New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies
Abstract
:1. Multiple Myeloma and Renal Impairment—An Overview
2. Predictive and Prognostic Tools in Myeloma-Related Kidney Disease
3. Markers of Myeloma Burden of Renal Significance
4. Tubular-Glomerular Axis Impairment
4.1. Neutrophil Gelatinase-Associated Lipocalin—A Promise for Real-Time Monitoring of Tubular Injury?
4.2. Kidney Injury Molecule-1 (KIM-1)
4.3. Cystatin C
4.4. Tissue Inhibitor of Matrix Metalloproteinase-2 (TIMP-2) and IGFBP-7
4.5. N-Acetyl-β-Glucosaminidase (NAG) and Retinol-Binding Protein (RBP)
5. Novel Research Fields in the Search for Myeloma Markers
5.1. Prediction-Models and Artificial Intelligence
5.2. Activin A
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA. Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, R.A.; Larson, D.R.; Therneau, T.M.; Dispenzieri, A.; Kumar, S.; Cerhan, J.R.; Rajkumar, S.V. Long-term follow-up of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2018, 378, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients With Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, B.; Jolanta, M.; David, H.V.; Karolina, W.; Artur, J.; Marcin, Ż.; Marcin, K.; Jacek, M.; Krzysztof, B.; Marek, K.; et al. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. J. Clin. Med. 2019, 8, 1828. [Google Scholar]
- Knudsen, L.M.; Hippe, E.; Hjorth, M.; Holmberg, E.; Westin, J. Renal function in newly diagnosed multiple myeloma—A demographic study of 1353 patients. Eur. J. Haematol. 1994, 53, 207–212. [Google Scholar] [CrossRef]
- Yadav, P.; Cook, M.; Cockwell, P. Current Trends of Renal Impairment in Multiple Myeloma. Kidney Dis. 2016, 1, 241–257. [Google Scholar] [CrossRef]
- Sethi, S.; Rajkumar, S.V.; D’Agati, V.D. The Complexity and Heterogeneity of Monoclonal Immunoglobulin–Associated Renal Diseases. J. Am. Soc. Nephrol. 2018, 29, 1810–1823. [Google Scholar] [CrossRef] [Green Version]
- Heher, E.C.; Rennke, H.G.; Laubach, J.P.; Richardson, P.G. Kidney disease and multiple myeloma. Clin. J. Am. Soc. Nephrol. 2013, 8, 2007–2017. [Google Scholar] [CrossRef] [Green Version]
- Motwani, S.S.; Herlitz, L.; Monga, D.; Jhaveri, K.D.; Lam, A.Q. Paraprotein-related kidney disease: Glomerular diseases associated with paraproteinemias. Clin. J. Am. Soc. Nephrol. 2016, 11, 2260–2272. [Google Scholar] [CrossRef]
- Doshi, M.; Lahoti, A.; Danesh, F.R.; Batuman, V.; Sanders, P.W. Paraprotein-related kidney disease: Kidney injury from paraproteins—What determines the site of injury? Clin. J. Am. Soc. Nephrol. 2016, 11, 2288–2294. [Google Scholar] [CrossRef]
- Herrera, G.A.; Joseph, L.; Gu, X.; Hough, A.; Barlogie, B. Renal pathologic spectrum in an autopsy series of patients with plasma cell dyscrasia. Arch. Pathol. Lab. Med. 2004, 128, 875–879. [Google Scholar] [PubMed]
- Audard, V.; Georges, B.; Vanhille, P.; Toly, C.; Deroure, B.; Fakhouri, F.; Cuvelier, R.; Belenfant, X.; Surin, B.; Aucouturier, P.; et al. Renal lesions associated with IgM-secreting monoclonal proliferations: Revisiting the disease spectrum. Clin. J. Am. Soc. Nephrol. 2008, 3, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Batko, K.; Malyszko, J.; Jurczyszyn, A.; Vesole, D.H.; Gertz, M.A.; Leleu, X.; Suska, A.; Krzanowski, M.; Sułowicz, W.; Malyszko, J.S.; et al. The clinical implication of monoclonal gammopathies: Monoclonal gammopathy of undetermined significance and of renal significance. Nephrol. Dial. Transplant. 2019, 34, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Mussap, M.; Merlini, G. Pathogenesis of renal failure in multiple myeloma: Any role of contrast media? Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Evison, F.; Sangha, J.; Yadav, P.; Aung, Y.S.; Sharif, A.; Pinney, J.A.; Drayson, M.T.; Cook, M.; Cockwell, P. A population-based study of the impact of dialysis on mortality in multiple myeloma. Br. J. Haematol. 2018, 180, 588–591. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Cockwell, P.; Cook, M.; Pinney, J.; Giles, H.; Aung, Y.S.; Cairns, D.; Owen, R.G.; Davies, F.E.; Jackson, G.H.; et al. Serum free light chain levels and renal function at diagnosis in patients with multiple myeloma. BMC Nephrol. 2018, 19. [Google Scholar] [CrossRef]
- Knudsen, L.M.; Hjorth, M.; Hippe, E. Renal failure in multiple myeloma: Reversibility and impact on the prognosis. Eur. J. Haematol. 2000, 65, 175–181. [Google Scholar] [CrossRef]
- Haynes, R.J.; Read, S.; Collins, G.P.; Darby, S.C.; Winearls, C.G. Presentation and survival of patients with severe acute kidney injury and multiple myeloma: A 20-year experience from a single centre. Nephrol. Dial. Transplant. 2010, 25, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.T.; Baldeo, C.; O’Kelly, P.; Sargant, J.; Thornton, P.; Mccloy, M.; Conlon, P.; Magee, C.; Denton, M.; Quinn, J. Dialysis-dependent renal failure at diagnosis continues to be associated with very poor outcome in multiple myeloma. Br. J. Haematol. 2014, 165, 890–891. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, C.A.; Bradwell, A.R.; Cook, M.; Basnayake, K.; Basu, S.; Harding, S.; Hattersley, J.; Evans, N.D.; Chappel, M.J.; Sampson, P.; et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 745–754. [Google Scholar] [CrossRef]
- Hutchison, C.A.; Cockwell, P.; Stringer, S.; Bradwell, A.; Cook, M.; Gertz, M.A.; Dispenzieri, A.; Winters, J.L.; Kumar, S.; Rajkumar, S.V.; et al. Early reduction of serum-free light chains associates with renal recovery in myeloma kidney. J. Am. Soc. Nephrol. 2011, 22, 1129–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchison, C.A.; Heyne, N.; Airia, P.; Schindler, R.; Zickler, D.; Cook, M.; Cockwell, P.; Grima, D. Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol. Dial. Transplant. 2012, 27, 3823–3828. [Google Scholar] [CrossRef] [PubMed]
- Gerth, H.U.; Pohlen, M.; Görlich, D.; Thölking, G.; Kropff, M.; Berdel, W.E.; Pavenstädt, H.; Brand, M.; Kümpers, P. Impact of high-cut-off dialysis on renal recovery in dialysis-dependent multiple myeloma patients: Results from a case-control study. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridoux, F.; Carron, P.L.; Pegourie, B.; Alamartine, E.; Augeul-Meunier, K.; Karras, A.; Joly, B.; Peraldi, M.N.; Arnulf, B.; Vigneau, C.; et al. Effect of High-Cutoff Hemodialysis vs Conventional Hemodialysis on Hemodialysis Independence among Patients with Myeloma Cast Nephropathy: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2017, 318, 2099–2110. [Google Scholar] [CrossRef]
- Hutchison, C.A.; Cockwell, P.; Moroz, V.; Bradwell, A.R.; Fifer, L.; Gillmore, J.D.; Jesky, M.D.; Storr, M.; Wessels, J.; Winearls, C.G.; et al. High cutoff versus high-flux haemodialysis for myeloma cast nephropathy in patients receiving bortezomib-based chemotherapy (EuLITE): A phase 2 randomised controlled trial. Lancet Haematol. 2019, 6, e217–e228. [Google Scholar] [CrossRef] [Green Version]
- Coriu, D.; Dytfeld, D.; Niepel, D.; Spicka, I.; Markuljak, I.; Mihaylov, G.; Ostojic-Kolonic, S.; Fink, L.; Toka, K.S.; Björklöf, K. Real-world multiple myeloma management practice patterns and outcomes in selected Central and Eastern European countries. Polish Arch. Intern. Med. 2018, 128, 500–511. [Google Scholar]
