The Role of Optical Coherence Tomography in Differential Diagnosis of Multiple Sclerosis and Autoimmune Connective Tissue Diseases with CNS Involvement
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Participants Characteristics and Demographics
3.2. Retinal Nerve Fiber Layer Thickness and Macular Volume
3.3. Ganglion Cell Complex (GCC) and Ganglion Cell Layer-Inner Plexiform Layer (GCIPL)
3.4. OCT Parameters in the Subgroups of CTD Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Sellner, J.; Kraus, J.; Awad, A.; Milo, R.; Hemmer, B.; Stüve, O. The increasing incidence and prevalence of female multiple sclerosis—A critical analysis of potential environmental factors. Autoimmun. Rev. 2011, 10, 495–502. [Google Scholar] [CrossRef]
- Saidha, S.; Al-Louzi, O.; Ratchford, J.N.; Bhargava, P.; Oh, J.; Newsome, S.D.; Prince, J.L.; Pham, D.; Roy, S.; Van Zijl, P.; et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann. Neurol. 2015, 78, 801–813. [Google Scholar] [CrossRef]
- Zeydan, B.; Kantarci, O.H. Progressive Forms of Multiple Sclerosis. Neurol. Clin. 2018, 36, 163–171. [Google Scholar] [CrossRef]
- Lassmann, H.; Van Horssen, J.; Mahad, N. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef]
- Confavreux, C.; Vukusic, S.; Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: An amnesic process. Brain 2003, 126, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Van Waesberghe, J.H.; Kamphorst, W.; De Groot, C.J.; van Walderveen, M.A.; Castelijns, J.A.; Ravid, R.; Lycklama à Nijeholt, G.J.; van der Valk, P.; Polman, C.H.; Thompson, A.J.; et al. Axonal loss in multiple sclerosis lesions: Magnetic resonance imaging insights into substrates of disability. Ann. Neurol. 1999, 46, 747–754. [Google Scholar] [CrossRef]
- Fisher, E.; Chang, A.; Fox, R.J.; Tkach, J.A.; Svarovsky, T.; Nakamura, K.; Rudick, R.A.; Trapp, B.D. Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann. Neurol. 2007, 62, 219–228. [Google Scholar] [CrossRef]
- Britze, J.; Frederiksen, J.L. Optical coherence tomography in multiple sclerosis. Eye 2018, 32, 884–888. [Google Scholar] [CrossRef] [Green Version]
- Toledo, J.; Sepulcre, J.; Salinas-Alaman, A.; García-Layana, A.; Murie-Fernandez, M.; Bejarano, B.; Villoslada, P. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult. Scler. J. 2008, 14, 906–912. [Google Scholar] [CrossRef]
- Pisa, M.; Ratti, F.; Vabanesi, M.; Radaelli, M.; Guerrieri, S.; Moiola, L.; Martinelli, V.; Comi, G.; Leocani, L. Subclinical neurodegeneration in multiple sclerosis and neuromyelitis optica spectrum disorder revealed by optical coherence tomography. Mult. Scler. J. 2019, 1352458519861603. [Google Scholar] [CrossRef]
- Oertel, F.C.; Havla, J.; Roca-Fernandez, A.; Lizak, N.; Zimmermann, H.; Motamedi, S.; Borisow, N.; White, O.B.; Bellmann-Strobl, J.; Albrecht, P.; et al. Retinal ganglion cell loss in neuromyelitis optica: A longitudinal study. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1259–1265. [Google Scholar] [CrossRef]
- Oertel, F.C.; Outteryck, O.; Knier, B.; Zimmermann, H.G.; Borisow, N.; Bellmann-Strobl, J.; Blaschek, A.; Jarius, S.; Reindl, M.; Ruprecht, K.; et al. Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: A longitudinal study. J. Neuroinflamm. 2019, 16, 154–159. [Google Scholar] [CrossRef]
- Liu, G.Y.; Utset, T.O.; Bernard, J.T. Retinal nerve fiber layer and macular thinning in systemic lupus erythematosus: An optical coherence tomography study comparing SLE and neuropsychiatric SLE. Lupus 2015, 24, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Walter, S.D.; Ishikawa, H.; Galetta, K.M.; Sakai, R.E.; Feller, D.; Henderson, S.B.; Wilson, J.A.; Maguire, M.G.; Galetta, S.L.; Frohman, E.; et al. Ganglion Cell Loss in Relation to Visual Disability in Multiple Sclerosis. Ophthalmology 2012, 119, 1250–1257. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Herranz, A.; Balk, L.J.; Oberwahrenbrock, T.; Saidha, S.; Martinez-Lapiscina, E.H.; Lagrèze, W.A.; Schuman, J.S.; Villoslada, P.; Calabresi, P.A.; Balcer, L.; et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016, 86, 2303–2309. [Google Scholar] [CrossRef]
