Trends and between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design, Setting, and Participants
2.2. Data Preparation and Selection
2.3. Objectives
2.4. Statistical Analysis
3. Results
3.1. Selection Process
3.2. Test Type-Specific Use of Laboratory Tests
3.3. Overall Use of Laboratory Tests
4. Discussion
Stengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forsman, R.W. Why is the laboratory an afterthought for managed care organizations? Clin. Chem. 1996, 42, 813–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinker, S.; Kvint, I.; Erez, R.; Elhayany, A.; Kahan, E. Effect of the characteristics of family physicians on their utilisation of laboratory tests. Br. J. Gen. Pract. J. R. College Gen. Pract. 2007, 57, 377–382. [Google Scholar]
- Birtwhistle, R.V. Diagnostic testing in family practice. Can. Fam. Phys. Med. Fam. Can. 1988, 34, 327–331. [Google Scholar]
- O’Sullivan, J.W.; Stevens, S.; Hobbs, F.D.R.; Salisbury, C.; Little, P.; Goldacre, B.; Bankhead, C.; Aronson, J.K.; Perera, R.; Heneghan, C. Temporal trends in use of tests in UK primary care, 2000–2015: Retrospective analysis of 250 million tests. BMJ 2018, 363, k4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickner, J.; Thompson, P.J.; Wilkinson, T.; Epner, P.; Sheehan, M.; Pollock, A.M.; Lee, J.; Duke, C.C.; Jackson, B.R.; Taylor, J.R. Primary care physicians’ challenges in ordering clinical laboratory tests and interpreting results. J. Am. Board Fam. Med. JABFM 2014, 27, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Naugler, C. A perspective on laboratory utilization management from Canada. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 427, 142–144. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.W.; Albasri, A.; Nicholson, B.D.; Perera, R.; Aronson, J.K.; Roberts, N.; Heneghan, C. Overtesting and undertesting in primary care: A systematic review and meta-analysis. BMJ Open 2018, 8, e018557. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, I.; Simpkin, A.L.; Lupo, C.; Weissman, A.; Mainor, A.J.; Orav, E.J.; Rosenthal, M.B.; Colla, C.H.; Sequist, T.D. Cascades of Care After Incidental Findings in a US National Survey of Physicians. JAMA Netw. Open 2019, 2, e1913325. [Google Scholar] [CrossRef] [Green Version]
- Van der Weijden, T.; van Bokhoven, M.A.; Dinant, G.J.; van Hasselt, C.M.; Grol, R.P. Understanding laboratory testing in diagnostic uncertainty: A qualitative study in general practice. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2002, 52, 974–980. [Google Scholar]
- Naugler, C. Laboratory test use and primary care physician supply. Can. Fam. Phys. Med. Fam. Can. 2013, 59, e240–e245. [Google Scholar]
- Eisenberg, J.M.; Nicklin, D. Use of diagnostic services by physicians in community practice. Med. Care 1981, 19, 297–309. [Google Scholar] [CrossRef] [PubMed]
- DeKay, M.L.; Asch, D.A. Is the defensive use of diagnostic tests good for patients, or bad? Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 1998, 18, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, I.S.; Hjortdahl, P. The general practitioner and laboratory utilization: Why does it vary? Fam. Pract. 1992, 9, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Djalali, S.; Ursprung, N.; Rosemann, T.; Senn, O.; Tandjung, R. Undirected health IT implementation in ambulatory care favors paper-based workarounds and limits health data exchange. Int. J. Med. Inform. 2015, 84, 920–932. [Google Scholar] [CrossRef] [Green Version]
- Swiss Federal Office of Public Health. Federal Analysis List (Status as of 30 April 2020); Swiss Federal Office of Public Health: Bern, Switzerland, 2020.
- Wennberg, J.E. Time to tackle unwarranted variations in practice. BMJ 2011, 342, d1513. [Google Scholar] [CrossRef]
- Swiss Federal Office of Public Health. Monitoring der Analysenliste 2013–2015; Swiss Federal Office of Public Health: Bern, Switzerland, 2019.