- Tsakiris, D.J.; Stel, V.S.; Finne, P.; Fraser, E.; Heaf, J.; De Meester, J.; Schmaldienst, S.; Dekker, F.; Verrina, E.; Jager, K.J. Incidence and outcome of patients starting renal replacement therapy for end-stage renal disease due to multiple myeloma or light-chain deposit disease: An ERA-EDTA Registry study. Nephrol. Dial. Transplant. 2010, 25, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Delimpasi, S.; Katodritou, E.; Vassou, A.; Kyrtsonis, M.C.; Repousis, P.; Kartasis, Z.; Parcharidou, A.; Michael, M.; Michalis, E.; et al. Significant improvement in the survival of patients with multiple myeloma presenting with severe renal impairment after the introduction of novel agents. Ann. Oncol. 2014, 25, 195–200. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Roussou, M.; Gavriatopoulou, M.; Psimenou, E.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Matsouka, C.; Mparmparousi, D.; Gika, D.; Kafantari, E.; et al. Bortezomib-based triplets are associated with a high probability of dialysis independence and rapid renal recovery in newly diagnosed myeloma patients with severe renal failure or those requiring dialysis. Am. J. Hematol. 2016, 91, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Uttervall, K.; Duru, A.D.; Lund, J.; Liwing, J.; Gahrton, G.; Holmberg, E.; Aschan, J.; Alici, E.; Nahi, H. The use of novel drugs can effectively improve response, delay relapse and enhance overall survival in multiple myeloma patients with renal impairment. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Decourt, A.; Gondouin, B.; Delaroziere, J.C.; Brunet, P.; Salleé, M.; Burtey, S.; Dussol, B.; Ivanov, V.; Costello, R.; Couchoud, C.; et al. Trends in survival and renal recovery in patients with multiple myeloma or light-chain amyloidosis on chronic dialysis. Clin. J. Am. Soc. Nephrol. 2016, 11, 431–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Bosch, I.; Sprangers, B.; Gertz, M. Multiple myeloma and kidney transplantation: The beginning of a new era. Clin. Kidney J. 2018, 12, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Hájek, R.; Delforge, M.; Raab, M.S.; Schoen, P.; DeCosta, L.; Spicka, I.; Radocha, J.; Pour, L.; Gonzalez-McQuire, S.; Bouwmeester, W. Development and validation of a novel risk stratification algorithm for relapsed multiple myeloma. Br. J. Haematol. 2019, 187, 447–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-McQuire, S.; Dimopoulos, M.-A.; Weisel, K.; Bouwmeester, W.; Hájek, R.; Campioni, M.; Bennison, C.; Xu, W.; Pantiri, K.; Hensen, M.; et al. Development of an Initial Conceptual Model of Multiple Myeloma to Support Clinical and Health Economics Decision Making. MDM Policy Pract. 2019, 4, 238146831881425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walk, J.C.; Ayati, B.P.; Holstein, S.A. Modeling the Effects of Multiple Myeloma on Kidney Function. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta 2015, 438, 350–357. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, C.; Ye, Y.; Li, H.; Chen, Y.; Fu, Y.; Liu, Z.; Huang, X.; Zhang, Y.; Liao, X.; et al. The diagnostic value of serum creatinine and cystatin c in evaluating glomerular filtration rate in patients with chronic kidney disease: A systematic literature review and meta-analysis. Oncotarget 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Joannidis, M. Acute kidney injury 2016: Diagnosis and diagnostic workup. Crit. Care 2016, 20, 299. