1β/IL-6/TNF-a, ↓ NF-κB ↑GSH concentration ↑Catalase, ↑SOD activity ↓TUNEL +ve cells (60>30) ↓Renal vascular permeability ↓Bax, ↑Bcl-2, ↓Caspase 3 ↑Survival (both doses) Improvement in all histological features | POS |
[76]/ Taiwan/2019 | Adult C57BL/6J | UUO model | Icariin Orally 20 mg/kg/day For 3 days prior and 3, 7, or 14 days after | PRE and POST | 3, 7, or 14 days post ligation | ↑TGF-β, ↑α-SMA ↑fibronectin ↑NOX-4, ↓E-cadherin, ↓SOD-1 ↓Catalase, ↑CTGF, ↑Ly6G ↑F4/80, ↑phosphorylation IL-1β ↑Phosphorylation COX-2/NF-κΒ-65 Tubular dilatation/interstitial cell proliferation/inflammatory cell infiltration/tuft to capsule glomerular adhesions/collagen deposition | ↓TGF-β, ↓α-SMA, ↓fibronectin ↓NOX-4,↑E-cadherin, ↑SOD-1 ↑Catalase, ↓CTGF, ↓Ly6G ↓F4/80, ↓phosphorylation IL-1β ↓Phosphorylation COX-2/NF-κΒ-65 Non-significant moderate reversal by icariin | POS |
Reference/ Country/Year | Studied Animal | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[45]/ Turkey/2011 | Wistar albino rats | UUO model | Sildenafil-orally-1 mg/day Vardenafil-orally-0.5 mg/day Tadalafil-orally-10 mg/72 h For 30 days | POST | 30 days | ↑Tubular cell apoptosis ↑eNOS ↑ iNOS | ↓Tubular cell apoptosis ↓ eNOS ↓iNOS Sildenafil better results | POS |
[77]/ Greece/2013 | Male Wistar rats | IR renal injury model | Vardenafil Intravenously 0.02, 0.2, 2, 20 μg/kg 1 h pre-operatively or 2μg/kg 45 min post occlusion | PRE or POST | Blood samples and right nephrectomy 4 h post ischemia | Edema Loss of brush border Nuclear condensation | ↓sCr (0.2, 2, 20 μg/kg) No change when given post-ischemia ↓FENa, ↑Renal uptake of tracer ↑cGMP, ↑ERK 1/2 phosphorylation Renoprotection (in scintigraphy) Significant improvement in all histo-logical changes irrespectively of dose | POS |
[78]/ Brazil/2015 | Male Wistar rats | IR renal injury model | Vardenafil Solution in a probe (1 mg/mL in 10 mg/kg) 1 h prior the ligation | PRE | Left nephrectomy Cytophotometry 24 h after reperfusion | ↑Cleaved caspase-3 ↑sCr ↑Vacuolar degeneration | ↓ Cleaved caspase-3 ↓ Vacuolar degeneration | POS |
Reference/ Country/Year | Studied Animal | AKI Model | PDE5I Route | Timing | Sample | AKI Renal Effects | PDE5I Renal Effects | Outcome |
---|---|---|---|---|---|---|---|---|
[79]/ USA/1995 | Male Sprague-Dawley rats | IR renal injury model | Zaprinast Intravenously 0.03 and 0.3 mg/kg/min 24 h after ischemia | POST | During clamping, PDE5i infusion, up to 6 days following ischemia | ↑sCr, ↓GFR | ↓sCr, ↑GFR, ↓Low MAP ↑UNaV, ↑Urinary cGMP ↑Cortical and medullary blood flow | POS |
[40]/ USA/2013 | Female Sprague-Dawley rats | IR renal injury model | Zaprinast Intraperitoneally 10 mg/kg or 20 mg/kg Single dose 30 min pre-operatively | PRE | 24 h post operatively blood samples and left nephrectomy | No statistically significant differrences in either BUN levels or sCr levels or histologic scores or TUNEL positive cells | NEUT | |
[80]/ Germany/2017 | 6-8-week-old mice | UUO model | Zaprinast, Intraperitoneally 10 mg/kg/day for 7 days | POST | After 7 days | ↑cGMP, ↑sCr | ↑↑cGMP, ↑MMP9, ↑TGF-β ⇔sCr, ↓Collagen | POS |
[21]/Turkey/2017 | Female Wistar albino rats | IR renal injury model | Udenafil Orally: 10 mg/kg 1 h prior to clamping | PRE | 60 min and 24 h after reperfusion | ↑BUN, ↑sCr ↑MDA, ↑NGAL | ↓BUN, ↓sCr ↓MDA, ↓NGAL Lowest pathological damage rates | POS |
