Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. DNA and RNA Extraction and cDNA Synthesis
2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.4. Bioinformatics Analysis: miRNA Target Prediction Methods
2.5. Statistical Analysis
3. Results
3.1. miR200a and miR-103 as Potential Diagnostic Biomarkers of Functionality in CTs
3.2. TBX19 Could Be a Putative Target Gene of miR-383
3.3. Expression Levels of miRNAs and Correlation with the Tumor Size of CTs
4. Discussion
4.1. miRNAs as Potential Diagnostic Biomarker of Silent CTs
4.2. Silencing Role of miRNAs in CTs
4.3. miRNAs: Tumor Size and Proliferation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albani, A.; Perez-Rivas, L.G.; Reincke, M.; Theodoropoulou, M. Pathogenesis of cushing disease: An update on the genetics of corticotropinomas. Endocr. Pract. 2018, 24, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, A.; Cooper, O. Silent corticotroph adenomas. Pituitary 2018, 21, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mete, O.; Cintosun, A.; Pressman, I.; Asa, S.L. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod. Pathol. 2018, 31, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renner, U.; Ciato, D.; Stalla, G.K. Recent advances in understanding corticotroph pituitary tumor initiation and progression. F1000Research 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, A.; Sottile, J.; Fajardo, C.; Riesgo, P.; Cámara, R.; Simal, J.A.; Lamas, C.; Sandoval, H.; Aranda, I.; Picó, A. Is it time to consider the expression of specific-pituitary hormone genes when typifying pituitary tumours? PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Tejada, L.; Sanchez-Ortiga, R.; Lamas, C.; Camara, R.; Riesgo, P.; Fajardo, C.; Aranda, F.I.; Pico, A. Contribution of molecular analysis to the typification of the non-functioning pituitary adenomas. PLoS ONE 2017, 12, e0180039. [Google Scholar] [CrossRef] [Green Version]
- Righi, A.; Faustini-Fustini, M.; Morandi, L.; Monti, V.; Asioli, S.; Mazzatenta, D.; Bacci, A.; Foschini, M.P. The changing faces of corticotroph cell adenomas: The role of prohormone convertase 1/3. Endocrine 2017, 56, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Wierinckx, A.; Jouanneau, E.; Auger, C.; Borson-Chazot, F.; Lachuer, J.; Pugeat, M.; Trouillas, J. Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur. J. Endocrinol. 2010, 163, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tateno, T.; Izumiyama, H.; Doi, M.; Akashi, T.; Ohno, K.; Hirata, Y. Defective expression of prohormone convertase 1/3 in silent corticotroph adenoma. Endocr. J. 2007, 54, 777–782. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17917309 (accessed on 24 May 2018). [CrossRef] [PubMed] [Green Version]
- Tateno, T.; Izumiyama, H.; Doi, M.; Yoshimoto, T.; Shichiri, M.; Inoshita, N.; Oyama, K.; Yamada, S.; Hirata, Y. Differential gene expression in ACTH-secreting and non-functioning pituitary tumors. Eur. J. Endocrinol. 2007, 157, 717–724. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, A.; Cano, D.A.; Flores-Martínez, A.; Gil, J.; Puig-Domingo, M.; Webb, S.M.; Soto-Moreno, A.; Picó, A. Why don’t corticotroph tumors always produce Cushing’s disease? Eur. J. Endocrinol. 2019, 181, 351–361. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, A.; Sottile, J.; Sánchez-Tejada, L.; Fajardo, C.; Cámara, R.; Lamas, C.; Barberá, V.; Picó, A. DNA Methylation of tumor suppressor genes in pituitary neuroendocrine tumors. J. Clin. Endocrinol. Metab. 2019, 104, 1272–1282. [Google Scholar] [CrossRef]