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, C.A.; Plant, T.; Drayson, M.; Cockwell, P.; Kountouri, M.; Basnayake, K.; Harding, S.; Bradwell, A.R.; Mead, G. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Katzmann, J.A.; Clark, R.J.; Abraham, R.S.; Bryant, S.; Lymp, J.F.; Bradwell, A.R.; Kyle, R.A. Serum reference intervals and diagnostic ranges for free κ and free λ immunoglobulin light chains: Relative sensitivity for detection of monoclonal light chains. Clin. Chem. 2002, 48, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, C.A.; Harding, S.; Hewins, P.; Mead, G.P.; Townsend, J.; Bradwell, A.R.; Cockwell, P. Quantitative assessment of serum and urinary Polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1684–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of Acute Kidney Injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, V.; Feit, J.; Barasch, J.; Sladen, R.N.; Wagener, G. Urinary Neutrophil Gelatinase–Associated Lipocalin (NGAL) Distinguishes Sustained From Transient Acute Kidney Injury After General Surgery. Kidney Int. Rep. 2016, 1, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Moledina, D.G.; Parikh, C.R. Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. Semin. Nephrol. 2018, 38, 3–11. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Kidney injury molecule-1. Curr. Opin. Crit. Care 2010, 16, 556–561. [Google Scholar] [CrossRef]
- Yong, Z.; Pei, X.; Zhu, B.; Yuan, H.; Zhao, W. Predictive value of serum cystatin C for acute kidney injury in adults: A meta-analysis of prospective cohort trials. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Klein, S.J.; Brandtner, A.K.; Lehner, G.F.; Ulmer, H.; Bagshaw, S.M.; Wiedermann, C.J.; Joannidis, M. Biomarkers for prediction of renal replacement therapy in acute kidney injury: A systematic review and meta-analysis. Intensive Care Med. 2018, 44, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Stelmach-Goldys, A.; Czarkowska-Paczek, B.; Wyczalkowska-Tomasik, A.; Paczek, L. Serum cystatin C and serum and urine NGAL in the kidney function assessment of patients with MGUS. Eur. J. Haematol. 2015, 94, 162–168. [Google Scholar] [CrossRef]
- Papassotiriou, G.P.; Kastritis, E.; Gkotzamanidou, M.; Christoulas, D.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Gavriatopoulou, M.; Roussou, M.; Margeli, A.; Papassotiriou, I.; et al. Neutrophil Gelatinase-Associated Lipocalin and Cystatin C Are Sensitive Markers of Renal Injury in Patients with Multiple Myeloma. Clin. Lymphoma, Myeloma Leuk. 2016, 16, 29–35. [Google Scholar] [CrossRef]
- Roy, P.; Sarkar, U.A.; Basak, S. The NF-κB activating pathways in multiple myeloma. Biomedicines 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, H.; Ryu, H.; Cha, K.; Kim, M.; Kim, Y.; Min, C.K. Neutrophil gelatinase-associated lipocalin as a biomarker of renal impairment in patients with multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2015, 15, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Shen, T.; Li, H.; Liu, Y.; He, L.; Tan, L.; Hu, M. Urinary NGAL for the diagnosis of the renal injury from multiple myeloma. Cancer Biomark. 2017, 18, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Susin, S.A. Revisiting neutrophil gelatinase-associated lipocalin (Ngal) in cancer: Saint or sinner? Cancers (Basel). 2018, 10, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malyszko, J.; Malyszko, J.S.; Koc-Zorawska, E.; Kozminski, P.; Mysliwiec, M. Neutrophil gelatinase-associated lipocalin in dialyzed patients is related to residual renal function, type of renal replacement therapy and inflammation. Kidney Blood Press. Res. 2010, 32, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007, 71, 967–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulos, M.A.; Christoulas, D.; Kastritis, E.; Gkotzamanidou, M.; Margeli, A.