A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Sources
2.2. Procedures
2.3. Statistical Analysis
3. Results
3.1. Cardiovascular Adverse Events Signal Determined for HCQ Using FAERS Database
3.2. Characteristics of Patients and Outcomes
4. Discussion
5. Study Limitations
6. Conclusions
7. Translational Perspective
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Who Director-General’s Opening Remarks at the Media Briefing on Covid-19–11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 12 March 2020).
- World Health Organization. Coronavirus Disease (Covid-2019) Situation Reports; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Abena, P.M.; Decloedt, E.H.; Bottieau, E.; Suleman, F.; Adejumo, P.; Sam-Agudu, N.A.; Muyembe TamFum, J.-J.; Seydi, M.; Eholie, S.P.; Mills, E.J.; et al. Chloroquine and hydroxychloroquine for the prevention or treatment of novel coronavirus disease (COVID-19) in Africa: Caution for inappropriate off-label use in healthcare settings. Am. J. Trop. Med. Hyg. 2020, 102, 1184–1188. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, J.; Zhang, Z.; Jiang, S.; Han, S.; Yan, D.; Zhuang, R.; Hu, B.; Zhang, Z. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med. 1983, 75, 11–18. [Google Scholar] [CrossRef]
- Drugs.com. Hydroxychloroquine Sulfate Monograph for Professionals. 2020. Available online: https://www.drugs.com/monograph/hydroxychloroquine-sulfate.html (accessed on 18 May 2020).
- Meyerowitz, E.A.; Vannier, A.G.L.; Friesen, M.G.N.; Schoenfeld, S.; Gelfand, J.A.; Callahan, M.V.; Kim, A.Y.; Reeves, P.M.; Poznansky, M.C. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J. 2020, 34, 6027–6037. [Google Scholar] [CrossRef] [PubMed]
- Sacre, K.; Criswell, L.A.; McCune, J.M. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res. 2012, 14, R155. [Google Scholar] [CrossRef] [Green Version]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 105949. [Google Scholar] [CrossRef]
- Magagnoli, J.; Narendran, S.; Pereira, F.; Cummings, T.; Hardin, J.W.; Sutton, S.S.; Ambati, J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourao, M.P.G.; Brito-Sousa, J.D.; Baia-da-Silva, D.; Guerra, M.V.F.; et al. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw. Open 2020, 3, e208857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food & Drug Administration. FDA Cautions against Use of Hydroxychloroquine or Chloroquine for Covid-19 Outside of the Hospital Setting or a Clinical Trial due to Risk of Heart Rhythm Problems. 2020. Available online: https://www.fda.gov/media/137250/download (accessed on 25 April 2020).
- Mayo Clinic. Guidance on Patients at Risk of Drug-Induced Sudden Cardiac Death from Off-Label Covid-19 Treatments. 2020. Available online: https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-provides-urgent-guidance-approach-to-identify-patients-at-risk-of-drug-induced-sudden-cardiac-death-from-use-of-off-label-covid-19-treatments/ (accessed on 25 April 2020).
- Chen, C.Y.; Wang, F.L.; Lin, C.C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin. Toxicol. (Phila) 2006, 44, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Pandurangi, U.; Arora, V.; Gupta, A.; Jaswal, A.; Nabar, A.; Naik, A.; Naik, N.; Namboodiri, N.; Vora, A.; et al. Cardiovascular risks of hydroxychloroquine in treatment and prophylaxis of COVID-19 patients: A scientific statement from the Indian Heart Rhythm Society. Indian Pacing Electrophysiol. J. 2020, 20, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Klok, F.A.; Kruip, M.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Hydroxychloroquine Sulfate Drugs@FDA: FDA-Approved Drugs. 1998. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=040274 (accessed on 25 April 2020).
