Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review
Abstract
:1. Introduction
2. Motivation and Literature Search on Patient-Specific Knee Arthroplasty
3. Review of Patient-Specific Knee Arthroplasty
3.1. The Fits of Patient-Specific Knee Arthroplasty
3.2. Clinical Outcome of Patient-Specific Knee Arthroplasty
3.3. Biomechanical Effects of Patient-Specific Knee Arthroplasty
4. Discussion and Future Direction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. Vol. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Bonnin, M.P.; Saffarini, M.; Bossard, N.; Dantony, E.; Victor, J. Morphometric analysis of the distal femur in total knee arthroplasty and native knees. Bone Jt. J. 2016, 98-b, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, D.H.; Goodman, S.B.; Maloney, W.J.; Huddleston, J.I. Current modes of failure in TKA: Infection, instability, and stiffness predominate. Clin. Orthop. Relat. Res. 2014, 472, 2197–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, G.S.; Bin Abd Razak, H.R.; Tay, D.K.; Chia, S.L.; Lo, N.N.; Yeo, S.J. Unicompartmental Knee Arthroplasty Achieves Greater Flexion with No Difference in Functional Outcome, Quality of Life, and Satisfaction vs Total Knee Arthroplasty in Patients Younger Than 55 Years. A Propensity Score-Matched Cohort Analysis. J. Arthroplast. 2018, 33, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.D.; Santore, R.F. Unicondylar unicompartmental replacement for osteoarthritis of the knee. J. Bone Jt. Surg. Am. Vol. 1981, 63, 536–544. [Google Scholar] [CrossRef]
- Fisher, D.A.; Watts, M.; Davis, K.E. Implant position in knee surgery: A comparison of minimally invasive, open unicompartmental, and total knee arthroplasty. J. Arthroplast. 2003, 18, 2–8. [Google Scholar] [CrossRef]
- Hamilton, W.G.; Collier, M.B.; Tarabee, E.; McAuley, J.P.; Engh, C.A., Jr.; Engh, G.A. Incidence and reasons for reoperation after minimally invasive unicompartmental knee arthroplasty. J. Arthroplast. 2006, 21, 98–107. [Google Scholar] [CrossRef]
- Lang, J.E.; Mannava, S.; Floyd, A.J.; Goddard, M.S.; Smith, B.P.; Mofidi, A.; Seyler, T.M.; Jinnah, R.H. Robotic systems in orthopaedic surgery. J. Bone Jt. Surg. Br. Vol. 2011, 93, 1296–1299. [Google Scholar] [CrossRef] [Green Version]
- Motesharei, A.; Rowe, P.; Blyth, M.; Jones, B.; Maclean, A. A comparison of gait one year post operation in an RCT of robotic UKA versus traditional Oxford UKA. Gait Posture 2018, 62, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Noble, J.W., Jr.; Moore, C.A.; Liu, N. The value of patient-matched instrumentation in total knee arthroplasty. J. Arthroplast. 2012, 27, 153–155. [Google Scholar] [CrossRef]
- Levengood, G.A.; Dupee, J. Accuracy of Coronal Plane Mechanical Alignment in a Customized, Individually Made Total Knee Replacement with Patient-Specific Instrumentation. J. Knee Surg. 2018, 31, 792–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Keudell, A.; Sodha, S.; Collins, J.; Minas, T.; Fitz, W.; Gomoll, A.H. Patient satisfaction after primary total and unicompartmental knee arthroplasty: An age-dependent analysis. Knee 2014, 21, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.F.; Kampfen, S.; Munzinger, U.; Kramers-de Quervain, I. The role of patient expectations in predicting outcome after total knee arthroplasty. Arthritis Res. Ther. 2009, 11, R139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.G.; Wixson, R.L.; Tsai, D.; Stulberg, S.D.; Chang, R.W. Functional outcome and patient satisfaction in total knee patients over the age of 75. J. Arthroplast. 1996, 11, 831–840. [Google Scholar] [CrossRef]
- Mahoney, O.M.; Kinsey, T. Overhang of the femoral component in total knee arthroplasty: Risk factors and clinical consequences. J. Bone Jt. Surg. Am. Vol. 2010, 92, 1115–1121. [Google Scholar] [CrossRef]