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Papassotiriou, I.; Terpos, E. Tubular Damage Is Ubiquitous in Newly-Diagnosed Patients with Multiple Myeloma: Comparison of Three Urinary and Two Serum Markers of Kidney Injury. Blood 2012, 120, 2919. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Radu, S.; Costea, C.F.; Ciocoiu, M.; Carauleanu, A.; Lacatusu, C.M.; Maranduca, M.A.; Floria, M.; Rezus, C. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int. J. Mol. Sci. 2019, 20, 5238. [Google Scholar] [CrossRef] [Green Version]
- Çuhadar, S. Serum Cystatin C as a Biomarker. In Biomarkers in Kidney Disease; Springer: Dordrecht, The Netherlands, 2016; pp. 445–461. [Google Scholar]
- Schwartz, G.J.; Work, D.F. Measurement and estimation of GFR in children and adolescents. Clin. J. Am. Soc. Nephrol. 2009, 4, 1832–1843. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Zater, M.; Lallali, K.; Durrbach, A.; Moutereau, S.; Manivet, P.; Eschwège, P.; Loric, S. Absence of circadian variations in urine cystatin C allows its use on urinary samples. Clin. Chem. 2005, 51, 272–273. [Google Scholar] [CrossRef] [Green Version]
- Terpos, E.; Christoulas, D.; Kastritis, E.; Katodritou, E.; Pouli, A.; Michalis, E.; Papassotiriou, I.; Dimopoulos, M.A. The chronic kidney disease epidemiology collaboration cystatin C (CKD-EPI-CysC) equation has an independent prognostic value for overall survival in newly diagnosed patients with symptomatic multiple myeloma; is it time to change from MDRD to CKD-EPI-CysC. Eur. J. Haematol. 2013, 91, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Matsushita, K.; Ärnlöv, J.; Inker, L.A.; Katz, R.; Polkinghorne, K.R.; Rothenbacher, D.; Sarnak, M.J.; Astor, B.C.; Coresh, J.; et al. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 2013, 369, 932–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nückel, H.; Langer, C.; Herget-Rosenthal, S.; Wichert, M.; Assert, R.; Dühner, H.; Dührsen, U.; Liebisch, P. Prognostic significance of serum cystatin C in multiple myeloma. Int. J. Hematol. 2012, 95, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Katodritou, E.; Tsiftsakis, E.; Kastritis, E.; Christoulas, D.; Pouli, A.; Michalis, E.; Verrou, E.; Anargyrou, K.; Tsionos, K.; et al. Cystatin-C is an independent prognostic factor for survival in multiple myeloma and is reduced by bortezomib administration. Haematologica 2009, 94, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Finney, H.; Williams, A.H.; Price, C.P. Serum cystatin C in patients with myeloma. Clin. Chim. Acta 2001, 309, 1–6. [Google Scholar] [CrossRef]
- Lamb, E.J.; Stowe, H.J.; Simpson, D.E.; Coakley, A.J.; Newman, D.J.; Leahy, M. Diagnostic accuracy of cystatin C as a marker of kidney disease in patients with multiple myeloma: Calculated glomerular filtration rate formulas are equally useful. Clin. Chem. 2004, 50, 1848–1851. [Google Scholar] [CrossRef] [Green Version]
- De Vos, J.; Thykjaer, T.; Tarte, K.; Ensslen, M.; Raynaud, P.; Requirand, G.; Pellet, F.; Pantesco, V.V.; Rè Me, T.; Jourdan, M.; et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 2002, 21, 6848–6857. [Google Scholar] [CrossRef] [Green Version]
- Saltarella, I.; Morabito, F.; Giuliani, N.; Terragna, C.; Omedè, P.; Palumbo, A.; Bringhen, S.; De Paoli, L.; Martino, E.; Larocca, A.; et al. Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial. J. Hematol. Oncol. 2019, 12, 4. [Google Scholar] [CrossRef]
