Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patient Monitoring and Outcomes
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Enrolled Patients
3.2. Measurement of rSO2 According to DCI
3.3. Diagnostic Comparison of NIRS and TCD Velocity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lawton, M.T.; Vates, G.E. Subarachnoid hemorrhage. N. Engl. J. Med. 2017, 377, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kuroda, Y. Aneurysmal subarachnoid hemorrhage: Intensive care for improving neurological outcome. J. Intensive Care 2018, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Scheeren, T.W.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (nirs): Background and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nollert, G.; Jonas, R.A.; Reichart, B. Optimizing cerebral oxygenation during cardiac surgery: A review of experimental and clinical investigations with near infrared spectrophotometry. Thorac. Cardiovasc. Surg. 2000, 48, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.M.; Ghanayem, N.S.; Tweddell, J.S. Noninvasive assessment of cardiac output. Semin. Thorac. Cardiovasc. Surg. Pediatric Card. Surg. Annu. 2005, 8, 12–21. [Google Scholar] [CrossRef]
- Levy, W.J.; Levin, S.; Chance, B. Near-infrared measurement of cerebral oxygenation. Correlation with electroencephalographic ischemia during ventricular fibrillation. Anesthesiology 1995, 83, 738–746. [Google Scholar] [CrossRef]
- Kim, C.H.; Jeon, J.P.; Kim, S.E.; Choi, H.J.; Cho, Y.J. Endovascular treatment with intravenous thrombolysis versus endovascular treatment alone for acute anterior circulation stroke: A meta-analysis of observational studies. J. Korean Neurosurg. Soc. 2018, 61, 467–473. [Google Scholar] [CrossRef]
- Hong, E.P.; Kim, B.J.; Cho, S.S.; Yang, J.S.; Choi, H.J.; Kang, S.H.; Jeon, J.P. Genomic variations in susceptibility to intracranial aneurysm in the korean population. J. Clin. Med. 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Kim, Y.; Hong, E.P.; Jeon, J.P.; Yang, J.S.; Choi, H.J.; Kang, S.H.; Cho, Y.J. Correlation between altered DNA methylation of intergenic regions of itpr3 and development of delayed cerebral ischemia in subarachnoid hemorrhage patients. World Neurosurg. 2019, 130, e449–e456. [Google Scholar] [CrossRef]
- Cho, Y.D.; Kim, S.E.; Lim, J.W.; Choi, H.J.; Cho, Y.J.; Jeon, J.P. Protected versus unprotected carotid artery stenting: Meta-analysis of the current literature. J. Korean Neurosurg. Soc. 2018, 61, 458–466. [Google Scholar] [CrossRef]
- Kim, B.J.; Youn, D.H.; Kim, Y.; Jeon, J.P. Characterization of the TCR beta Chain CDR3 Repertoire in Subarachnoid Hemorrhage Patients with Delayed Cerebral Ischemia. Int. J. Mol. Sci. 2020, 21, 3149. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Rhim, J.K.; Ahn, J.H.; Park, J.J.; Moon, J.U.; Hong, E.P.; Kim, M.R.; Kim, S.G.; Lee, S.H.; Jeong, J.H.; et al. Machine Learning Application for Rupture Risk Assessment in Small-Sized Intracranial Aneurysm. J. Clin. Med. 2019, 8, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drayna, P.C.; Abramo, T.J.; Estrada, C. Near-infrared spectroscopy in the critical setting. Pediatr. Emerg. Care 2011, 27, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.S.; Sheen, S.H.; Hwang, G.J.; Kim, H.C.; Kwon, B.J. Feasibility of intravenous flat panel detector ct angiography for intracranial arterial stenosis. AJNR Am. J. Neuroradiol. 2013, 34, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Vora, Y.Y.; Suarez-Almazor, M.; Steinke, D.E.; Martin, M.L.; Findlay, J.M. Role of transcranial doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1999, 44, 1237–1247. [Google Scholar]
- Samagh, N.; Bhagat, H.; Jangra, K. Monitoring cerebral vasospasm: How much can we rely on transcranial doppler. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 12–18. [Google Scholar]
- Jeon, J.S.; Sheen, S.H.; Hwang, G.; Kang, S.H.; Heo, D.H.; Cho, Y.J. Intravenous magnesium infusion for the prevention of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J. Korean Neurosurg. Soc. 2012, 52, 75–79. [Google Scholar] [CrossRef]