- Meng, L.; Huang, J.; Jia, Y.; Huang, H.; Qiu, F.; Sun, S. Assessing fluoroquinolone-associated aortic aneurysm and dissection: Data mining of the public version of the FDA adverse event reporting system. Int. J. Clin. Pract. 2019, 73, e13331. [Google Scholar] [CrossRef]
- Huang, J.; Meng, L.; Yang, B.; Sun, S.; Luo, Z.; Chen, H. Safety profile of epidermal growth factor receptor tyrosine kinase inhibitors: A disproportionality analysis of FDA adverse event reporting system. Sci. Rep. 2020, 10, 4803. [Google Scholar] [CrossRef]
- Anand, K.; Ensor, J.; Trachtenberg, B.; Bernicker, E.H. Osimertinib-induced cardiotoxicity: A retrospective review of the FDA Adverse Events Reporting System (FAERS). JACC Cardiooncol. 2019, 1, 172–178. [Google Scholar] [CrossRef]
- Bohm, R.; von Hehn, L.; Herdegen, T.; Klein, H.J.; Bruhn, O.; Petri, H.; Hocker, J. OpenVigil FDA—Inspection of U.S. American adverse drug events pharmacovigilance data and novel clinical applications. PLoS ONE 2016, 11, e0157753. [Google Scholar] [CrossRef]
- Bohm, R.; Hocker, J.; Cascorbi, I.; Herdegen, T. OpenVigil—Free eyeballs on AERS pharmacovigilance data. Nat. Biotechnol. 2012, 30, 137–138. [Google Scholar] [CrossRef]
- Bate, A.; Evans, S.J. Quantitative signal detection using spontaneous ADR reporting. Pharm. Drug Saf. 2009, 18, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.J.; Waller, P.C.; Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharm. Drug Saf. 2001, 10, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Pers, Y.M. Cardiac complications attributed to chloroquine and hydroxychloroquine: A systematic review of the literature. Drug Saf. 2018, 41, 919–931. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. EUA Hydroxychloroquine Sulfate Health Care Provider Fact Sheet. 2020. Available online: https://www.fda.gov/media/136537/download (accessed on 1 May 2020).
- OHDSI—Observational Health Data Sciences and Informatics. Hydroxychloroquine Safety and Potential Efficacy as an Antiviral Prophylaxis in Light of Potential Wide-Spread Use in Covid-19: A Multinational, Large-Scale Network Cohort and Self-Controlled Case Series Study. 2020. Available online: http://www.encepp.eu/encepp/viewResource.htm%3Fid=34498 (accessed on 22 May 2020).
- Chorin, E.; Wadhwani, L.; Magnani, S.; Dai, M.; Shulman, E.; Nadeau-Routhier, C.; Knotts, R.; Bar-Cohen, R.; Kogan, E.; Barbhaiya, C.; et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm 2020. [Google Scholar] [CrossRef] [PubMed]
- Sarayani, A.; Cicali, B.; Henriksen, C.H.; Brown, J.D. Safety signals for QT prolongation or torsades de pointes associated with azithromycin with or without chloroquine or hydroxychloroquine. Res. Soc. Adm. Pharm. 2020. [Google Scholar] [CrossRef]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Bondi-Zoccai, G.; Brown, T.S.; Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Page, R.L.; O’Bryant, C.L.; Cheng, D.; Dow, T.J.; Ky, B.; Stein, C.M.; Spencer, A.P.; Trupp, R.J.; Lindenfeld, J.; American Heart Association Clinical Pharmacology; et al. Drugs that may cause or exacerbate heart failure: A scientific statement from the American heart association. Circulation 2016, 134, e32–e69. [Google Scholar] [CrossRef]
- Kitzman, D.W. Diastolic dysfunction in the elderly. Genesis and diagnostic and therapeutic implications. Cardiol. Clin. 2000, 18, 597–617. [Google Scholar] [CrossRef]
- Hua, A.; O’Gallagher, K.; Sado, D.; Byrne, J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur. Heart J. 2020, 41, ehaa253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahevas, M.; Tran, V.-T.; Roumier, M.; Chabrol, A.; Paule, R.; Guillaud, C.; Gallien, S.; Lepeule, R.; Szwebel, T.-A.; Lescure, X.; et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: Results of a study using routinely collected data to emulate a target trial. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
Adverse Event SMQ Term | Number of Events | ROR (95% CI) |