- Zdzisińska, B.; Walter-Croneck, A.; Kandefer-Szerszeń, M. Matrix metalloproteinases-1 and -2, and tissue inhibitor of metalloproteinase-2 production is abnormal in bone marrow stromal cells of multiple myeloma patients. Leuk. Res. 2008, 32, 1763–1769. [Google Scholar] [CrossRef]
- Terpos, E.; Dimopoulos, M.A.; Shrivastava, V.; Leitzel, K.; Christoulas, D.; Migkou, M.; Gavriatopoulou, M.; Anargyrou, K.; Hamer, P.; Kastritis, E.; et al. High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leuk. Res. 2010, 34, 399–402. [Google Scholar] [CrossRef]
- Jia, H.M.; Huang, L.F.; Zheng, Y.; Li, W.X. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: A meta-analysis. Crit. Care 2017, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emlet, D.R.; Pastor-Soler, N.; Marciszyn, A.; Wen, X.; Gomez, H.; Humphries, W.H.; Morrisroe, S.; Volpe, J.K.; Kellum, J.A. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: Differential expression and secretion in human kidney tubule cells. Am. J. Physiol.-Ren. Physiol. 2017, 312, F284–F296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corso, A.; Serricchio, G.; Zappasodi, P.; Klersy, C.; Bosoni, T.; Moratti, R.; Castagnola, C.; Lazzarino, M.; Pagnucco, G.; Bernasconi, C. Assessment of renal function in patients with multiple myeloma: The role of urinary proteins. Ann. Hematol. 1999, 78, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Zhai, Y.P.; Yu, Y.P.; Liu, H.N.; Li, F.; Song, P.; Zhou, X.G.; An, Z.M.; Shao, J.J.; Yang, X.Y. Significance of low molecular weight urinary protein for assessment of early renal damage in patients with multiple myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013, 21, 410–414. [Google Scholar] [PubMed]
- Li, X.M.; Rui, H.C.; Liang, D.D.; Xu, F.; Liang, S.S.; Zhu, X.D.; Huang, X.H.; Liu, Z.H.; Zeng, C.H. Clinicopathological characteristics and outcomes of light chain deposition disease: An analysis of 48 patients in a single Chinese center. Ann. Hematol. 2016, 95, 901–909. [Google Scholar] [CrossRef]
- Balakumaran, A.; Robey, P.G.; Fedarko, N.; Landgren, O. Bone marrow microenvironment in myelomagenesis: Its potential role in early diagnosis. Expert Rev. Mol. Diagn. 2010, 10, 465–480. [Google Scholar] [CrossRef]
- Steiner, N.; Müller, U.; Hajek, R.; Sevcikova, S.; Borjan, B.; Jöhrer, K.; Göbel, G.; Pircher, A.; Gunsilius, E. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS ONE 2018, 13, e0202045. [Google Scholar] [CrossRef]
- Medriano, C.A.D.; Na, J.; Lim, K.M.; Chung, J.H.; Park, Y.H. Liquid chromatography mass spectrometry-based metabolite pathway analyses of myeloma and non-hodgkin’s lymphoma patients. Cell J. 2017, 19, 44–54. [Google Scholar]
- Deulofeu, M.; Kolářová, L.; Salvadó, V.; María Peña-Méndez, E.; Almáši, M.; Štork, M.; Pour, L.; Boadas-Vaello, P.; Ševčíková, S.; Havel, J.; et al. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Gameiro, J.; Branco, T.; Lopes, J.A. Artificial Intelligence in Acute Kidney Injury Risk Prediction. J. Clin. Med. 2020, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.T.; Li, Y.Z.; Liang, Y.F.; Hu, C.J.; Zhai, Y.H.; Zhao, G.F.; Zhang, J.; Li, N.; Ni, A.P.; Chen, W.M.; et al. Construction of A multiple myeloma diagnostic model by magnetic bead-based MALDI-TOF mass spectrometry of serum and pattern recognition software. Anat. Rec. 2009, 292, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Yang, Y.; Wang, J.; Zhang, L.; Wang, F.; He, A. Variability of serum novel serum peptide biomarkers correlates with the disease states of multiple myeloma. Clin. Proteom. 2019, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Bai, J.; Li, W.; He, A.L.; Wang, J.L.; Wang, F.X. Screening of Serum Peptidome-Based Biomarker for Multiple Myeloma Renal Impairment. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017, 25, 1466–1470. [Google Scholar] [PubMed]