- Vaidya, S.V.; Ranawat, C.S.; Aroojis, A.; Laud, N.S. Anthropometric measurements to design total knee prostheses for the Indian population. J. Arthroplast. 2000, 15, 79–85. [Google Scholar] [CrossRef]
- Ranawat, C.S. The patellofemoral joint in total condylar knee arthroplasty. Pros and cons based on five- to ten-year follow-up observations. Clin. Orthop. Relat. Res. 1986, 205, 93–99. [Google Scholar]
- Dennis, D.A. Evaluation of painful total knee arthroplasty. J. Arthroplast. 2004, 19, 35–40. [Google Scholar] [CrossRef]
- Ha, C.W.; Na, S.E. The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees. J. Bone Jt. Surg. Br. Vol. 2012, 94, 638–641. [Google Scholar] [CrossRef]
- Nicoll, D.; Rowley, D.I. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J. Bone Jt. Surg. Br. Vol. 2010, 92, 1238–1244. [Google Scholar] [CrossRef]
- Berger, R.A.; Crossett, L.S.; Jacobs, J.J.; Rubash, H.E. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin. Orthop. Relat. Res. 1998, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.; Saurez, A.; Ismaily, S.; Ashfaq, K.; Noble, P.; Incavo, S.J. Maximizing tibial coverage is detrimental to proper rotational alignment. Clin. Orthop. Relat. Res. 2014, 472, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, R.; Gulati, A.; Pandit, H.; Beard, D.J.; Price, A.J.; Dodd, C.A.; Gill, H.S.; Murray, D.W. Tibial component overhang following unicompartmental knee replacement—Does it matter? Knee 2009, 16, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Lee, H.Y.; Kang, K.T. Morphologic difference and size mismatch in the medial and lateral tibial condyles exist with respect to gender for unicompartmental knee arthroplasty in the Korean population. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef]
- Li, K.; Saffarini, M.; Valluy, J.; Desseroit, M.C.; Morvan, Y.; Telmon, N.; Cavaignac, E. Sexual and ethnic polymorphism render prosthetic overhang and under-coverage inevitable using off-the shelf TKA implants. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019, 27, 2130–2139. [Google Scholar] [CrossRef]
- Muller, J.H.; Li, K.; Reina, N.; Telmon, N.; Saffarini, M.; Cavaignac, E. Sexual and ethnic polymorphism result in considerable mismatch between native trochlear geometry and off-the-shelf TKA prostheses. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2020. [Google Scholar] [CrossRef]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Lee, H.Y.; Kim, H.J.; Kim, H.J.; Kang, K.T. Gender-related morphological differences in sulcus angle and condylar height for the femoral trochlea using magnetic resonance imaging. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Kim, H.J.; Lee, H.Y.; Kang, K.T. Gender differences exist in rotational anatomy of the distal femur in osteoarthritic knees using MRI. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Kang, K.T. Difference in coronal curvature of the medial and lateral femoral condyle morphology by gender in implant design for total knee arthroplasty. Surg. Radiol. Anat. 2019. [Google Scholar] [CrossRef]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Kim, H.J.; Baek, C.; Kang, K.T. Gender difference exists in sagittal curvature of the distal femoral condyle morphology for osteoarthritic population. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef]
- Koh, Y.G.; Nam, J.H.; Chung, H.S.; Chun, H.J.; Kim, H.J.; Kang, K.T. Morphometric study of gender difference in osteoarthritis posterior tibial slope using three-dimensional magnetic resonance imaging. Surg. Radiol. Anat. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.T.; Son, J.; Suh, D.S.; Kwon, S.K.; Kwon, O.R.; Koh, Y.G. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Jt. Res. 2018, 7, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, W.B.; Slamin, J.E.; Doody, S.W. Bone Preservation in a Novel Patient Specific Total Knee Replacement. Jt. Implant Surg. Res. Found. 2016, 6, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Fitz, W. Unicompartmental knee arthroplasty with use of novel patient-specific resurfacing implants and personalized jigs. J. Bone Jt. Surg. Am. Vol. 2009, 91 (Suppl. 1), 69–76. [Google Scholar] [CrossRef]