- Federal Act on Research Involving Human Beings of 30 September 2011 (Status as of 1 January 2020). Available online: https://www.admin.ch/opc/en/classified-compilation/20061313/index.html (accessed on 15 May 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [CrossRef] [Green Version]
- Rodd, C.; Sokoro, A.; Lix, L.M.; Thorlacius, L.; Moffatt, M.; Slater, J.; Bohm, E. Increased rates of 25-hydroxy vitamin D testing: Dissecting a modern epidemic. Clin. Biochem. 2018, 59, 56–61. [Google Scholar] [CrossRef]
- Granado-Lorencio, F.; Blanco-Navarro, I.; Pérez-Sacristán, B. Criteria of adequacy for vitamin D testing and prevalence of deficiency in clinical practice. Clin. Chem. Lab. Med. 2016, 54, 791–798. [Google Scholar] [CrossRef]
- Woodford, H.J.; Barrett, S.; Pattman, S. Vitamin D: Too much testing and treating? Clin. Med. 2018, 18, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Gardner, K.; Taylor, W.; Marks, E.; Goodson, N. Vitamin D assessment in primary care: Changing patterns of testing. Lond. J. Prim. Care 2015, 7, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, R.G.; Van Houten, H.K.; Ross, J.S.; Montori, V.M.; Shah, N.D. HbA1c overtesting and overtreatment among US adults with controlled type 2 diabetes, 2001–2013: Observational population based study. BMJ 2015, 351, h6138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, G.; Gulliford, M.C.; Ukoumunne, O.C.; Eldridge, S.; Chinn, S.; Campbell, M.J. Patterns of intra-cluster correlation from primary care research to inform study design and analysis. J. Clin. Epidemiol. 2004, 57, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Guo, M.; Hemmelgarn, B.; Quan, H.; Clement, F.; Sajobi, T.; Thomas, R.; Turin, T.C.; Naugler, C. Evaluating practice variance among family physicians to identify targets for laboratory utilization management. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 497, 1–5. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.W.; Stevens, S.; Oke, J.; Hobbs, F.D.R.; Salisbury, C.; Little, P.; Goldacre, B.; Bankhead, C.; Aronson, J.K.; Heneghan, C.; et al. Practice variation in the use of tests in UK primary care: A retrospective analysis of 16 million tests performed over 3.3 million patient years in 2015/16. BMC Med. 2018, 16, 229. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.E.; Anisimowicz, Y.; Miedema, B.; Hogg, W.; Wodchis, W.P.; Aubrey-Bassler, K. The influence of gender and other patient characteristics on health care-seeking behaviour: A QUALICOPC study. BMC Fam. Pract. 2016, 17, 38. [Google Scholar] [CrossRef] [Green Version]
- Nabalamba, A.; Millar, W.J. Going to the doctor. Health Rep. 2007, 18, 23–35. [Google Scholar]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Puymirat, E.; Simon, T.; Steg, P.G.; Schiele, F.; Gueret, P.; Blanchard, D.; Khalife, K.; Goldstein, P.; Cattan, S.; Vaur, L.; et al. Association of changes in clinical characteristics and management with improvement in survival among patients with ST-elevation myocardial infarction. JAMA 2012, 308, 998–1006. [Google Scholar] [CrossRef]
- Mosca, L.; Linfante, A.H.; Benjamin, E.J.; Berra, K.; Hayes, S.N.; Walsh, B.W.; Fabunmi, R.P.; Kwan, J.; Mills, T.; Simpson, S.L. National study of physician awareness and adherence to cardiovascular disease prevention guidelines. Circulation 2005, 111, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, P.M. Gender differences in osteoporosis and fractures. Clin. Orthop. Relat. Res. 2011, 469, 1900–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; et al. Epidemiology of iron deficiency anaemia in four European countries: A population-based study in primary care. Eur. J. Haematol. 2016, 97, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Vanderpump, M.P. The epidemiology of thyroid disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Paslakis, G.; Richardson, C.; Nohre, M.; Brahler, E.; Holzapfel, C.; Hilbert, A.; de Zwaan, M. Prevalence and psychopathology of vegetarians and vegans-Results from a representative survey in Germany. Sci. Rep. 2020, 10, 6840. [Google Scholar] [CrossRef] [Green Version]
- Rachamin, Y.; Meier, R.; Grischott, T.; Rosemann, T.; Markun, S. General practitioners’ consultation counts and associated factors in Swiss primary care–A retrospective observational study. PLoS ONE 2020, 14, e0227280. [Google Scholar] [CrossRef]
Characteristic | At Least One Laboratory Test Reported (n = 315,807) | No Laboratory Tests Reported (n = 258,996) |
---|---|---|
Male sex, n (%) | 172,810 (54.7) | 132,062 (51.0) |
Female sex, n (%) | 142,997 (45.3) | 126,934 (49.0) |
Median age at observation start, years (IQR) | 48 (32–64) | 39 (25–56) |
Median follow-up time, days (IQR) | 406 (134–1152) | 8 (1–227) |
Median consultations per patient, n (IQR) | 9 (1–19) | 2 (1–4) |
Full Model | ||||
Consultations, n | 1,608,613 | |||
Fixed effects | β(SE) | OR (95% CI) | Wald’s χ2 | p-Value |
Intercept | −1.95 (0.03) | 0.14 (0.13–0.15) | −60 | <0.001 |
Male sex | −0.143 (0.009) | 0.87 (0.86–0.88) | −16 | <0.001 |
Age (10 years) | 0.058 (0.002) | 1.060 (1.056–1.065) | 27 | <0.001 |
Random effects | Variance estimate | Group members, n | ||
Patient ID | 3.16 | 234,931 | ||
GP ID | 0.22 | 210 | ||
Null model | ||||
Fixed effects | β(SE) | OR (95% CI) | Wald’s χ2 | p-Value |
Intercept | −2.04 (0.03) | 0.13 (0.12–0.14) | −72 | <0.001 |
Random effects | Variance estimate | ICC | ||
Patient ID | 3.17 | |||
GP ID | 0.21 | 0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, L.D.; Jäger, L.; Meier, R.; Rachamin, Y.; Senn, O.; Rosemann, T.; Markun, S. Trends and between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice. J. Clin. Med. 2020, 9, 1787. https://doi.org/10.3390/jcm9061787
Schumacher LD, Jäger L, Meier R, Rachamin Y, Senn O, Rosemann T, Markun S. Trends and between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice. Journal of Clinical Medicine. 2020; 9(6):1787. https://doi.org/10.3390/jcm9061787
Chicago/Turabian StyleSchumacher, Lisa D., Levy Jäger, Rahel Meier, Yael Rachamin, Oliver Senn, Thomas Rosemann, and Stefan Markun. 2020. "Trends and between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice" Journal of Clinical Medicine 9, no. 6: 1787. https://doi.org/10.3390/jcm9061787
APA StyleSchumacher, L. D., Jäger, L., Meier, R., Rachamin, Y., Senn, O., Rosemann, T., & Markun, S. (2020). Trends and between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice. Journal of Clinical Medicine, 9(6), 1787. https://doi.org/10.3390/jcm9061787