- Tutar, L.; Özgür, A.; Tutar, Y. Involvement of miRNAs and pseudogenes in cancer. Methods Mol. Biol. 2018, 1699, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lin, J.; Chen, J.; Liu, X.F.; Liu, J.L.; Luo, H.S.; Li, Y.Q.; Cui, S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J. Biol. Chem. 2013, 288, 10361–10373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derghal, A.; Djelloul, M.; Trouslard, J.; Mounien, L. The role of MicroRNA in the modulation of the melanocortinergic system. Front. Neurosci. 2017, 11, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin, J. 60 YEARS OF POMC: Transcriptional and epigenetic regulation of POMC gene expression. J. Mol. Endocrinol. 2016, 56, T99–T112. [Google Scholar] [CrossRef]
- Bottoni, A.; Piccin, D.; Tagliati, F.; Luchin, A.; Zatelli, M.C.; Degli Uberti, E.C. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J. Cell. Physiol. 2005, 204, 280–285. [Google Scholar] [CrossRef]
- Bottoni, A.; Zatelli, M.C.; Ferracin, M.; Tagliati, F.; Piccin, D.; Vignali, C.; Calin, G.A.; Negrini, M.; Croce, C.M.; Degli Uberti, E.C. Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. J. Cell. Physiol. 2007, 210, 370–377. [Google Scholar] [CrossRef]
- Amaral, F.C.; Torres, N.; Saggioro, F.; Neder, L.; Machado, H.R.; Silva, W.A., Jr.; Moreira, A.C.; Castro, M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 2009, 94, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, T.; Faucz, F.R.; Azevedo, M.; Xekouki, P.; Iliopoulos, D.; Stratakis, C.A. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN–AKT pathway. Oncogene 2013, 32, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Garbicz, F.; Mehlich, D.; Rak, B.; Sajjad, E.; Maksymowicz, M.; Paskal, W.; Zieliński, G.; Włodarski, P.K. Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology. Pituitary 2017, 20, 450–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stilling, G.; Sun, Z.; Zhang, S.; Jin, L.; Righi, A.; Kovācs, G.; Korbonits, M.; Scheithauer, B.W.; Kovacs, K.; Lloyd, R.V. MicroRNA expression in ACTH-producing pituitary tumors: Up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 2010, 38, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Neou, M.; Villa, C.; Armignacco, R.; Jouinot, A.; Raffin-Sanson, M.-L.; Septier, A.; Letourneur, F.; Diry, S.; Diedisheim, M.; Izac, B.; et al. Pangenomic Classification of pituitary neuroendocrine tumors. Cancer Cell 2020, 37, 123–134.e5. [Google Scholar] [CrossRef] [PubMed]
- Luque, R.M.; Ibáñez-Costa, A.; Sánchez-Tejada, L.; Rivero-Cortés, E.; Robledo, M.; Madrazo-Atutxa, A.; Mora, M.; Álvarez, C.V.; Lucas-Morante, T.; Álvarez-Escolá, C.; et al. El Registro Molecular de Adenomas Hipofisarios (REMAH): Una apuesta de futuro de la Endocrinología española por la medicina individualizada y la investigación traslacional. Endocrinología y Nutrición 2016, 63, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-Quesada, M.E.; García-Martínez, A.; Silva-Ortega, S.; Martínez-López, S.; Cámara, R.; Fajardo, C.; Lamas, C.; Aranda, I.; Picó, A. How valuable is the RT-qPCR of pituitary-specific transcription factors for identifying pituitary neuroendocrine tumor subtypes according to the new WHO 2017 criteria? Cancers 2019, 11, 1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knosp, E.; Steiner, E.; Kitz, K.; Matula, C. Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings. Neurosurgery 1993, 33, 610–618. [Google Scholar] [CrossRef]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, M.R.; Kasuki, L.; Dénes, J.; Trivellin, G.; Korbonits, M. MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J. Endocrinol. Investig. 2013, 36, 889–895. [Google Scholar] [CrossRef]