- Takei, Y.; Takahashi, S.; Nakasatomi, M.; Sakairi, T.; Ikeuchi, H.; Kaneko, Y.; Hiromura, K.; Nojima, Y.; Maeshima, A. Urinary Activin A is a novel biomarker reflecting renal inflammation and tubular damage in ANCA-associated vasculitis. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugatani, T. Systemic activation of activin a signaling causes chronic kidney disease-mineral bone disorder. Int. J. Mol. Sci. 2018, 19, 2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.; Nakasatomi, M.; Takei, Y.; Ikeuchi, H.; Sakairi, T.; Kaneko, Y.; Hiromura, K.; Nojima, Y.; Maeshima, A. Identification of Urinary Activin A as a Novel Biomarker Reflecting the Severity of Acute Kidney Injury. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Iriuchishima, H.; Maeshima, A.; Takahashi, S.; Ishizaki, T.; Yokohama, A.; Tsukamoto, N.; Saitoh, T.; Murakami, H.; Handa, H. Activin A: A novel urinary biomarker of renal impairment in multiple myeloma. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
Renal Disease | Histopathologic Features | Clinical Features | Characteristics | Potential Exacerbating/Instigating Factors |
---|---|---|---|---|
Cast nephropathy | Eosinophilic, PAS (-) casts in tubules with the fractured appearance Reactive inflammatory infiltrate (giant cells) | AKI Proteinuria Low albuminuria CKD | The most common lesion in MM-related RI Light-chain only myeloma may be often associated with severe RI Other renal lesions may coexist | High tumor burden (>10 g/d light chain) Processing of excess paraprotein in proximal tubules may induce an inflammatory and fibrotic response Volume depletion sepsis Nephrotoxic agents (medications and contrast) Hypercalcemia Tumor lysis syndrome Rhabdomyolysis |
Amyloidosis | Protein misfolding, fibril accumulation and deposits may occur in various kidney compartments (mainly glomerular) Monotypic IF staining Eosinophilic deposits with pale PAS and silver staining (+) Congo red stain, but normal tubular basement membrane thickness | Proteinuria Nephrotic Syndrome CKD | AL is the most common systemic amyloidosis (often λ-type) Other organs involvement may determine diagnostic (biopsy) and prognostic measures (cardiac) A proportion of patients with vascular-limited deposits (may present with lesser grade proteinuria) Often MGRS (low hematologic burden) | |
MIDD | Nodular sclerosing Monotypic IF deposits in mesangium and along glomerular or tubular basement membranes (thickening) Powdery, electron-dense deposits | Proteinuria Hypertension CKD | Most often LCDD subtype (often κ) Other organs involvement possible (e.g., heart and liver) Often MGRS (low burden clonal production of paraprotein) Nodular sclerosing may be similar to diabetic nephropathy and AL amyloidosis patterns |
Potential Kidney Disease Triggers | General Effects | Clinical Features |
---|---|---|
Paraprotein with particular physicochemical properties (structure, solubility, charge, propensity for aggregation, protein interactions) | Potential nephrotoxicity directly or indirectly leading to glomerular, tubular, interstitial, and vascular lesions | Variable (immune dysregulation, host influences (e.g., tubular fluid characteristics, ion concentrations), or pathogenic interactions (e.g., disruption of the mesangial matrix) may result in different nephropathological presentations) |