- Petzold, A.; Balcer, L.J.; Calabresi, P.A.; Costello, F.; Frohman, T.C.; Frohman, E.M.; Martinez-Lapiscina, E.H.; Green, A.J.; Kardon, R.; Outteryck, O.; et al. Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2017, 16, 797–812. [Google Scholar] [CrossRef]
- Parisi, V.; Manni, G.; Spadaro, M.; Colacino, G.; Restuccia, R.; Marchi, S.; Bucci, M.G.; Pierelli, F. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest. Ophthalmol. Vis. Sci. 1999, 40, 2520–2527. [Google Scholar]
- Chisari, C.G.; Toro, M.D.; Cimino, V.; Rejdak, R.; Luca, M.; Rapisarda, L.; Avitabile, T.; Posarelli, C.; Rejdak, K.; Reibaldi, M.; et al. Retinal Nerve Fiber Layer Thickness and Higher Relapse Frequency May Predict Poor Recovery after Optic Neuritis in MS Patients. J. Clin. Med. 2019, 8, 2022. [Google Scholar] [CrossRef] [Green Version]
- Talman, L.S.; Bisker, E.R.; Sackel, D.J.; Long, D.A.; Galetta, K.M.; Ratchford, J.N.; Lile, D.J.; Farrell, S.K.; Loguidice, M.J.; Remington, G.; et al. Longitudinal study of vision and retinal nerve fiber layer thickness in MS. Ann. Neurol. 2010, 67, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.C.; You, Y.; Yiannikas, C.; Garrick, R.; Parratt, J.; Barnett, M.H.; Klistorner, A. Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study. Investig. Opthalmol. Vis. Sci. 2016, 57, 2311–2317. [Google Scholar] [CrossRef]
- Birkeldh, U.; Manouchehrinia, A.; Hietala, M.A.; Hillert, J.; Olsson, T.; Piehl, F.; Kockum, I.; Brundin, L.; Zahavi, O.; Wahlberg-Ramsay, M.; et al. Retinal nerve fiber layer thickness associates with cognitive impairment and physical disability in multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 36, 101414. [Google Scholar] [CrossRef] [PubMed]
- Sotirchos, E.S.; Seigo, M.A.; Calabresi, P.A.; Saidha, S. Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis. Curr. Eye Res. 2012, 38, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Birkeldh, U.; Manouchehrinia, A.; Hietala, M.A.; Hillert, J.; Olsson, T.; Piehl, F.; Kockum, I.; Brundin, L.; Zahavi, O.; Wahlberg-Ramsay, M.; et al. The Temporal Retinal Nerve Fiber Layer Thickness Is the Most Important Optical Coherence Tomography Estimate in Multiple Sclerosis. Front. Neurol. 2017, 8, 675. [Google Scholar] [CrossRef] [Green Version]
- Jankowska-Lech, I.; Wasyluk, J.; Palasik, W.; Terelak-Borys, B.; Grabska-Liberek, I. Peripapillary retinal nerve fiber layer thickness measured by optical coherence tomography in different clinical subtypes of multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 27, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Pisa, M.; Guerrieri, S.; Di Maggio, G.; Medaglini, S.; Moiola, L.; Martinelli, V.; Comi, G.; Leocani, L. No evidence of disease activity is associated with reduced rate of axonal retinal atrophy in MS. Neurology 2017, 89, 2469–2475. [Google Scholar] [CrossRef]
- Choi, S.S.; Zawadzki, R.J.; Greiner, M.A.; Werner, J.S.; Keltner, J.L. Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient with Optic Nerve Drusen. J. Neuro-Ophthalmol. 2008, 28, 120–125. [Google Scholar] [CrossRef]
- Britze, J.; Pihl-Jensen, G.; Frederiksen, J.L. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: A systematic review and meta-analysis. J. Neurol. 2017, 264, 1837–1853. [Google Scholar] [CrossRef]