- Sivapragasam, M.; Rotondo, F.; Lloyd, R.V.; Scheithauer, B.W.; Cusimano, M.; Syro, L.V.; Kovacs, K. MicroRNAs in the human pituitary. Endocr. Pathol. 2011, 22, 134–143. [Google Scholar] [CrossRef]
- Feng, Y.; Mao, Z.; Wang, X.; Du, Q.; Jian, M.; Zhu, D.; Xiao, Z.; Wang, H.-J.; Zhu, Y.-H. MicroRNAs and target genes in pituitary adenomas. Horm. Metab. Res. 2018, 50, 179–192. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Di Ieva, A.; Butz, H.; Niamah, M.; Rotondo, F.; de Rosa, S.; Sav, A.; Yousef, G.M.; Kovacs, K.; Cusimano, M.D. MicroRNAs as Biomarkers in Pituitary Tumors. Neurosurgery 2014, 75, 181–189. [Google Scholar] [CrossRef]
- Kovalovsky, D.; Refojo, D.; Liberman, A.C.; Hochbaum, D.; Pereda, M.P.; Coso, O.A.; Stalla, G.K.; Holsboer, F.; Arzt, E. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways. Mol. Endocrinol. 2002, 16, 1638–1651. [Google Scholar] [CrossRef]
- Derghal, A.; Djelloul, M.; Airault, C.; Pierre, C.; Dallaporta, M.; Troadec, J.-D.; Tillement, V.; Tardivel, C.; Bariohay, B.; Trouslard, J.; et al. Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3’UTR. Front. Cell. Neurosci. 2015, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Lamolet, B.; Poulin, G.; Chu, K.; Guillemot, F.; Tsai, M.-J.; Drouin, J. Tpit-independent function of NeuroD1(BETA2) in Pituitary corticotroph differentiation. Mol. Endocrinol. 2004, 18, 995–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulichino, A.-M.; Vallette-Kasic, S.; Tsai, J.P.-Y.; Couture, C.; Gauthier, Y.; Drouin, J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev. 2003, 17, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wang, Y.; Zhang, S.; Tang, J.; Li, F.; Yin, J.; Li, Y.; Fu, J.; Li, B.; Luo, Y.; et al. Biomarker discovery for immunotherapy of pituitary adenomas: Enhanced robustness and prediction ability by modern computational tools. Int. J. Mol. Sci. 2019, 20, 151. [Google Scholar] [CrossRef] [Green Version]
- Butz, H.; Likó, I.; Czirják, S.; Igaz, P.; Korbonits, M.; Rácz, K.; Patócs, A. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 2011, 14, 112–124. [Google Scholar] [CrossRef]
- Renjie, W.; Haiqian, L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett. 2015, 356 2 Pt B, 568–578. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, G.; Ke, X.; Lu, X.; Wang, X.; Li, H.; Ren, M.; He, S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumor Biol. 2016, 37, 8691–8698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Zhang, Y.; Chen, H.; Guo, Z. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int. J. Oncol. 2018, 53, 1493–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.-L.; Zhang, T.; Wu, K.; Li, Y.; Wang, J.; Chen, J.; Li, X.-Q.; Peng, X.-G.; Wang, J.-N.; Tan, L.-G. MicroRNA-448 suppresses metastasis of pancreatic ductal adenocarcinoma through targeting JAK1/STAT3 pathway. Oncol. Rep. 2017, 38, 1075–1082. [Google Scholar] [CrossRef]