Paraprotein characteristics | Main mechanism | |
Large molecular weight Ig or paraprotein | Limited ability to cross glomerular barriers leads to aggregation and deposition of Ig, which may induce local inflammation | Glomerulopathies |
Low molecular weight Ig or paraprotein (e.g., light chains) | Filtration across glomerular barrier and interactions with proteins and tubular cells | Cast nephropathy or LCPT |
Biomarker | Sample | Comment | Time of Occurrence | Reference |
---|---|---|---|---|
Neutrophil gelatinase-associated lipocalin (NGAL) | urine, plasma | 1. Initially identified bound to gelatinase in specific granules of the neutrophils but also may be induced in epithelial cells in the setting of inflammation or malignancy 2. Expression upregulated in kidney proximal tubule cells and urine following ischemic renal injury 3. An early indicator of AKI | Peak performance of urinary NGAL 3–12 h after renal injury | Vaidya et al. & Au et al. [43,44] |
Kidney injury molecule-1 (KIM-1) | urine | 1. Type-1 cell membrane glycoprotein upregulated in dedifferentiated proximal tubule epithelial cells 2. Elevated urinary levels are highly sensitive and specific for AKI after ischemia or nephrotoxins | Peak up to 24 h after injury, usually 3–6 h | Bonventre & Moledina et al. [45,46] |
Cystatin C | urine, plasma | 1. Important extracellular inhibitor of cysteine proteases 2. Filtered by the glomerulus and reabsorbed by proximal tubule cells 3. Elevated urinary levels reflect proximal tubular dysfunction; high levels may predict poorer outcome | The 24-h point after AKI might be a preferable selection | Vaidya et al. [43] & Yong et al. [47] |
N-acetyl-β-glucosaminidase (NAG) | urine | 1. Proximal tubule lysosomal enzyme 2. More stable than other urinary enzymes 3. Endogenous urea may inhibit the activity | Peak 12 h–4 days after kidney injury | Vaidya et al. [43] |
Retinol-binding protein (RBP) | urine | 1. Synthesized by the liver, involved in vitamin A transport 2. Filtered by the glomerulus and reabsorbed by proximal tubule cells 3. An early marker of tubular dysfunction | Vayda et al. [43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woziwodzka, K.; Vesole, D.H.; Małyszko, J.; Batko, K.; Jurczyszyn, A.; Koc-Żórawska, E.; Krzanowski, M.; Małyszko, J.; Żórawski, M.; Waszczuk-Gajda, A.; et al. New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies. J. Clin. Med. 2020, 9, 1652. https://doi.org/10.3390/jcm9061652
Woziwodzka K, Vesole DH, Małyszko J, Batko K, Jurczyszyn A, Koc-Żórawska E, Krzanowski M, Małyszko J, Żórawski M, Waszczuk-Gajda A, et al. New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies. Journal of Clinical Medicine. 2020; 9(6):1652. https://doi.org/10.3390/jcm9061652
Chicago/Turabian StyleWoziwodzka, Karolina, David H. Vesole, Jolanta Małyszko, Krzysztof Batko, Artur Jurczyszyn, Ewa Koc-Żórawska, Marcin Krzanowski, Jacek Małyszko, Marcin Żórawski, Anna Waszczuk-Gajda, and et al. 2020. "New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies" Journal of Clinical Medicine 9, no. 6: 1652. https://doi.org/10.3390/jcm9061652
APA StyleWoziwodzka, K., Vesole, D. H., Małyszko, J., Batko, K., Jurczyszyn, A., Koc-Żórawska, E., Krzanowski, M., Małyszko, J., Żórawski, M., Waszczuk-Gajda, A., Kuźniewski, M., & Krzanowska, K. (2020). New Markers of Renal Failure in Multiple Myeloma and Monoclonal Gammopathies. Journal of Clinical Medicine, 9(6), 1652. https://doi.org/10.3390/jcm9061652