- Jemm, P.; Roy, S. The iDuo Bi-compartmental Knee Replacement: Our Early Experience. Jt. Implant Surg. Res. Found. 2016, 6, 13–17. [Google Scholar]
- Arnholdt, J.; Kamawal, Y.; Holzapfel, B.M.; Ripp, A.; Rudert, M.; Steinert, A.F. Evaluation of implant fit and frontal plane alignment after bi-compartmental knee arthroplasty using patient-specific instruments and implants. Arch. Med. Sci. AMS 2018, 14, 1424–1431. [Google Scholar] [CrossRef]
- Pastides, P.; Nathwani, D. The role of newer technologies in knee arthroplasty. Orthop. Trauma 2016, 31, 47–52. [Google Scholar] [CrossRef]
- Meier, M.; Zingde, S.; Steinert, A.; Kurtz, W.; Koeck, F.; Beckmann, J. What Is the Possible Impact of High Variability of Distal Femoral Geometry on TKA? A CT Data Analysis of 24,042 Knees. Clin. Orthop. Relat. Res. 2019, 477, 561–570. [Google Scholar] [CrossRef]
- Carpenter, D.P.; Holmberg, R.R.; Quartulli, M.J.; Barnes, C.L. Tibial plateau coverage in UKA: A comparison of patient specific and off-the-shelf implants. J. Arthroplast. 2014, 29, 1694–1698. [Google Scholar] [CrossRef]
- Demange, M.K.; Von Keudell, A.; Probst, C.; Yoshioka, H.; Gomoll, A.H. Patient-specific implants for lateral unicompartmental knee arthroplasty. Int. Orthop. 2015, 39, 1519–1526. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, S.; Peng, X.; Zhang, X. Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2012, 20, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Ivie, C.B.; Probst, P.J.; Bal, A.K.; Stannard, J.T.; Crist, B.D.; Sonny Bal, B. Improved radiographic outcomes with patient-specific total knee arthroplasty. J. Arthroplast. 2014, 29, 2100–2103. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, L.; Martin, G. In Vivo Tibial Fit and Rotational Analysis of a Customized, Patient-Specific TKA versus Off-the-Shelf TKA. J. Knee Surg. 2019, 32, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koeck, F.X.; Beckmann, J.; Luring, C.; Rath, B.; Grifka, J.; Basad, E. Evaluation of implant position and knee alignment after patient-specific unicompartmental knee arthroplasty. Knee 2011, 18, 294–299. [Google Scholar] [CrossRef]
- Steinert, A.F.; Beckmann, J.; Holzapfel, B.M.; Rudert, M.; Arnholdt, J. Bicompartmental individualized knee replacement: Use of patient-specific implants and instruments (iDuo). Oper. Orthop. Und Traumatol. 2017, 29, 51–58. [Google Scholar] [CrossRef]
- Zeller, I.M.; Sharma, A.; Kurtz, W.B.; Anderle, M.R.; Komistek, R.D. Customized versus Patient-Sized Cruciate-Retaining Total Knee Arthroplasty: An In Vivo Kinematics Study Using Mobile Fluoroscopy. J. Arthroplast. 2017, 32, 1344–1350. [Google Scholar] [CrossRef]
- Schwarzkopf, R.; Brodsky, M.; Garcia, G.A.; Gomoll, A.H. Surgical and Functional Outcomes in Patients Undergoing Total Knee Replacement with Patient-Specific Implants Compared with “Off-the-Shelf” Implants. Orthop. J. Sports Med. 2015, 3. [Google Scholar] [CrossRef]
- Reimann, P.; Brucker, M.; Arbab, D.; Luring, C. Patient satisfaction—A comparison between patient-specific implants and conventional total knee arthroplasty. J. Orthop. 2019, 16, 273–277. [Google Scholar] [CrossRef]
- Wang, H.; Foster, J.; Franksen, N.; Estes, J.; Rolston, L. Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement. Int. Orthop. 2018, 42, 805–810. [Google Scholar] [CrossRef]
