Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Analysis of RUNX1 Methylation and mRNA Levels
2.3. Feature Selection for Prediction of Lung Cancer
2.4. Evaluation of Prediction Performance of Models in The Cancer Genome Atlas (TCGA) Lung Cancer
2.5. Immunohistochemistry
2.6. Interpretation of Immunohistochemical Staining
2.7. Statistical Analysis
3. Results
3.1. RUNX1 Hypermethylation Is Inversely Associated with Its Expression
3.2. Prediction of Non-Small Cell Lung Cancer (NSCLC) Using Abnormal Methylation Levels of RUNX1
3.3. Methylation Pattern of RUNX1 in Tumor Tissue Is Similar to that in Bronchial Biopsy Specimen
3.4. RUNX1 Affects Overall Survival in Adenocarcinoma
3.5. No Correlation between Reduced RUNX1 Expression and Expression Levels of Phospho-Rb and Ki67 Proliferation Index
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Ohsumi, A.; Kojima, F.; Imanishi, N.; Matsuoka, K.; Ueda, M.; Miyamoto, Y. Long-term survival after video-assisted thoracic surgery lobectomy for primary lung cancer. Ann. Thorac. Surg. 2010, 89, 353–359. [Google Scholar] [CrossRef]
- Warren, A.J.; Bravo, J.; Williams, R.L.; Rabbitts, T.H. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J. 2000, 19, 3004–3015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Liu, Y.; Lukasik, S.M.; Speck, N.A.; Bushweller, J.H. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat. Struct. Mol. Biol. 2004, 11, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Langabeer, S.E.; Gale, R.E.; Rollinson, S.J.; Morgan, G.J.; Linch, D.C. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 2002, 34, 24–32. [Google Scholar] [CrossRef]
- Harada, H.; Harada, Y.; Niimi, H.; Kyo, T.; Kimura, A.; Inaba, T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004, 103, 2316–2324. [Google Scholar] [CrossRef]
- Lam, K.; Zhang, D.E. RUNX1 and RUNX1-ETO: Roles in hematopoiesis and leukemogenesis. Front Biosci. 2012, 17, 1120–1139. [Google Scholar] [CrossRef] [Green Version]
- Ellis, M.J.; Ding, L.; Shen, D.; Luo, J.; Suman, V.J.; Wallis, J.W.; Van Tine, B.A.; Hoog, J.; Goiffon, R.J.; Goldstein, T.C.; et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012, 486, 353–360. [Google Scholar] [CrossRef]
- Hong, D.; Messier, T.L.; Tye, C.E.; Dobson, J.R.; Fritz, A.J.; Sikora, K.R.; Browne, G.; Stein, J.L.; Lian, J.B.; Stein, G.S. Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 2017, 8, 17610–17627. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, J.; Butnor, K.; Peng, Z.; Leclair, T.; van der Velden, J.; Stein, G.; Lian, J.; Kinsey, C.M. Loss of RUNX1 is associated with aggressive lung adenocarcinoma. J. Cell Physiol. 2018, 233, 3487–3497. [Google Scholar] [CrossRef]
- Kim, J.S.; Han, J.; Shim, Y.M.; Park, J.; Kim, D.H. Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma. Cancer 2005, 104, 1825–1833. [Google Scholar] [PubMed]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Troth, A. American Joint Committee on Cancer. In AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010; pp. 253–270. [Google Scholar]
- Um, S.W.; Kim, H.K.; Kim, Y.; Lee, B.B.; Kim, D.; Han, J.; Kim, H.; Shim, Y.M.; Kim, D.H. Bronchial biopsy specimen as a surrogate for DNA methylation analysis in inoperable lung cancer. Clin. Epigenetics 2017, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Y Wong, C.C.; Volta, M.; Lunnon, K.; Mill, J.; Schalkwyk, L.C. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC. Genomics 2013, 14, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketia, M.; Bachvarova, M.; Morin, C.; Plante, M.; Gregoire, J.; Renaud, M.C.; Sebastianelli, A.; Trinh, X.B.; Bachvarov, D. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 2013, 12, 972–986. [Google Scholar]
- Planagumà, J.; Díaz-Fuertes, M.; Gil-Moreno, A.; Abal, M.; Monge, M.; García, A.; Baró, T.; Thomson, T.M.; Xercavins, J.; Alameda, F.; et al. A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma. Cancer Res. 2004, 64, 8846–8853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browne, G.; Taipaleenmaki, H.; Bishop, N.M.; Madasu, S.C.; Shaw, L.M.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Runx1 is associated with breast cancer progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. J. Cell Physiol. 2015, 230, 2522–2532. [Google Scholar] [CrossRef] [Green Version]
