Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both?
Abstract
:1. Introduction
2. SGLT2 Inhibitors and Kidney Events
3. Effects of SGLT2 Inhibitors on Muscle Mass
4. The Effect of Loss of Muscle Mass on Creatinine-Based eGFR Trajectories
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; St Peter, W.; et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 2012, 59, e1–e420. [Google Scholar]
- Parving, H.H.; Lehnert, H.; Brochner-Mortensen, J.; Gomis, R.; Andersen, S.; Arner, P. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 2001, 345, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. RENAAL Study Investigators Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.J.; Hunsicker, L.G.; Bain, R.P.; Rohde, R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 1993, 329, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- de Zeeuw, D.; Akizawa, T.; Audhya, P.; Bakris, G.L.; Chin, M.; Christ-Schmidt, H.; Goldsberry, A.; Houser, M.; Krauth, M.; Lambers Heerspink, H.J.; et al. BEACON Trial Investigators Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 2013, 369, 2492–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. DECLARE-TIMI 58 Investigators Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. EMPA-REG OUTCOME Investigators Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. CANVAS Program Collaborative Group Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. EMPA-REG OUTCOME Investigators Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. CREDENCE Trial Investigators Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Post, A.; Eisenga, M.F.; Bakker, S.J.L. Canagliflozin and Renal Outcomes in Diabetic Nephropathy. N. Engl. J. Med. 2019, 381, 1089. [Google Scholar] [PubMed]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs 2019, 79, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C.; Ganguly, S.; Goh, S.Y. Weight loss associated with sodium-glucose cotransporter-2 inhibition: A review of evidence and underlying mechanisms. Obes. Rev. 2018, 19, 1630–1641. [Google Scholar] [CrossRef]
- Mearns, E.S.; Sobieraj, D.M.; White, C.M.; Saulsberry, W.J.; Kohn, C.G.; Doleh, Y.; Zaccaro, E.; Coleman, C.I. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: A network meta-analysis. PLoS ONE 2015, 10, e0125879. [Google Scholar] [CrossRef] [Green Version]
- Zaccardi, F.; Webb, D.R.; Htike, Z.Z.; Youssef, D.; Khunti, K.; Davies, M.J. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta-analysis. Diabetes Obes. Metab. 2016, 18, 783–794. [Google Scholar] [CrossRef]
- Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 262–274. [Google Scholar] [CrossRef]
- Weinheimer, E.M.; Sands, L.P.; Campbell, W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010, 68, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Schork, A.; Saynisch, J.; Vosseler, A.; Jaghutriz, B.A.; Heyne, N.; Peter, A.; Haring, H.U.; Stefan, N.; Fritsche, A.; Artunc, F. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. Dapagliflozin Reduces Fat Mass without Affecting Muscle Mass in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Inoue, H.; Morino, K.; Ugi, S.; Tanaka-Mizuno, S.; Fuse, K.; Miyazawa, I.; Kondo, K.; Sato, D.; Ohashi, N.; Ida, S.; et al. SUMS-ADDIT-1 Research group Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J. Diabetes. Investig. 2019, 10, 1012–1021. [Google Scholar] [PubMed]
- Lundkvist, P.; Sjostrom, C.D.; Amini, S.; Pereira, M.J.; Johnsson, E.; Eriksson, J.W. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes. Metab. 2017, 19, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, Y.; Shirabe, S.I.; Maeda, H.; Yoshimoto, A.; Arai, K.; Kumakura, A.; Hirao, K.; Terauchi, Y. Effect of canagliflozin on the overall clinical state including insulin resistance in Japanese patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 149, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Blonde, L.; Stenlof, K.; Fung, A.; Xie, J.; Canovatchel, W.; Meininger, G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad. Med. 2016, 128, 371–380. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Leiter, L.A.; Yoon, K.H.; Arias, P.; Niskanen, L.; Xie, J.; Balis, D.A.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950. [Google Scholar] [CrossRef]