- Ogura, T.; Le, K.; Merkely, G.; Bryant, T.; Minas, T. A high level of satisfaction after bicompartmental individualized knee arthroplasty with patient-specific implants and instruments. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019, 27, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, J.; Steinert, A.F.; Huber, B.; Rudert, M.; Kock, F.X.; Buhs, M.; Rolston, L. Customised bi-compartmental knee arthroplasty shows encouraging 3-year results: Findings of a prospective, multicenter study. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K. The use of customized TKA implants for increased efficiency in the OR. Curr. Rev. Musculoskelet. Med. 2012, 5, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buch, R.; Schroeder, L.; Buch, R.; Eberle, R. Does Implant Design Affect Hospital Metrics and Patient Outcomes? TKA Utilizing a “Fast-Track” Protocol. Jt. Implant Surg. Res. Found. 2019, 9, 13–16. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, M.I.; Blau, B.E. The Economic Value of Customized versus Off-the-Shelf Knee Implants in Medicare Fee-for-Service Beneficiaries. Am. Health Drug Benefits 2019, 12, 66–73. [Google Scholar]
- Talmo, C.T.; Anderson, M.C.; Jia, E.S.; Robbins, C.E.; Rand, J.D.; McKeon, B.P. High Rate of Early Revision After Custom-Made Unicondylar Knee Arthroplasty. J. Arthroplast. 2018, 33, S100–S104. [Google Scholar] [CrossRef]
- Koh, Y.G.; Park, K.M.; Lee, J.A.; Nam, J.H.; Lee, H.Y.; Kang, K.T. Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 70–81. [Google Scholar] [CrossRef]
- White, P.B.; Ranawat, A.S. Patient-Specific Total Knees Demonstrate a Higher Manipulation Rate Compared to “Off-the-Shelf Implants”. J. Arthroplast. 2016, 31, 107–111. [Google Scholar] [CrossRef]
- Kumar, P.; Elfrink, J.; Daniels, J.P.; Aggarwal, A.; Keeney, J.A. Higher Component Malposition Rates with Patient-Specific Cruciate Retaining TKA than Contemporary Posterior Stabilized TKA. J. Knee Surg. 2020. [Google Scholar] [CrossRef]
- Kay, A.B.; Kurtz, W.B.; Martin, G.M.; Huber, B.M.; Tait, R.J.; Clyburn, T.A. Manipulation Rate Is Not Increased After Customized Total Knee Arthroplasty. Jt. Implant Surg. Res. Found. 2018, 8, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, B.; Nappo, K.; Fisch, J.; Rego, L.; Shay, M.; Cannova, C. Early outcomes of patient-specific posterior stabilized total knee arthroplasty implants. J. Orthop. 2019, 16, 14–18. [Google Scholar] [CrossRef]
- Sanz-Ruiz, P.; Matas-Diez, J.A.; Carbo-Laso, E.; Perez-Mananes, R.; Vaquero-Martin, J. Patient-Specific Instrument Can Improve Functional and Radiographic Results during Learning Curve for Oxford Unicompartmental Knee Arthroplasty. J. Knee Surg. 2019, 32, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Meheux, C.J.; Park, K.J.; Clyburn, T.A. A Retrospective Study Comparing a Patient-specific Design Total Knee Arthroplasty with an Off-the-Shelf Design: Unexpected Catastrophic Failure Seen in the Early Patient-specific Design. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Harrysson, O.L.; Hosni, Y.A.; Nayfeh, J.F. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study. BMC Musculoskelet. Disord. 2007, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.; Bunn, A.; Bugbee, W.D.; Colwell, C.W., Jr.; D’Lima, D.D. Patient-specific implants with custom cutting blocks better approximate natural knee kinematics than standard TKA without custom cutting blocks. Knee 2015, 22, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heever, D.J.; Scheffer, C.; Erasmus, P.J.; Dillon, E.M. Contact stresses in a patient-specific unicompartmental knee replacement. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 2010, 5113–5116. [Google Scholar] [CrossRef]
- Koh, Y.G.; Son, J.; Kwon, S.K.; Kim, H.J.; Kwon, O.R.; Kang, K.T. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Jt. Res. 2017, 6, 557–565. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.J. Preliminary study of a customised total knee implant with musculoskeletal and dynamic squatting simulation. Proc. Inst. Mech. Eng. Part HJ. Eng. Med. 2019, 233, 1010–1023. [Google Scholar] [CrossRef]
