Degree of Glomerulosclerosis in Procurement Kidney Biopsies from Marginal Donor Kidneys and Their Implications in Predicting Graft Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Outcomes
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Kidney Procurement Cohort and Rate of Kidney Discard
3.2. Kidney Transplant Recipient Cohort
3.3. Baseline Characteristics Based on Percentages of Glomerulosclerosis
3.4. Post-Transplant Outcomes Based on Percentages of Glomerulosclerosis
3.5. Characteristics and Outcomes of Kidneys with No Biopsy Performed
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Wilk, A.R.; Robinson, A.; Wainright, J.L.; Haynes, C.R.; Snyder, J.J.; Kasiske, B.L. OPTN/SRTR 2016 annual data report: Kidney. Am. J. Transp. 2018, 18, 18–113. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, E.B.; Ladanyi, M.; Emanuel, D.; Mackinnon, S.; Boulad, F.; Carabasi, M.H.; Castro-Malaspina, H.; Childs, B.H.; Gillio, A.P.; Small, T.N.; et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 1994, 330, 1185–1191. [Google Scholar] [CrossRef]
- Gupta, M.; Abt, P.L. Trends among kidney transplant candidates in the United States: Sifting through the tea leaves. Am. J. Transp. 2019, 19, 313–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecka, J.M. Kidney transplantation in the United States. Clin. Transp. 2008, 1–18. [Google Scholar]
- Andre, M.; Huang, E.; Everly, M.; Bunnapradist, S. The UNOS renal transplant registry: Review of the last decade. Clin Transp. 2014, 1–12. [Google Scholar]
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Stewart, D.E.; Cherikh, W.S.; Wainright, J.L.; Kucheryavaya, A.; Woodbury, M.; Snyder, J.J.; et al. OPTN/SRTR 2015 annual data report: Kidney. Am. J. Transp. 2017, 17, 21–116. [Google Scholar] [CrossRef]
- United States Renal Data System. 2015 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive: Bethesda, MD, USA, 2015. [Google Scholar]
- Mohan, S.; Chiles, M.C.; Patzer, R.E.; Pastan, S.O.; Husain, S.A.; Carpenter, D.J.; Dube, G.K.; Crew, R.J.; Ratner, L.E.; Cohen, D.J. Factors leading to the discard of deceased donor kidneys in the United States. Kidney Int. 2018, 94, 187–198. [Google Scholar] [CrossRef]
- Lentine, K.L.; Naik, A.S.; Schnitzler, M.A.; Randall, H.; Wellen, J.R.; Kasiske, B.L.; Marklin, G.; Brockmeier, D.; Cooper, M.; Xiao, H.; et al. Variation in use of procurement biopsies and its implications for discard of deceased donor kidneys recovered for transplantation. Am. J. Transp. 2019, 19, 2241–2251. [Google Scholar] [CrossRef]
- Metzger, R.A.; Delmonico, F.L.; Feng, S.; Port, F.K.; Wynn, J.J.; Merion, R.M. Expanded criteria donors for kidney transplantation. Am. J. Transp. 2003, 4, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Israni, A.K.; Salkowski, N.; Gustafson, S.; Snyder, J.J.; Friedewald, J.J.; Formica, R.N.; Wang, X.; Shteyn, E.; Cherikh, W.; Stewart, D.; et al. New national allocation policy for deceased donor kidneys in the United States and possible effect on patient outcomes. J. Am. Soc. Nephrol. 2014, 25, 1842–1848. [Google Scholar] [CrossRef] [Green Version]
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Wilk, A.R.; Castro, S.; Robinson, A.; Wainright, J.L.; Snyder, J.J.; Kasiske, B.L.; et al. OPTN/SRTR 2017 annual data report: Kidney. Am. J. Transp. 2019, 19, 19–123. [Google Scholar] [CrossRef] [PubMed]