- Oberwahrenbrock, T.; Ringelstein, M.; Jentschke, S.; Deuschle, K.; Klumbies, K.; Bellmann-Strobl, J.; Harmel, J.; Ruprecht, K.; Schippling, S.; Hartung, H.P.; et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult. Scler. J. 2013, 19, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Huang-Link, Y.; Al-Hawasi, A.; Lindehammar, H. Acute optic neuritis: Retinal ganglion cell loss precedes retinal nerve fiber thinning. Neurol. Sci. 2014, 36, 617–620. [Google Scholar] [CrossRef]
- Shulman, S.; Shorer, R.; Wollman, J.; Dotan, G.; Paran, D. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus. Lupus 2017, 26, 1420–1425. [Google Scholar] [CrossRef]
- Eckstein, C.; Saidha, S.; Sotirchos, E.S.; Byraiah, G.; Seigo, M.; Stankiewicz, A.; Syc, S.B.; Ford, E.; Sharma, S.; Calabresi, P.A.; et al. Detection of clinical and subclinical retinal abnormalities in neurosarcoidosis with optical coherence tomography. J. Neurol. 2012, 259, 1390–1398. [Google Scholar] [CrossRef]
- Uçar, D.; Uygunoglu, U.; Dikkaya, F.; Yıldırım, Y.; Yuksel-Elgin, C.; Saip, S.; Siva, A.; Özyazgan, Y.; Yildirim, Y. Retinal nerve fiber layer structure abnormalities in patients with Neuro-Behcet’s disease. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 1181–1185. [Google Scholar] [CrossRef]
- Sisto, D.; Trojano, M.; Vetrugno, M.; Trabucco, T.; Iliceto, G.; Sborgia, C. Subclinical Visual Involvement in Multiple Sclerosis: A Study by MRI, VEPs, Frequency-Doubling Perimetry, Standard Perimetry, and Contrast Sensitivity. Investig. Opthalmol. Vis. Sci. 2005, 46, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Naismith, R.T.; Tutlam, N.T.; Xu, J.; Shepherd, J.B.; Klawiter, E.C.; Song, S.K.; Cross, A.H. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 2009, 73, 46–52. [Google Scholar] [CrossRef]
- Grecescu, M. Optical Coherence Tomography versus Visual Evoked Potentials in detecting subclinical visual impairment in multiple sclerosis. J. Med. Life 2015, 7, 538–541. [Google Scholar]
MS Group | Connective Tissue Disease Group | Healthy Controls | |
---|---|---|---|
Number of patients | 59 | 30 | 32 |
Number of eyes | 101 | 58 | 64 |
Age, years (SD) | 34.88 (9.27) | 39.63 (7.87) | 40.41 (9.98) |
Female/Male | 44/15 | 23/7 | 29/3 |
Duration of neurological symptoms, months (SD) | 20.94 (26.50) | 55.00 (91.87) | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wildner, P.; Zydorczak, E.; Oset, M.; Siger, M.; Wilczyński, M.; Stasiołek, M.; Matysiak, M. The Role of Optical Coherence Tomography in Differential Diagnosis of Multiple Sclerosis and Autoimmune Connective Tissue Diseases with CNS Involvement. J. Clin. Med. 2020, 9, 1565. https://doi.org/10.3390/jcm9051565
Wildner P, Zydorczak E, Oset M, Siger M, Wilczyński M, Stasiołek M, Matysiak M. The Role of Optical Coherence Tomography in Differential Diagnosis of Multiple Sclerosis and Autoimmune Connective Tissue Diseases with CNS Involvement. Journal of Clinical Medicine. 2020; 9(5):1565. https://doi.org/10.3390/jcm9051565
Chicago/Turabian StyleWildner, Paula, Ewa Zydorczak, Magdalena Oset, Małgorzata Siger, Michał Wilczyński, Mariusz Stasiołek, and Mariola Matysiak. 2020. "The Role of Optical Coherence Tomography in Differential Diagnosis of Multiple Sclerosis and Autoimmune Connective Tissue Diseases with CNS Involvement" Journal of Clinical Medicine 9, no. 5: 1565. https://doi.org/10.3390/jcm9051565
APA StyleWildner, P., Zydorczak, E., Oset, M., Siger, M., Wilczyński, M., Stasiołek, M., & Matysiak, M. (2020). The Role of Optical Coherence Tomography in Differential Diagnosis of Multiple Sclerosis and Autoimmune Connective Tissue Diseases with CNS Involvement. Journal of Clinical Medicine, 9(5), 1565. https://doi.org/10.3390/jcm9051565