- Sasaki, T.; Sugawara, M.; Fukuda, M. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: The Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. J. Diabetes Investig. 2019, 10, 108–117. [Google Scholar] [CrossRef]
- Ohta, A.; Kato, H.; Ishii, S.; Sasaki, Y.; Nakamura, Y.; Nakagawa, T.; Nagai, Y.; Tanaka, Y. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin. Pharmacother. 2017, 18, 1433–1438. [Google Scholar] [CrossRef]
- Matsuba, R.; Matsuba, I.; Shimokawa, M.; Nagai, Y.; Tanaka, Y. Tofogliflozin decreases body fat mass and improves peripheral insulin resistance. Diabetes Obes. Metab. 2018, 20, 1311–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, S.; Iwamoto, M.; Kameyama, M.; Shimoda, M.; Kinoshita, T.; Obata, A.; Kimura, T.; Hirukawa, H.; Tatsumi, F.; Kohara, K.; et al. Effect of Tofogliflozin on Body Composition and Glycemic Control in Japanese Subjects with Type 2 Diabetes Mellitus. J. Diabetes Res. 2018, 2018, 6470137. [Google Scholar] [CrossRef]
- Inoue, M.; Hayashi, A.; Taguchi, T.; Arai, R.; Sasaki, S.; Takano, K.; Inoue, Y.; Shichiri, M. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease. J. Diabetes Investig. 2019, 10, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. 2017, 47, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sakai, K.; Saito, K.; Tsutsui, K.; Yamashita, S.; Kato, N. Efficacy and safety of ipragliflozin in Japanese patients with type 2 diabetes receiving conventional therapy: Clinical implication of the importance of exercise habits during treatment with ipragliflozin. Diabetol. Int. 2017, 8, 275–285. [Google Scholar] [CrossRef]
- Miyake, T.; Yoshida, S.; Furukawa, S.; Sakai, T.; Tada, F.; Senba, H.; Yamamoto, S.; Koizumi, Y.; Yoshida, O.; Hirooka, M.; et al. Ipragliflozin Ameliorates Liver Damage in Non-alcoholic Fatty Liver Disease. Open Med. 2018, 13, 402–409. [Google Scholar] [CrossRef]
- Yamamoto, C.; Miyoshi, H.; Ono, K.; Sugawara, H.; Kameda, R.; Ichiyama, M.; Yamamoto, K.; Nomoto, H.; Nakamura, A.; Atsumi, T. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy. Endocr. J. 2016, 63, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Bouchi, R.; Terashima, M.; Sasahara, Y.; Asakawa, M.; Fukuda, T.; Takeuchi, T.; Nakano, Y.; Murakami, M.; Minami, I.; Izumiyama, H.; et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: A pilot study. Cardiovasc. Diabetol. 2017, 16, 32. [Google Scholar] [CrossRef] [Green Version]
- Seino, Y.; Yabe, D.; Sasaki, T.; Fukatsu, A.; Imazeki, H.; Ochiai, H.; Sakai, S. Sodium-glucose cotransporter-2 inhibitor luseogliflozin added to glucagon-like peptide 1 receptor agonist liraglutide improves glycemic control with bodyweight and fat mass reductions in Japanese patients with type 2 diabetes: A 52-week, open-label, single-arm study. J. Diabetes. Investig. 2018, 9, 332–340. [Google Scholar]
- Bolinder, J.; Ljunggren, O.; Kullberg, J.; Johansson, L.; Wilding, J.; Langkilde, A.M.; Sugg, J.; Parikh, S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 2012, 97, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, R.; Nakatani, E.; Okamoto, K.; Aoshima, S.; Arai, H.; Inoue, T. Effects of sodium-glucose cotransporter 2 inhibitor (dapagliflozin) on food intake and plasma fibroblast growth factor 21 levels in type 2 diabetes patients. Endocr. J. 2019, 66, 677–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadini, G.P.; Bonora, B.M.; Zatti, G.; Vitturi, N.; Iori, E.; Marescotti, M.C.; Albiero, M.; Avogaro, A. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: A randomized placebo-controlled trial. Cardiovasc. Diabetol. 