- Haglin, J.M.; Eltorai, A.E.; Gil, J.A.; Marcaccio, S.E.; Botero-Hincapie, J.; Daniels, A.H. Patient-Specific Orthopaedic Implants. Orthop. Surg. 2016, 8, 417–424. [Google Scholar] [CrossRef]
- Rong, Q.; Bai, J.; Huang, Y.; Lin, J. Biomechanical assessment of a patient-specific knee implant design using finite element method. Biomed. Res. Int. 2014, 2014, 353690. [Google Scholar] [CrossRef]
- Buller, L.T.; Menken, L.; Rodriguez, J.A. The custom total knee replacement: A bespoke solution. Semin. Arthroplast. 2019, 29, 209–213. [Google Scholar] [CrossRef]
- Bali, K.; Walker, P.; Bruce, W. Custom-fit total knee arthroplasty: Our initial experience in 32 knees. J. Arthroplast. 2012, 27, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Davila, J.A.; Kransdorf, M.J.; Duffy, G.P. Surgical planning of total hip arthroplasty: Accuracy of computer-assisted EndoMap software in predicting component size. Skelet. Radiol. 2006, 35, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.L.; Bicknell, V.L.; Wright, T.M. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J. Bone Jt. Surg. Am. Vol. 1986, 68, 1041–1051. [Google Scholar] [CrossRef]
- Steklov, N.; Slamin, J.; Srivastav, S.; D’Lima, D. Unicompartmental knee resurfacing: Enlarged tibio-femoral contact area and reduced contact stress using novel patient-derived geometries. Open Biomed. Eng. J. 2010, 4, 85–92. [Google Scholar] [CrossRef]
- Freeman, M.A.; Pinskerova, V. The movement of the normal tibio-femoral joint. J. Biomech. 2005, 38, 197–208. [Google Scholar] [CrossRef]
- Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of human knee menisci: Structure, composition, and function. Sports Health 2012, 4, 340–351. [Google Scholar] [CrossRef] [Green Version]
- McDermott, I.D.; Masouros, S.D.; Amis, A.A. Biomechanics of the Menisci of the Knee. Curr. Orthop. 2008, 22, 193–201. [Google Scholar] [CrossRef]
- Johal, P.; Williams, A.; Wragg, P.; Hunt, D.; Gedroyc, W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J. Biomech. 2005, 38, 269–276. [Google Scholar] [CrossRef]
- Komistek, R.D.; Dennis, D.A.; Mahfouz, M. In vivo fluoroscopic analysis of the normal human knee. Clin. Orthop. Relat. Res. 2003, 69–81. [Google Scholar] [CrossRef]
- Li, J.S.; Hosseini, A.; Cancre, L.; Ryan, N.; Rubash, H.E.; Li, G. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture 2013, 38, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Moro-oka, T.A.; Hamai, S.; Miura, H.; Shimoto, T.; Higaki, H.; Fregly, B.J.; Iwamoto, Y.; Banks, S.A. Dynamic activity dependence of in vivo normal knee kinematics. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2008, 26, 428–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumbrunn, T.; Varadarajan, K.M.; Rubash, H.E.; Malchau, H.; Li, G.; Muratoglu, O.K. Regaining Native Knee Kinematics Following Joint Arthroplasty: A Novel Biomimetic Design with ACL and PCL Preservation. J. Arthroplast. 2015, 30, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, K.M.; Zumbrunn, T.; Rubash, H.E.; Malchau, H.; Li, G.; Muratoglu, O.K. Cruciate Retaining Implant with Biomimetic Articular Surface to Reproduce Activity Dependent Kinematics of the Normal Knee. J. Arthroplast. 2015, 30, 2149–2153.e2142. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, K.M.; Zumbrunn, T.; Rubash, H.E.; Malchau, H.; Muratoglu, O.K.; Li, G. Reverse Engineering Nature to Design Biomimetic Total Knee Implants. J. Knee Surg. 2015, 28, 363–369. [Google Scholar] [CrossRef]
- Pejhan, S.; Bohm, E.; Brandt, J.M.; Wyss, U. Design and virtual evaluation of a customized surface-guided knee implant. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 949–961. [Google Scholar] [CrossRef]