- Reese, P.P.; Harhay, M.N.; Abt, P.L.; Levine, M.H.; Halpern, S.D. New solutions to reduce discard of kidneys donated for transplantation. J. Am. Soc. Nephrol. 2016, 27, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Massie, A.B.; Luo, X.; Anjum, S.; Desai, N.M.; Segev, D.L. Changes in discard rate after the introduction of the kidney donor profile index (KDPI). Am. J. Transp. 2016, 16, 2202–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narvaez, J.R.F.; Nie, J.; Noyes, K.; Leeman, M.; Kayler, L.K. Hard-to-place kidney offers: Donor- and system-level predictors of discard. Am. J. Transp. 2018, 18, 2708–2718. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.B.; Shults, J.; Goldberg, D.S.; Abt, P.L.; Sawinski, D.L.; Reese, P.P. Kidney allograft offers: Predictors of turndown and the impact of late organ acceptance on allograft survival. Am. J. Transp. 2018, 18, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Campenot, E.; Chiles, M.C.; Santoriello, D.; Bland, E.; Crew, R.J.; Rosenstiel, P.; Dube, G.; Batal, I.; Radhakrishnan, J.; et al. Association between reperfusion renal allograft biopsy findings and transplant outcomes. J. Am. Soc. Nephrol. 2017, 28, 3109–3117. [Google Scholar] [CrossRef]
- Carpenter, D.; Husain, S.A.; Brennan, C.; Batal, I.; Hall, I.E.; Santoriello, D.; Rosen, R.; Crew, R.J.; Campenot, E.; Dube, G.K.; et al. Procurement biopsies in the evaluation of deceased donor kidneys. Clin. J. Am. Soc. Nephrol. 2018, 13, 1876–1885. [Google Scholar] [CrossRef] [Green Version]
- Liapis, H.; Gaut, J.P.; Klein, C.; Bagnasco, S.; Kraus, E.; Farris, A.B., 3rd; Honsova, E.; Perkowska-Ptasinska, A.; David, D.; Goldberg, J.; et al. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am. J. Transp. 2017, 17, 140–150. [Google Scholar] [CrossRef]
- Hall, I.E.; Parikh, C.R.; Schroppel, B.; Weng, F.L.; Jia, Y.; Thiessen-Philbrook, H.; Reese, P.P.; Doshi, M.D. Procurement biopsy findings versus kidney donor risk index for predicting renal allograft survival. Transp. Direct 2018, 4, e373. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Stewart, D.E.; Bista, B.R.; Salkowski, N.; Snyder, J.J.; Israni, A.K.; Crary, G.S.; Rosendale, J.D.; Matas, A.J.; Delmonico, F.L. The role of procurement biopsies in acceptance decisions for kidneys retrieved for transplant. Clin. J. Am. Soc. Nephrol. 2014, 9, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.E.; Garcia, V.C.; Rosendale, J.D.; Klassen, D.K.; Carrico, B.J. Diagnosing the decades-long rise in the deceased donor kidney discard rate in the United States. Transplantation 2017, 101, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Wetmore, J.B.; Crary, G.S.; Kasiske, B.L. The donor kidney biopsy and its implications in predicting graft outcomes: A systematic review. Am. J. Transp. 2015, 15, 1903–1914. [Google Scholar] [CrossRef]
- Sung, R.S.; Christensen, L.L.; Leichtman, A.B.; Greenstein, S.M.; Distant, D.A.; Wynn, J.J.; Stegall, M.D.; Delmonico, F.L.; Port, F.K. Determinants of discard of expanded criteria donor kidneys: Impact of biopsy and machine perfusion. Am. J. Transp. 2008, 8, 783–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escofet, X.; Osman, H.; Griffiths, D.F.; Woydag, S.; Adam Jurewicz, W. The presence of glomerular sclerosis at time zero has a significant impact on function after cadaveric renal transplantation. Transplantation 2003, 75, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.K. Procurement biopsies in kidneys retrieved for transplantation. Clin. J. Am. Soc. Nephrol. 