PDE5i | FDA Approved | Launch Date | Pharmacokinetics | Recommended Dosage | Indications | Side Effects | Contraindications | Emerging and Other Off-Label Therapeutic Applications |
---|---|---|---|---|---|---|---|---|
Sildenafil | Yes | 1998 | Cmax = 560 µg/L Tmax = 0.8–1 h T1/2 = 2.6–3.7 h Affected by heavy/fatty meals | ED: 25–100 mg OD PAH: 5–20 mg TDS | ED PAH | Headache: 12.8% Flushing: 10.4% Dyspepsia: 4.6% Nasal congestion: 1.1% Dizziness: 1.2% Abnormal vision: 1.9% | Absolute:
Relative:
|
|
Tadalafil | Yes | 2003 | Cmax = 378 µg/L Tmax = 2 h T1/2 = 17.5 h Not affected by heavy/fatty meals | ED: 10-20 mg on demand ED: 5 mg OD LUTS: 5 mg OD PAH: 40 mg | ED PAH LUTS | Headache: 14.5% Flushing: 4.1% Dyspepsia: 12.3% Nasal congestion: 4.3% Dizziness: 2.3% Back pain: 6.5% Myalgia: 5.7% | ||
Vardenafil | Yes | 2003 | Cmax = 18.7 µg/L Tmax = 0.9 h T1/2 = 3.9 h Affected by heavy/fatty meals | ED: 5–20 mg on demand | ED | Headache: 16% Flushing: 12% Dyspepsia: 4% Nasal congestion: 10% Dizziness: 2% Abnormal vision: < 2% | ||
Avanafil | Yes | 2013 | Cmax = 5.2 µg/L Tmax = 0.5–0.75 h T1/2 = 6–17 h Affected by heavy/fatty meals | ED: 50–200 mg on demand | ED | Headache: 9.3% Flushing: 3.7% Dyspepsia: uncommon Nasal congestion 1.9% Dizziness: 0.6% Back pain: < 2% Myalgia: < 2% | ||
Udenafil | No | 2005 | Cmax = 1137 µg/L Tmax = 0.76 h T1/2 = 9.88 h | ED: 100 mg on demand | ED | Headache: 2–9% Flushing: 11–23% Dyspepsia: uncommon Nasal congestion: 4–7% Red eye: 4–7% Chest discomfort: 0–5% | ||
Lodenafil | No | 2007 | Cmax = 157 µg/L Tmax = 1.2 h T1/2 = 2.4 h | ED: 80 mg on demand | ED | Headache: 15–22% Flushing: 5–6% Dyspepsia: 5–22% Nasal congestion: 5–11% Abnormal vision: 5–6% | ||
Mirodenafil | No | 2011 | Cmax = 2989 µg/L Tmax = 1.4 h T1/2 = 2.5 h | ED: 80 mg on demand | ED | Headache: 8–11% Flushing: 10–16% Dyspepsia: 3% Red eye: 3–4% Chest discomfort: 0–3% | ||
Benzamidenafil | No | - | ID | ID | ID | ID | ID | ID |
Dasantafil | No | - | ID | ID | ID | ID | ID | ID |
Icariin | No | - | ID | ID | ID | ID | ID | ID |
Zaprinast | No | - | ID | ID | ID | ID | ID | ID |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiadis, G.; Zisis, I.-E.; Docea, A.O.; Tsarouhas, K.; Fragkiadoulaki, I.; Mavridis, C.; Karavitakis, M.; Stratakis, S.; Stylianou, K.; Tsitsimpikou, C.; et al. Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review. J. Clin. Med. 2020, 9, 1284. https://doi.org/10.3390/jcm9051284
Georgiadis G, Zisis I-E, Docea AO, Tsarouhas K, Fragkiadoulaki I, Mavridis C, Karavitakis M, Stratakis S, Stylianou K, Tsitsimpikou C, et al. Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review. Journal of Clinical Medicine. 2020; 9(5):1284. https://doi.org/10.3390/jcm9051284
Chicago/Turabian StyleGeorgiadis, Georgios, Ioannis-Erineos Zisis, Anca Oana Docea, Konstantinos Tsarouhas, Irene Fragkiadoulaki, Charalampos Mavridis, Markos Karavitakis, Stavros Stratakis, Kostas Stylianou, Christina Tsitsimpikou, and et al. 2020. "Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review" Journal of Clinical Medicine 9, no. 5: 1284. https://doi.org/10.3390/jcm9051284
APA StyleGeorgiadis, G., Zisis, I.-E., Docea, A. O., Tsarouhas, K., Fragkiadoulaki, I., Mavridis, C., Karavitakis, M., Stratakis, S., Stylianou, K., Tsitsimpikou, C., Calina, D., Sofikitis, N., Tsatsakis, A., & Mamoulakis, C. (2020). Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review. Journal of Clinical Medicine, 9(5), 1284. https://doi.org/10.3390/jcm9051284