- Farina, N.H.; Zingiryan, A.; Akech, J.A.; Callahan, C.J.; Lu, H.; Stein, J.L.; Languino, L.R.; Stein, G.S.; Lian, J.B. A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget 2016, 7, 70462–70474. [Google Scholar] [CrossRef] [Green Version]
- Dulak, A.M.; Schumacher, S.; van Lieshout, J.; Imamura, Y.; Fox, C.; Shim, B.; Ramos, A.H.; Saksena, G.; Baca, S.C.; Baselga, J.; et al. Gastrointestinal adenocarcinomas of the esophagus, stomach and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 2012, 72, 4383–4393. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.; Suzuki, T.; Tsutsumi, S.; Fujimura, T.; Urano, T.; Takahashi, S.; Homma, Y.; Aburatani, H.; Inoue, S. RUNX1, an androgen- and EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer. Oncotarget 2015, 6, 2263–2276. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Fritz, A.J.; Finstad, K.H.; Fitzgerald, M.P.; Weinheimer, A.; Viens, A.L.; Ramsey, J.; Stein, J.L.; Lian, J.B.; Stein, G.S. Suppression of breast cancer stem cells and tumor growth by the RUNX1 transcription factor. Mol. Cancer Res. 2018, 16, 1952–1964. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Tan, T.Z.; Syed Sulaiman, N.B.; Lamar, J.M.; Bansal, P.; Cui, J.; Qiao, Y.; Ito, Y. RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 2018, 9, 14175–14192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, C.; Wang, L.; Peng, S.; Cao, M.; Li, H.; Hu, J.; Huang, X.; Liu, W.; Zhang, H.; Wu, S.; et al. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer. Cancer Lett. 2015, 357, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Hawes, S.E.; Stern, J.E.; Wiens, L.; Lu, H.; Dong, Z.M.; Jordan, C.D.; Kiviat, N.B.; Vesselle, H. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 645–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, T.A.; Wang, Z.; Wu, X.; Kernstine, K.H.; Riggs, A.D.; Pfeifer, G.P. DNA methylation biomarkers for lung cancer. Tumour Biol. 2012, 33, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Ghozi, M.C.; Bernstein, Y.; Negreanu, V.; Levanon, D.; Groner, Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc. Natl. Acad. Sci. USA 1996, 93, 1935–1940. [Google Scholar] [CrossRef] [Green Version]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar]
- Bach, P.B.; Mirkin, J.N.; Oliver, T.K.; Azzoli, C.G.; Berry, D.A.; Brawley, O.W.; Byers, T.; Colditz, G.A.; Gould, M.K.; Jett, J.R.; et al. Benefits and harms of CT screening for lung cancer: A systematic review. JAMA 2012, 307, 2418–2429. [Google Scholar] [CrossRef] [Green Version]
- Jalili, M.; Yaghmaie, M.; Ahmadvand, M.; Alimoghaddam, K.; Mousavi, S.A.; Vaezi, M.; Ghavamzadeh, A. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2018, 19, 325–332. [Google Scholar]
- Yamato, G.; Shiba, N.; Yoshida, K.; Hara, Y.; Shiraishi, Y.; Ohki, K.; Okubo, J.; Park, M.J.; Sotomatsu, M.; Arakawa, H.; et al. RUNX1 mutations in pediatric acute myeloid leukemia are associated with distinct genetic features and an inferior prognosis. Blood 2018, 131, 2266–2270. [Google Scholar] [CrossRef]
- Strom, D.K.; NiP, J.; Westendorf, J.J.; Linggi, B.; Lutterbach, B.; Downing, J.R.; Lenny, N.; Hiebert, S.W. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J. Biol. Chem. 2002, 275, 3438–3445. [Google Scholar] [CrossRef] [Green Version]
Histology | RUNX1 Expression | HR | 95% CI | p-Value |
---|---|---|---|---|
Adeno (N = 189) | Normal | 1.00 | ||
Reduced | 1.97 | 1.16–3.44 | 0.01 | |
Squamous (N = 192) | Normal | 1.00 | ||
Reduced | 1.46 | 0.78–5.32 | 0.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Lee, B.B.; Kim, D.; Um, S.; Cho, E.Y.; Han, J.; Shim, Y.M.; Kim, D.-H. Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 1694. https://doi.org/10.3390/jcm9061694
Kim Y, Lee BB, Kim D, Um S, Cho EY, Han J, Shim YM, Kim D-H. Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2020; 9(6):1694. https://doi.org/10.3390/jcm9061694
Chicago/Turabian StyleKim, Yujin, Bo Bin Lee, Dongho Kim, Sangwon Um, Eun Yoon Cho, Joungho Han, Young Mog Shim, and Duk-Hwan Kim. 2020. "Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer" Journal of Clinical Medicine 9, no. 6: 1694. https://doi.org/10.3390/jcm9061694
APA StyleKim, Y., Lee, B. B., Kim, D., Um, S., Cho, E. Y., Han, J., Shim, Y. M., & Kim, D. -H. (2020). Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 9(6), 1694. https://doi.org/10.3390/jcm9061694