2014, 9, 443–444. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, M.; Cho, Y.W.; Pham, P.T.; Shah, T.; Danovitch, G.; Wilkinson, A.; Bunnapradist, S. Donor biopsy and kidney transplant outcomes: An analysis using the organ procurement and transplantation network/united network for organ sharing (OPTN/UNOS) database. Transplantation 2007, 84, 1399–1405. [Google Scholar] [CrossRef] [Green Version]
- Edwards, E.B.; Posner, M.P.; Maluf, D.G.; Kauffman, H.M. Reasons for non-use of recovered kidneys: The effect of donor glomerulosclerosis and creatinine clearance on graft survival. Transplantation 2004, 77, 1411–1415. [Google Scholar] [CrossRef]
- Cicciarelli, J.; Cho, Y.; Mateo, R.; El-Shahawy, M.; Iwaki, Y.; Selby, R. Renal biopsy donor group: The influence of glomerulosclerosis on transplant outcomes. Transplant. Proc. 2005, 37, 712–713. [Google Scholar] [CrossRef]
- Barlesi, F.; Vansteenkiste, J.; Spigel, D.; Ishii, H.; Garassino, M.; de Marinis, F.; Özgüroğlu, M.; Szczesna, A.; Polychronis, A.; Uslu, R.; et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018, 19, 1468–1479. [Google Scholar] [CrossRef]
- Hanna, R. Acute kidney injury after pembrolizumab-induced adrenalitis and adrenal insufficiency. Case Rep. Nephrol. Dial. 2018, 8, 238. [Google Scholar] [CrossRef]
- Angeletti, A.; Cravedi, P. Making procurement biopsies important again for kidney transplant allocation. Nephron 2019, 142, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Cecka, J.M.; Cohen, B.; Rosendale, J.; Smith, M. Could more effective use of kidneys recovered from older deceased donors result in more kidney transplants for older patients? Transplantation 2006, 81, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Gaber, L.W.; Moore, L.W.; Alloway, R.R.; Amiri, M.H.; Vera, S.R.; Gaber, A.O. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation 1995, 60, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, P.S.; Minervini, M.I.; Lombardero, M.; Duquesnoy, R.; Fung, J.; Shapiro, R.; Jordan, M.; Vivas, C.; Scantlebury, V.; Demetris, A. Biopsy of marginal donor kidneys: Correlation of histologic findings with graft dysfunction. Transplantation 2000, 69, 1352–1357. [Google Scholar] [CrossRef]
- Hodgin, J.B.; Bitzer, M.; Wickman, L.; Afshinnia, F.; Wang, S.Q.; O’Connor, C.; Yang, Y.; Meadowbrooke, C.; Chowdhury, M.; Kikuchi, M.; et al. Glomerular aging and focal global glomerulosclerosis: A podometric perspective. J. Am. Soc. Nephrol. 2015, 26, 3162–3178. [Google Scholar] [CrossRef]
- Rowland, J.; Akbarov, A.; Maan, A.; Eales, J.; Dormer, J.; Tomaszewski, M. Tick-tock chimes the kidney clock—From biology of renal ageing to clinical applications. Kidney Blood Press. Res. 2018, 43, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Gandolfini, I.; Buzio, C.; Zanelli, P.; Palmisano, A.; Cremaschi, E.; Vaglio, A.; Piotti, G.; Melfa, L.; La Manna, G.; Feliciangeli, G.; et al. The Kidney Donor Profile Index (KDPI) of marginal donors allocated by standardized pretransplant donor biopsy assessment: Distribution and association with graft outcomes. Am. J. Transp. 2014, 14, 2515–2525. [Google Scholar] [CrossRef] [Green Version]