2017, 16, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahashi, Y.; Hirose, S.; Nakajima, S.; Seo, A.; Takahashi, T.; Tamori, Y. Evaluation of metabolic parameters and body composition in Japanese patients with type 2 diabetes mellitus who were administered tofogliflozin for 48 weeks. Diabetol. Int. 2016, 8, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Javed, Z.; Papageorgiou, M.; Deshmukh, H.; Rigby, A.S.; Qamar, U.; Abbas, J.; Khan, A.Y.; Kilpatrick, E.S.; Atkin, S.L.; Sathyapalan, T. Effects of empagliflozin on metabolic parameters in polycystic ovary syndrome: A randomized controlled study. Clin. Endocrinol. 2019, 90, 805–813. [Google Scholar] [CrossRef]
- Post, A.; Tsikas, D.; Bakker, S.J.L. Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Post, A.; Ozyilmaz, A.; Westerhuis, R.; Ipema, K.J.R.; Bakker, S.J.L.; Franssen, C.F.M. Complementary Biomarker Assessment of Components Absorbed from Diet and Creatinine Excretion Rate Reflecting Muscle Mass in Dialysis Patients. Nutrients 2018, 10, 1827. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; van Ree, R.M.; de Vries, A.P.; Gansevoort, R.T.; Schouten, J.P.; van Son, W.J.; Homan van der Heide, J.J.; Navis, G.; de Jong, P.E.; Gans, R.O.; et al. Urinary creatinine excretion reflecting muscle mass is a predictor of mortality and graft loss in renal transplant recipients. Transplantation 2008, 86, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef]
- Lin, X.; Zeng, X.Z.; Ai, J. The Glomerular Filtration Rate (GFR) at Dialysis Initiation and Mortality in Chronic Kidney Disease (CKD) in East Asian Populations: A Meta-analysis. Intern. Med. 2016, 55, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Kurella Tamura, M.; O’Hare, A.M.; McCulloch, C.E.; Johansen, K.L. Signs and symptoms associated with earlier dialysis initiation in nursing home residents. Am. J. Kidney Dis. 2010, 56, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.H.; Park, E.G.; Kim, S.; Kim, S.G.; Hahn, S.; Kim, N.H. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2019, 9, 13009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerspink, H.J.; Kropelin, T.F.; Hoekman, J.; de Zeeuw, D. Reducing Albuminuria as Surrogate Endpoint (REASSURE) Consortium Drug-Induced Reduction in Albuminuria Is Associated with Subsequent Renoprotection: A Meta-Analysis. J. Am. Soc. Nephrol. 2015, 26, 2055–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, L.; Deiteren, K.; Pottel, H.; Callewaert, N.; Martens, F. Routine serum creatinine measurements: How well do we perform? BMC Nephrol. 2015, 16, 21-015-0012-x. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kume, T.; Saglam, B.; Ergon, C.; Sisman, A.R. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: Could the old method meet the new requirements? J. Clin. Lab. Anal. 2018, 32, e22168. [Google Scholar] [CrossRef] [PubMed]
Study | SGLT2 Inhibitor | Dosage (mg/Day) | Time (Weeks) | Design | Participants | Measurement | Technique | Baseline Value | Change * | Significance | Percentual Change ** |
---|---|---|---|---|---|---|---|---|---|---|---|
Canagliflozin | |||||||||||
Blonde et al. [27] | Canagliflozin | 100 300 | 26 | Double-blind randomized placebo controlled parallel group | 166 | Lean body mass | DXA | 51.2 kg 53.2 kg | −0.6 kg −0.9 kg | Yes | −1.2% (−2.4%) −1.7% (−3.4%) |
Cefalu et al. [28] | Canagliflozin | 100 300 | 52 | Double-blind randomized, active controlled parallel group | 208 | Lean body mass | DXA | 47.7 kg 44.6 kg | −2.0 kg −2.2 kg | Yes | −4.2% (−4.2%) −4.9% (−4.9%) |
Koike et al. [26] | Canagliflozin | 100 | 24 | Single-arm open-label | 38 | Lean body mass | DXA | 49.6 kg | −1.1 kg | Yes | −2.2% (−4.8%) |
Inoue et al. [33] | Canagliflozin | 100 | 52 | Single-arm open-label | 20 | Lean body mass | BIA | 51.5 kg | −0.2 kg | No | −0.4% (−0.4%) |
Seko et al. [34] | Canagliflozin and Ipragliflozin | 100 (Cana) 50 (Ipra) | 24 | Single-arm open-label | 24 | Skeletal muscle mass | BIA | 25.4 kg | −0.6 kg | Yes | −2.3% (−5.1%) |