- Lee, S.U.; Jeon, J.P.; Lee, H.; Han, J.H.; Seo, M.; Byoun, H.S.; Cho, W.S.; Ryu, H.G.; Kang, H.S.; Kim, J.E.; et al. Optic nerve sheath diameter threshold by ocular ultrasonography for detection of increased intracranial pressure in Korean adult patients with brain lesions. Medicine 2016, 95, e5061. [Google Scholar] [CrossRef]
- Jeon, J.P.; Lee, S.U.; Kim, S.E.; Kang, S.H.; Yang, J.S.; Choi, H.J.; Cho, Y.J.; Ban, S.P.; Byoun, H.S.; Kim, Y.S. Correlation of optic nerve sheath diameter with directly measured intracranial pressure in korean adults using bedside ultrasonography. PLoS ONE 2017, 12, e0183170. [Google Scholar] [CrossRef]
- Naidech, A.M.; Bendok, B.R.; Ault, M.L.; Bleck, T.P. Monitoring with the somanetics invos 5100c after aneurysmal subarachnoid hemorrhage. Neurocritical Care 2008, 9, 326–331. [Google Scholar] [CrossRef]
- Rothoerl, R.D.; Faltermeier, R.; Burger, R.; Woertgen, C.; Brawanski, A. Dynamic correlation between tissue po2 and near infrared spectroscopy. Intracranial Press. Brain Biochem. Monit. 2002, 81, 311–313. [Google Scholar]
- Yokose, N.; Sakatani, K.; Murata, Y.; Awano, T.; Igarashi, T.; Nakamura, S.; Hoshino, T.; Kano, T.; Yoshino, A.; Katayama, Y.; et al. Bedside assessment of cerebral vasospasms after subarachnoid hemorrhage by near infrared time-resolved spectroscopy. Adv. Exp. Med. Biol. 2010, 662, 505–511. [Google Scholar] [PubMed]
- Poon, W.S.; Wong, G.K.; Ng, S.C.P. The quantitative time-resolved near infrared spectroscopy (tr-nirs) for bedside cerebrohemodynamic monitoring after aneurysmal subarachnoid hemorrhage: Can we predict delayed neurological deficits? World Neurosurg. 2010, 73, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Okada, E.; Delpy, D.T. Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Appl. Opt. 2003, 42, 2906–2914. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, T.; Kobayashi, S.; Tamakawa, N.; Ishikawa, T. Multichannel near-infrared spectroscopy as a tool for assisting intra-arterial fasudil therapy for diffuse vasospasm after subarachnoid hemorrhage. Surg. Neurol. Int. 2011, 2, 68. [Google Scholar] [CrossRef] [Green Version]
Variables | Non-DCI (n = 34) | DCI (n = 18) | p-Value |
---|---|---|---|
Clinical findings | |||
Female | 18 (52.9%) | 8 (44.4%) | 0.564 |
Age, years | 62.5 ± 10.6 | 58.6 ± 10.7 | 0.210 |
Hypertension | 9 (26.5%) | 5 (27.8%) | 0.920 |
Diabetes mellitus | 3 (8.8%) | 3 (16.7%) | 0.404 |
Hyperlipidemia | 8 (23.5%) | 3 (16.7%) | 0.568 |
Smoking | 5 (14.7%) | 5 (27.8%) | 0.260 |
H-H grade IV and V | 12 (35.3%) | 11 (61.1%) | 0.077 |
Laboratory finding | |||
Hemoglobin | 11.6 ± 1.1 | 11.2 ± 0.8 | 0.216 |
SaO2 (%) | 95.5 ± 1.6 | 94.9 ± 2.5 | 0.384 |
MAP (mmHg) | 92.6 ± 4.3 | 100.7 ± 5.4 | <0.001 |
Heart rate (BPM) | 90.4 ± 9.3 | 94.5 ± 8.4 | 0.124 |
Radiologic findings | |||
Anterior location | 29 (85.3%) | 16 (88.9%) | 0.721 |
Size (mm) | 5.4 ± 1.4 | 5.8 ± 1.2 | 0.311 |
Fisher grade 3 and 4 | 12 (35.3%) | 13 (72.2%) | 0.012 |
Treatment outcome | |||
Chemical angioplasty | - | 7 (38.9%) | - |
Poor outcome | 8 (23.5%) | 9 (50.0%) | 0.055 |
Variables | Standardized Estimate (95% CI) | SE | p-Value |
---|---|---|---|
H-H grade IV and V (vs. I, II, and III) | −1.76 (−2.75 to −0.76) | −1.76 | <0.001 |
Fisher grade 3 and 4 (vs. 1 and 2) | −0.58 (−1.63 to 0.46) | 0.53 | 0.272 |
MAP | 0.04 (−0.04 to 0.11) | 0.04 | 0.307 |
DCI | −1.46 (−2.47 to −0.46) | 0.51 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.J.; Kim, C.; Jeon, J.P. Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy. J. Clin. Med. 2020, 9, 1595. https://doi.org/10.3390/jcm9051595
Park JJ, Kim C, Jeon JP. Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy. Journal of Clinical Medicine. 2020; 9(5):1595. https://doi.org/10.3390/jcm9051595
Chicago/Turabian StylePark, Jeong Jin, Chulho Kim, and Jin Pyeong Jeon. 2020. "Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy" Journal of Clinical Medicine 9, no. 5: 1595. https://doi.org/10.3390/jcm9051595
APA StylePark, J. J., Kim, C., & Jeon, J. P. (2020). Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy. Journal of Clinical Medicine, 9(5), 1595. https://doi.org/10.3390/jcm9051595