- Pejhan, S.; Bohm, E.; Brandt, J.M.; Wyss, U. The influence of geometric design variables on the kinematic performance of a surface-guided total knee replacement. J. Orthop. Surg. 2017, 25. [Google Scholar] [CrossRef]
- Pejhan, S.; Khosravipour, I.; Gascoyne, T.; Bohm, E.; Brandt, J.-M.; Luo, Y.; Wyss, U. Evaluation of the Tibiofemoral Contact Characteristics of a Customized Surface-Guided Knee Implant. J. Med. Biol. Eng. 2019, 39, 205–212. [Google Scholar] [CrossRef]
- Koh, Y.G.; Son, J.; Kwon, O.R.; Kwon, S.K.; Kang, K.T. Patient-specific design for articular surface conformity to preserve normal knee mechanics in posterior stabilized total knee arthroplasty. BioMed. Mater. Eng. 2018, 29, 401–414. [Google Scholar] [CrossRef]
- Koh, Y.G.; Park, K.M.; Kang, K.T. The biomechanical effect of tibiofemoral conformity design for patient-specific cruciate retainging total knee arthroplasty using computational simulation. J. Exp. Orthop. 2019, 6, 23. [Google Scholar] [CrossRef]
- Koh, Y.G.; Lee, J.A.; Lee, H.Y.; Chun, H.J.; Kim, H.J.; Kang, K.T. Anatomy-mimetic design preserves natural kinematics of knee joint in patient-specific mobile-bearing unicompartmental knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019. [Google Scholar] [CrossRef]
- Koh, Y.G.; Park, K.M.; Lee, H.Y.; Kang, K.T. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Jt. Res. 2019, 8, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Nam, J.H.; Kang, K.T. Effect of geometric variations on tibiofemoral surface and post-cam design of normal knee kinematics restoration. J. Exp. Orthop. 2018, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Son, J.; Kwon, O.R.; Kwon, S.K.; Kang, K.T. Effect of Post-Cam Design for Normal Knee Joint Kinematic, Ligament, and Quadriceps Force in Patient-Specific Posterior-Stabilized Total Knee Arthroplasty by Using Finite Element Analysis. Biomed. Res. Int. 2018, 2018, 2438980. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Lee, J.A.; Chung, P.K.; Kang, K.T. Computational analysis of customized cruciate retaining total knee arthroplasty restoration of native knee joint biomechanics. Artif. Organs 2019, 43, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Son, J.; Kwon, O.R.; Kwon, S.K.; Kang, K.T. Tibiofemoral conformity variation offers changed kinematics and wear performance of customized posterior-stabilized total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. Off. J. Esska 2019, 27, 1213–1223. [Google Scholar] [CrossRef]
- Slamin, J.; Parsley, B. Evolution of customization design for total knee arthroplasty. Curr. Rev. Musculoskelet. Med. 2012, 5, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.G.; Park, K.M.; Kang, K.T. Influence of Preservation of Normal Knee Contact Stress on Other Compartments with respect to the Tibial Insert Design for Unicompartmental Knee Arthroplasty. Appl. Bionics Biomech. 2019, 2019, 9246379. [Google Scholar] [CrossRef]
- Koh, Y.G.; Park, K.M.; Kang, K.T. Finite element Study on the Preservation of Normal Knee Kinematics with Respect to the Prosthetic Design in Patient-Specific Medial Unicompartmental Knee Arthroplast. Biomed. Res. Int. 2020, in press. [Google Scholar] [CrossRef]
- Massin, P. How does total knee replacement technique influence polyethylene wear? Orthop. Traumatol. Surg. Res. Otsr 2017, 103, S21–S27. [Google Scholar] [CrossRef]
- Koh, Y.G.; Park, K.M.; Lee, H.Y.; Park, J.H.; Kang, K.T. Prediction of wear performance in femoral and tibial conformity in patient-specific cruciate-retaining total knee arthroplasty. J. Orthop. Surg. Res. 2020, 15, 24. [Google Scholar] [CrossRef]