- McCullough, K.P.; Morgenstern, H.; Saran, R.; Herman, W.H.; Robinson, B.M. Projecting ESRD incidence and prevalence in the United States through 2030. J. Am. Soc. Nephrol. 2019, 30, 127–135. [Google Scholar] [CrossRef]
- Jay, C.; Schold, J.D. Measuring transplant center performance: The goals are not controversial but the methods and consequences can be. Curr. Transp. 2017, 4, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Hansrivijit, P.; Leeaphorn, N.; Acharya, P.; Torres-Ortiz, A.; Kaewput, W.; Kovvuru, K.; Kanduri, S.R.; Bathini, T.; Cheungpasitporn, W. Recent advances and clinical outcomes of kidney transplantation. J. Clin. Med. 2020, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Kaewput, W.; Kovvuru, K.; Hansrivijit, P.; Kanduri, S.R.; Bathini, T.; Chewcharat, A.; Leeaphorn, N.; Gonzalez-Suarez, M.L.; Cheungpasitporn, W. Promises of big data and artificial intelligence in nephrology and transplantation. J. Clin. Med. 2020, 9, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeaphorn, N.; Thongprayoon, C.; Chon, W.J.; Cummings, L.S.; Mao, M.A.; Cheungpasitporn, W. Outcomes of kidney retransplantation after graft loss as a result of BK virus nephropathy in the era of newer immunosuppressant agents. Am. J. Transp. 2020, 20, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Kremers, W.K.; Lorenz, E.; Amer, H.; Cosio, F.G.; Stegall, M.D.; Gandhi, M.J.; Schinstock, C.A. De novo donor-specific antibody following BK nephropathy: The incidence and association with antibody-mediated rejection. Clin. Transp. 2018, 32, e13194. [Google Scholar] [CrossRef] [PubMed]
- Zens, T.J.; Danobeitia, J.S.; Leverson, G.; Chlebeck, P.J.; Zitur, L.J.; Redfield, R.R.; D’Alessandro, A.M.; Odorico, S.; Kaufman, D.B.; Fernandez, L.A. The impact of kidney donor profile index on delayed graft function and transplant outcomes: A single-center analysis. Clin. Transp. 2018, 32, e13190. [Google Scholar] [CrossRef] [PubMed]
- Jay, C.L.; Washburn, K.; Dean, P.G.; Helmick, R.A.; Pugh, J.A.; Stegall, M.D. Survival benefit in older patients associated with earlier transplant with high KDPI kidneys. Transplantation 2017, 101, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Massie, A.B.; Luo, X.; Chow, E.K.; Alejo, J.L.; Desai, N.M.; Segev, D.L. Survival benefit of primary deceased donor transplantation with high-KDPI kidneys. Am. J. Transp. 2014, 14, 2310–2316. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Silvestre, C.; Boschiero, L.; Rota, G.; Furian, L.; Perna, A.; Rossini, G.; Remuzzi, G.; Rigotti, P. Long-term outcome of renal transplantation from octogenarian donors: A multicenter controlled study. Am. J. Transp. 2017, 17, 3159–3171. [Google Scholar] [CrossRef]
- Moore, P.S.; Farney, A.C.; Sundberg, A.K.; Rohr, M.S.; Hartmann, E.L.; Iskandar, S.S.; Gautreaux, M.D.; Rogers, J.; Doares, W.; Anderson, T.K.; et al. Dual kidney transplantation: A case-control comparison with single kidney transplantation from standard and expanded criteria donors. Transplantation 2007, 83, 1551–1556. [Google Scholar] [CrossRef]