- Fang, C.; Chen, Y.-X.; Wu, N.-Y.; Yin, J.Y.; Li, X.P.; Huang, H.S.; Zhang, W.; Zhou, H.-H.; Liu, Z.-Q. MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci. Rep. 2017, 7, 40384. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Luo, P.; Song, Q.; Fei, X. DNMT1/miR-200a/GOLM1 signaling pathway regulates lung adenocarcinoma cells proliferation. Biomed. Pharmacother. 2018, 99, 839–847. [Google Scholar] [CrossRef]
- Karihtala, P.; Porvari, K.; Soini, Y.; Eskelinen, M.; Juvonen, P.; Haapasaari, K.-M. Expression levels of microRNAs miR-93 and miR-200a in Pancreatic adenocarcinoma with special reference to differentiation and relapse-free survival. Oncology 2019, 96, 164–170. [Google Scholar] [CrossRef]
- Shi, M.; Mu, Y.; Zhang, H.; Liu, M.; Wan, J.; Qin, X.; Li, C. MicroRNA-200 and microRNA-30 family as prognostic molecular signatures in ovarian cancer. Medicine 2018, 97, e11505. [Google Scholar] [CrossRef]
- Liu, F.; Chen, N.; Xiao, R.; Wang, W.; Pan, Z. miR-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting MAP3K8. Biochem. Biophys. Res. Commun. 2016, 480, 87–93. [Google Scholar] [CrossRef]
- Wei, R.; Yang, Q.; Han, B.; Li, Y.; Yao, K.; Yang, X.; Chen, Z.; Yang, S.; Zhou, J.; Li, M.; et al. microRNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget 2017, 8, 16633–16641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, P.; Shuai, L.; Chen, K.; Li, Z.; Zhang, Y.; Jiang, Y.; Li, X. miR-589-5p inhibits MAP3K8 and suppresses CD90+ cancer stem cells in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2016, 35, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Yang, S.; Yin, R.; Xiao, Q.; Ma, A.; Pan, X. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL. J. Cell. Biochem. 2019, 120, 13640–13650. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Bai, Y.; Ji, S.; Ma, H. MicroRNA-98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k-Ras/Raf/MEK/ERK signaling pathway. Int. J. Oncol. 2019, 54, 807–820. [Google Scholar] [CrossRef] [Green Version]
Gender | Age | Tumor Size | Invasiveness | MTD | |||||
---|---|---|---|---|---|---|---|---|---|
Subtype | n (%) | Women | Men | Years | Macro | Micro | Yes | No | mm |
n (%) | Mean ± SD | n (%) | n (%) | Mean ± SD | |||||
Functioning CTs | 24 (51.1) | 20 (83.3) | 4 (16.7) | 43.71 ± 11.74 | 11 (45.8) | 13 (54.2) | 7 (29.2) | 17 (70.8) | 13.87 ± 10.19 |
Silent CTs | 23 (48.9) | 16 (69.6) | 7 (30.4) | 43.30 ± 15.04 | 23 (100) | 0 (0) | 15 (65.2) | 8 (34.8) | 21.61 ± 9.21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martínez, A.; Fuentes-Fayos, A.C.; Fajardo, C.; Lamas, C.; Cámara, R.; López-Muñoz, B.; Aranda, I.; Luque, R.M.; Picó, A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. J. Clin. Med. 2020, 9, 1838. https://doi.org/10.3390/jcm9061838
García-Martínez A, Fuentes-Fayos AC, Fajardo C, Lamas C, Cámara R, López-Muñoz B, Aranda I, Luque RM, Picó A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. Journal of Clinical Medicine. 2020; 9(6):1838. https://doi.org/10.3390/jcm9061838
Chicago/Turabian StyleGarcía-Martínez, Araceli, Antonio C. Fuentes-Fayos, Carmen Fajardo, Cristina Lamas, Rosa Cámara, Beatriz López-Muñoz, Ignacio Aranda, Raúl M. Luque, and Antonio Picó. 2020. "Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors" Journal of Clinical Medicine 9, no. 6: 1838. https://doi.org/10.3390/jcm9061838
APA StyleGarcía-Martínez, A., Fuentes-Fayos, A. C., Fajardo, C., Lamas, C., Cámara, R., López-Muñoz, B., Aranda, I., Luque, R. M., & Picó, A. (2020). Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. Journal of Clinical Medicine, 9(6), 1838. https://doi.org/10.3390/jcm9061838