Ipragliflozin | |||||||||||
Inoue et al. [24] | Ipragliflozin | 50 | 24 | Open-label randomized controlled parallel group | 49 | Muscle mass and lean mass | BIA DXA | 47.1 kg 41.0 kg | −0.38 kg −0.60 kg | No No | −0.8% (−1.7%) −1.5% (−3.2%) |
Ohta et al. [30] | Ipragliflozin | 50 | 24 | Single-arm open-label | 20 | Lean body mass and appendicular lean mass | DXA | 52.2 kg 21.8 kg | −1.7 kg −0.6 kg | Yes Yes | −3.3% (−7.1%) −2.7% (−6.0%) |
Kato et al. [35] | Ipragliflozin | 50 | 12 | Single-arm open-label | 20 | Muscle mass | BIA | n.r. | −0.92 kg | Yes | n.a |
Miyake et al. [36] | Ipragliflozin | 50 | 24 | Single-arm open-label | 12 | Skeletal muscle mass | BIA | 22.75 kg | −0.50 kg | No | −2.2% (−4.8%) |
Yamamoto et al. [37] | Ipragliflozin | 50 | 16 | Single-arm open-label | 24 | Skeletal muscle index | BIA | 7.5 kg/m2 | −0.2 kg/m2 | Yes | −2.7% (8.7%) |
Luseogliflozin | |||||||||||
Bouchi et al. [38] | Luseogliflozin | 2.5 to 5 | 12 | Single-arm open-label | 19 | Skeletal muscle index | DXA | 7.81 kg/m2 | −0.23 kg/m2 | Yes | −2.9% (−12.8%) |
Seino et al. [39] | Luseogliflozin | 2.5 to 5 | 52 | Single-arm open-label | 22 | Lean body mass | BIA | 45.25 kg | −0.44 kg | No | −1.0% (−1.0%) |
Sasaki et al. [29] | Luseogliflozin | 2.5 to 5 | 52 | Single-arm open-label | 36 | Skeletal muscle mass index | DXA | 7.74 kg/m2 | −0.155 kg/m2 | Yes | −2.0% (−2.0%) |
Dapagliflozin | |||||||||||
Bolinder et al. [40] | Dapagliflozin | 10 | 24 | Double-blind randomized placebo controlled parallel group | 182 | Lean body mass | DXA | 56.2 kg | −0.60 kg | Yes | −1.1% (−2.3%) |
Kosugi et al. [41] | Dapagliflozin | 5 | 12 | Single-arm open-label | 26 | Lean body mass | DXA | 52.0 kg | −0.50 kg | No | −1.0% (−4.2%) |
Fadini et al. [42] | Dapagliflozin | 10 | Single-blind placebo controlled parallel group | 31 | Lean body mass | BIA | n.r. | −2.9 kg | Yes | n.a. | |
Tobita et al. | Dapagliflozin | 5 | 24 | Single-arm open-label | 11 | Skeletal muscle mass | BIA | 24.6 kg | +0.1 kg | No | +0.4% (+0.9%) |
Lundkvist et al. [25] | Dapagliflozin | 10 | 24 | Double-blind randomized placebo controlled parallel group | 50 | Total lean tissue | MRI | 42.6 L | −0.19 L | No | −0.4% (−1.0%) |
Sugiyama et al. [23] | Dapagliflozin | 5 | 26 | Open-label active controlled parallel group | 50 | Skeletal muscle mass | BIA | 28.7 kg | −0.2 kg | No | −0.7% (−1.4%) |
Tofogliflozine | |||||||||||
Kamei et al. [32] | Tofogliflozin | 20 | 12 | Retrospective single-arm open-label | 37 | Muscle mass | BIA | 29.8 kg | −0.8 kg | Yes | −2.7% (−11.6%) |
Matsuba et al. [31] | Tofogliflozin | 20 | 12 | Single-arm open-label study | 16 | Muscle mass | BIA | n.r. | −1.37 kg | Yes | n.a. |
Iwahashi et al. [43] | Tofogliflozin | 20 | 48 | Single-arm open-label study | 20 | Lean body mass | BIA | 47.3 kg | +0.2 kg | No | +0.4% (+0.5%) |
Empagliflozin | |||||||||||
Javed et al. [44] | Empagliflozin | 25 | 12 | Open-label randomized placebo controlled parallel group | 39 | Lean body mass | BIA | 54.8 kg | −1.7 kg | Yes | −3.1% (−13.4%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Post, A.; Groothof, D.; Eisenga, M.F.; Bakker, S.J.L. Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? J. Clin. Med. 2020, 9, 1603. https://doi.org/10.3390/jcm9051603
Post A, Groothof D, Eisenga MF, Bakker SJL. Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? Journal of Clinical Medicine. 2020; 9(5):1603. https://doi.org/10.3390/jcm9051603
Chicago/Turabian StylePost, Adrian, Dion Groothof, Michele F. Eisenga, and Stephan J. L. Bakker. 2020. "Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both?" Journal of Clinical Medicine 9, no. 5: 1603. https://doi.org/10.3390/jcm9051603
APA StylePost, A., Groothof, D., Eisenga, M. F., & Bakker, S. J. L. (2020). Sodium–Glucose Cotransporter 2 Inhibitors and Kidney Outcomes: True Renoprotection, Loss of Muscle Mass or Both? Journal of Clinical Medicine, 9(5), 1603. https://doi.org/10.3390/jcm9051603