- Gill, J.; Cho, Y.W.; Danovitch, G.M.; Wilkinson, A.; Lipshutz, G.; Pham, P.T.; Gill, J.S.; Shah, T.; Bunnapradist, S. Outcomes of dual adult kidney transplants in the United States: An analysis of the OPTN/UNOS database. Transplantation 2008, 85, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Remuzzi, G.; Cravedi, P.; Perna, A.; Dimitrov, B.D.; Turturro, M.; Locatelli, G.; Rigotti, P.; Baldan, N.; Beatini, M.; Valente, U.; et al. Long-term outcome of renal transplantation from older donors. N. Engl. J. Med. 2006, 354, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Park, J.B.; Cha, S.R.; Lee, S.H.; Chung, Y.J.; Yoo, H.; Kim, K.; Kim, S.J. Dual kidney transplantation offers a safe and effective way to use kidneys from deceased donors older than 70 years. BMC Nephrol. 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.P.; Sawinski, D. Personalizing donor kidney selection: Choosing the right donor for the right recipient. Clin. J. Am. Soc. Nephrol. 2019, 15, 418–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naesens, M. Zero-time renal transplant biopsies: A comprehensive review. Transplantation 2016, 100, 1425–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpinski, J.; Lajoie, G.; Cattran, D.; Fenton, S.; Zaltzman, J.; Cardella, C.; Cole, E. Outcome of kidney transplantation from high-risk donors is determined by both structure and function. Transplantation 1999, 67, 1162–1167. [Google Scholar] [CrossRef]
Glomerulosclerosis | |||||
---|---|---|---|---|---|
0–10% | 11–20% | >20% | No-Biopsy | p-Value | |
N | 7796 | 1230 | 500 | 786 | |
Donor | |||||
Age (years) | 60.7 ± 7.1 | 60.5 ± 6.9 | 60.6 ± 6.7 | 58.5 ± 7.4 | <0.001 |
Male (%) | 46.7 | 41.1 | 46.4 | 36.6 | <0.001 |
Black (%) | 28.8 | 29.5 | 25.2 | 30.0 | 0.26 |
Diabetes (%) | 26.5 | 34.2 | 30.6 | 20.2 | <0.001 |
Hypertension (%) | 79.0 | 81.8 | 80.8 | 73.8 | <0.001 |
BMI (kg/m2) | 28.8 ± 6.9 | 29.2 ± 7.5 | 29.2 ± 7.5 | 27.3 ± 6.5 | <0.001 |
Creatinine (mg/dL) before kidney procurement | 1.2 ± 1.0 | 1.2 ± 0.6 | 1.2 ± 0.5 | 1.2 ± 1.0 | 0.04 |
Donor after cardiac death (%) | 10.0 | 7.1 | 6.8 | 4.6 | <0.001 |
HCV antibody positive (%) | 5.8 | 2.4 | 2.8 | 12.9 | <0.001 |
Cause of death (%) | |||||
Cerebrovascular accident | 78.1 | 79.4 | 83.0 | 82.8 | 0.002 |
Machine perfusion (%) | 49.9 | 51.2 | 47.8 | 19.5 | <0.001 |
Expanded criteria donor (%) | 85.4 | 87.7 | 86.4 | 75.5 | <0.001 |
Recipient | |||||
Age (years) | 61.5 ± 9.8 | 62.4 ± 9.6 | 61.6 ± 9.8 | 59.9 ± 10.6 | 0.001 |
Male (%) | 64.0 | 63.1 | 63.2 | 63.9 | 0.92 |
Black (%) | 36.4 | 36.8 | 40.6 | 33.3 | 0.07 |
BMI | 27.9 ± 5.3 | 28.4 ± 5.5 | 27.5 ± 5.0 | 27.6 ± 5.4 | 0.001 |
Diabetes (%) | 47.2 | 46.8 | 48.8 | 47.1 | 0.90 |
Dialysis duration (%) | |||||
Preemptive | 9.8 | 8.9 | 9.8 | 9.0 | 0.70 |
<1 years | 8.7 | 8.1 | 7.0 | 9.5 | 0.41 |
1–3 years | 29.6 | 26.7 | 30.8 | 30.7 | 0.13 |
>3 years | 49.4 | 54.0 | 48.4 | 46.8 | 0.006 |
PRA (%) | |||||
<10 | 81.7 | 84.7 | 81.8 | 78.1 | 0.003 |
10–60 | 12.0 | 9.8 | 12.6 | 15.0 | 0.005 |
>60 | 5.9 | 4.6 | 4.4 | 5.7 | 0.21 |
Missing | 0.5 | 0.9 | 1.2 | 1.2 | 0.01 |
Transplant | |||||
HLA DR mismatch (%) | |||||
0 | 8.2 | 7.2 | 7.8 | 8.9 | 0.42 |
1 | 39.0 | 36.3 | 38.4 | 36.9 | 0.27 |
2 | 52.8 | 56.5 | 53.8 | 54.2 | 0.12 |
Cold ischemic time (hours) | 19.5 ± 9.4 | 20.5 ± 9.5 | 19.8 ± 9.1 | 15.7 ± 9.2 | <0.001 |
Transplant period | |||||
2005–2007 | 28.6 | 22.7 | 35.0 | 45.2 | <0.001 |
2008–2010 | 33.8 | 31.6 | 35.6 | 27.4 | 0.001 |
2011–2014 | 37.6 | 45.7 | 29.4 | 27.5 | <0.001 |
Induction therapy (%) | |||||
Thymoglobulin | 46.1 | 52.3 | 51.4 | 47.3 | <0.001 |
Alemtuzumab | 14.7 | 13.5 | 16.0 | 9.5 | 0.001 |
Basiliximab | 18.9 | 19.2 | 17.2 | 24.7 | 0.001 |
Other induction | 7.6 | 8.1 | 5.2 | 7.1 | 0.19 |