- Koh, Y.G.; Jung, K.H.; Hong, H.T.; Kim, K.M.; Kang, K.T. Optimal Design of Patient-Specific Total Knee Arthroplasty for Improvement in Wear Performance. J. Clin. Med. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, Y.G.; Lee, J.A.; Lee, H.Y.; Kim, H.J.; Kang, K.T. Computational wear prediction of insert conformity and material on mobile-bearing unicompartmental knee arthroplasty. Bone Jt. Res. 2019, 8, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.D. Lateral unicompartmental replacement: A road less traveled. Orthopedics 2005, 28, 983–984. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Lee, J.A.; Lee, H.Y.; Kim, H.J.; Chung, H.S.; Kang, K.T. Reduction in tibiofemoral conformity in lateral unicompartmental knee arthroplasty is more representative of normal knee kinematics. Bone Jt. Res. 2019, 8, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Schwechter, E.M.; Fitz, W. Design rationale for customized TKA: A new idea or revisiting the past? Curr. Rev. Musculoskelet. Med. 2012, 5, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culler, S.D.; Martin, G.M.; Swearingen, A. Comparison of adverse events rates and hospital cost between customized individually made implants and standard off-the-shelf implants for total knee arthroplasty. Arthroplast. Today 2017, 3, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumbrunn, T.; Duffy, M.P.; Rubash, H.E.; Malchau, H.; Muratoglu, O.K.; Varadarajan, K.M. ACL substitution may improve kinematics of PCL-retaining total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1445–1454. [Google Scholar] [CrossRef]
- Smith, N.I. Journey II Active Knee Solutions. 2013. Available online: https://www.smith-nephew.com/south-africa/products/orthopaedic-reconstruction/journey-active-knee-solutions/ (accessed on 1 February 2020).
Authors | Year | Risk Factor | Study Design | Findings |
---|---|---|---|---|
Motesharei et al. [9] | 2018 | Implant alignment | Comparison of a traditional and robotic UKA system | Improve method of the accuracy of implant alignment |
John et al. [10] | 2012 | Implant alignment | Comparison of a conventional and patient-matched instrument system | The accuracy of mechanical alignment for the patient-matched instrument system |
Mahoney et al. [15] | 2010 | Overhang | Gender comparison | Occurring more often and with greater severity in women |
Shrinand et al. [16] | 2000 | Overhang | Anthropometric population | Design of the prosthetic components for the Indian population |
Ranawat [17] | 1986 | Implant dislocation | Clinical follow-up | The effect of the patellofemoral joint in TKA |
C.W Ha et al. [19] | 2012 | Implant size mismatch | Anthropometric population | Design to improve the fit of TKAs for the Asians. |
D. Nicoll et al. [20] | 2010 | Implant alignment | Clinical follow-up | The effect of the rotational alignment |
R.A. Burger et al. [21] | 1998 | Implant alignment | Case study | Rotational malalignment of TKA causes loosening, pain, and infection |
S. Martin et al. [22] | 2013 | Implant placement | Case study | The effects of implant placement on TKA |
Y.G. Koh et al. [24] | 2017 | Implant size mismatch | Anthropometric population | Difference between gender in the medial-lateral condyles |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-A.; Koh, Y.-G.; Kang, K.-T. Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review. J. Clin. Med. 2020, 9, 1559. https://doi.org/10.3390/jcm9051559
Lee J-A, Koh Y-G, Kang K-T. Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review. Journal of Clinical Medicine. 2020; 9(5):1559. https://doi.org/10.3390/jcm9051559
Chicago/Turabian StyleLee, Jin-Ah, Yong-Gon Koh, and Kyoung-Tak Kang. 2020. "Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review" Journal of Clinical Medicine 9, no. 5: 1559. https://doi.org/10.3390/jcm9051559
APA StyleLee, J. -A., Koh, Y. -G., & Kang, K. -T. (2020). Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review. Journal of Clinical Medicine, 9(5), 1559. https://doi.org/10.3390/jcm9051559