No induction | 16.3 | 11.0 | 13.4 | 15.0 | <0.001 |
Glomerulosclerosis | |||
---|---|---|---|
0–10% | >10% | p-Value | |
N | 7796 | 1730 | |
Donor | |||
Age (years) | 60.7 ± 7.1 | 60.5 ± 6.8 | 0.18 |
Male (%) | 46.7 | 42.7 | 0.002 |
Black (%) | 28.8 | 28.3 | 0.66 |
Diabetes (%) | 26.5 | 33.1 | <0.001 |
Hypertension (%) | 79.0 | 81.5 | 0.02 |
BMI (kg/m2) | 28.8 ± 6.9 | 29.2 ± 7.5 | 0.04 |
Creatinine (mg/dL) before kidney procurement | 1.2 ± 1.0 | 1.2 ± 0.6 | 0.85 |
Donor after cardiac death (%) | 10.0 | 7.0 | <0.001 |
HCV antibody positive (%) | 5.8 | 2.5 | <0.001 |
Cause of death (%) | |||
Cerebrovascular accident | 78.1 | 80.4 | 0.04 |
Machine perfusion (%) | 49.9 | 50.2 | 0.82 |
Expanded criteria donor (%) | 85.4 | 87.3 | 0.04 |
Recipient | |||
Age (years) | 61.5 ± 9.8 | 62.2 ± 9.6 | 0.003 |
Male (%) | 64.0 | 63.1 | 0.48 |
Black (%) | 36.4 | 37.9 | 0.26 |
BMI | 27.9 ± 5.3 | 28.1 ± 5.4 | 0.35 |
Diabetes (%) | 47.2 | 47.4 | 0.86 |
Dialysis duration (%) | |||
Preemptive | 9.8 | 9.1 | 0.40 |
<1 years | 8.7 | 7.8 | 0.25 |
1–3 years | 29.6 | 27.9 | 0.16 |
>3 years | 49.4 | 52.4 | 0.02 |
PRA (%) | |||
<10 | 81.7 | 83.9 | 0.03 |
10–60 | 12.0 | 10.6 | 0.10 |
>60 | 5.9 | 4.6 | 0.03 |
Missing | 0.5 | 1.0 | 0.01 |
Transplant | |||
HLA DR mismatch (%) | |||
0 | 8.2 | 7.4 | 0.30 |
1 | 39.0 | 36.9 | 0.10 |
2 | 52.8 | 55.7 | 0.03 |
Cold ischemic time (hours) | 19.5 ± 9.4 | 20.3 ± 9.4 | <0.001 |
Transplant period | |||
2005–2007 | 28.6 | 26.2 | 0.05 |
2008–2010 | 33.8 | 32.8 | 0.40 |
2011–2014 | 37.6 | 41.0 | 0.008 |
Induction therapy (%) | |||
Thymoglobulin | 46.1 | 52.0 | <0.001 |
Alemtuzumab | 14.7 | 14.2 | 0.59 |
Basiliximab | 18.9 | 18.6 | 0.79 |
Other induction | 7.6 | 7.3 | 0.67 |
No induction | 16.3 | 11.7 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheungpasitporn, W.; Thongprayoon, C.; Vaitla, P.K.; Chewcharat, A.; Hansrivijit, P.; Koller, F.L.; Mao, M.A.; Bathini, T.; Salim, S.A.; Katari, S.; et al. Degree of Glomerulosclerosis in Procurement Kidney Biopsies from Marginal Donor Kidneys and Their Implications in Predicting Graft Outcomes. J. Clin. Med. 2020, 9, 1469. https://doi.org/10.3390/jcm9051469
Cheungpasitporn W, Thongprayoon C, Vaitla PK, Chewcharat A, Hansrivijit P, Koller FL, Mao MA, Bathini T, Salim SA, Katari S, et al. Degree of Glomerulosclerosis in Procurement Kidney Biopsies from Marginal Donor Kidneys and Their Implications in Predicting Graft Outcomes. Journal of Clinical Medicine. 2020; 9(5):1469. https://doi.org/10.3390/jcm9051469
Chicago/Turabian StyleCheungpasitporn, Wisit, Charat Thongprayoon, Pradeep K Vaitla, Api Chewcharat, Panupong Hansrivijit, Felicitas L. Koller, Michael A Mao, Tarun Bathini, Sohail Abdul Salim, Sreelatha Katari, and et al. 2020. "Degree of Glomerulosclerosis in Procurement Kidney Biopsies from Marginal Donor Kidneys and Their Implications in Predicting Graft Outcomes" Journal of Clinical Medicine 9, no. 5: 1469. https://doi.org/10.3390/jcm9051469
APA StyleCheungpasitporn, W., Thongprayoon, C., Vaitla, P. K., Chewcharat, A., Hansrivijit, P., Koller, F. L., Mao, M. A., Bathini, T., Salim, S. A., Katari, S., Cummings, L. S., Island, E., Forster, J., & Leeaphorn, N. (2020). Degree of Glomerulosclerosis in Procurement Kidney Biopsies from Marginal Donor Kidneys and Their Implications in Predicting Graft Outcomes. Journal of Clinical Medicine, 9(5), 1469. https://doi.org/10.3390/jcm9051469