---|---|---|
Noninfectious diarrhoea | 1150 | 1.51 (1.42–1.69) |
Retinal disorders | 577 | 3.9 (3.59–4.24) |
Hypertension | 544 | 0.98 (0.90–1.06) |
Interstitial lung disease | 522 | 3.27 (3.00–3.57) |
Gastrointestinal ulceration | 498 | 1.72 (1.58–188) |
Acute renal failure | 454 | 0.73 (0.67–0.80) |
Severe cutaneous adverse reactions | 388 | 2.32 (2.10–2.57) |
Gastrointestinal nonspecific dysfunction | 336 | 1.35 (1.21–1.51) |
Agranulocytosis | 307 | 1.40 (1.25–1.57) |
Oropharyngeal infections | 293 | 2.51 (2.24–2.82) |
Acute central respiratory depression | 270 | 1.05 (0.93–1.18) |
Cardiomyopathy | 259 | 3.04 (2.69–3.44) |
Chronic kidney disease | 244 | 0.52 (0.46–0.59) |
Anaphylactic reaction | 186 | 1.04 (0.90–1.20) |
Vasculitis | 176 | 3.04 (2.62–3.53) |
Conjunctival disorders | 159 | 1.79 (1.53–2.09) |
Pulmonary hypertension | 151 | 1.64 (1.39–1.92) |
Gastrointestinal nonspecific inflammation | 145 | 1.06 (0.90–1.25) |
Eosinophilic pneumonia | 111 | 2.80 (2.32–3.37) |
Ocular infections | 106 | 2.26 (1.87–2.74) |
Biliary tract disorders | 95 | 0.79 (0.65–0.97) |
Hyponatraemia | 68 | 0.65 (0.51–0.82) |
Pseudomembranous colitis | 66 | 1.48 (1.16–1.89) |
Proteinuria | 65 | 1.82 (1.43–2.32) |
Corneal disorders | 53 | 1.91 (1.46–2.50) |
Haemolytic disorders | 40 | 0.94 (0.69–1.28) |
Guillain-Barre syndrome | 24 | 2.42 (1.62–3.61) |
Adverse Events (AE) | AEs Due to Hydroxychloroquine | AEs Reported in Full Database (from 1998–2019) | ROR (95% CI) |
---|---|---|---|
Right ventricular hypertrophy | 15 | 577 | 6.68 (4.02–11.17) |
Left ventricular hypertrophy | 25 | 1688 | 3.81 (2.57–5.66) |
Diastolic dysfunction | 17 | 1236 | 3.54 (2.19–5.71) |
Pericarditis | 40 | 3324 | 3.09 (2.27–4.23) |
Torsade de pointes | 44 | 3704 | 3.05 (2.30–4.10) |
Congestive cardiomyopathy | 25 | 2160 | 2.98 (2.01–4.42) |
Ejection fraction decreased | 46 | 4921 | 2.41 (1.80–3.22) |
Right ventricular failure | 27 | 2897 | 2.40 (1.64–3.50) |
Atrioventricular block complete | 25 | 2794 | 2.30 (1.55–3.41) |
Electrocardiogram QT-Prolonged * | 115 | 14,148 | 2.09 (1.74–2.52) |
Pericardial Effusion | 52 | 8360 | 1.6 (1.2–2.1) |
Atrial Fibrillation | 115 | 32,481 | 0.9 (0.8–1.1) |
Myocardial Infarction | 260 | 123,095 | 0.5 (0.5–0.6) |
Type of Adverse Event | Right Ventricular Hypertrophy (%) | Torsades de Pointes (%) | Pericarditis (%) | Electrocardiogram QT-Prolonged (%) | Left Ventricular Hypertrophy (%) | Diastolic Dysfunction (%) | Congestive Cardiomyopathy (%) | Ejection Fraction Decreased (%) | RV Failure (%) | AV Block Complete (%) |
---|---|---|---|---|---|---|---|---|---|---|
Number of cases | 15 | 44 | 40 | 115 | 25 | 17 | 25 | 46 | 27 | 25 |
Indication | ||||||||||
SLE | 5 (33.33) | 10 (22.72) | 10 (25) | 27 (21.73) | 15 (60) | 7 (41.17) | 7 (28) | 14 (30.43) | 2 (7.40) | 8 (32) |
RA | 2 (13.33) | 6 (13.63) | 2 (5) | 12 (10.43) | 3 (12) | 5 (29.41) | 7 (28) | 4 (8.69) | 2 (7.40) | 4 (16) |
Other/Unknown | 8 (53.33) | 28 (63.63) | 28 (70) | 76 (66.08) | 7 (28) | 5 (29.41) | 11 (44) | 28 (60.86) | 23 (85.18) | 13 (52) |
Gender | ||||||||||
Male | 3 (20) | 6 (13.63) | 12 (30) | 13 (11.30) | 21 (84) | 2 (11.76) | 5 (20) | 11 (23.91) | 0 (0) | 2 (8) |
Female | 11 (73) | 33 (75) | 25 (62.5) | 81 (70.43) | 4 (16) | 15 (88.24) | 19 (76) | 34 (73.91) | 23 (85.18) | 21 (84) |
Unknown | 1 (6.66) | 5 (11.36) | 3 (7.5) | 21 (18.26) | 0 (0) | 0 (0) | 1 (4) | 1 (2.17) | 4 (14.81) | 2 (8) |
Age (Year) | ||||||||||
<18 | 0 (0) | 0 (0) | 0 (0) | 8 (6.9) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
18–44 | 0 (0) | 18 (40.90) | 7 (17.50) | 53 (46.08) | 1 (4) | 0 (0) | 5 (20) | 15 (32.60) | 8 (29.62) | 1 (4) |
45–64 | 6 (40) | 8 (18.18) | 17 (42.5) | 20 (17.39) | 13 (52) | 8 (47.06) | 9 (36) | 17 (36.95) | 5 (18.51) | 11 (44) |
>65 | 5 (33.33) | 11 (25) | 1 (2.5) | 9 (7.82) | 11 (44) | 7 (41.18) | 6 (24) | 12 (26.08) | 8 (29.62) | 6 (24) |
Unknown | 4 (26.66) | 7 (15.90) | 15 (37.5) | 25 (21.73) | 1 (4) | 2 (11.76) | 5 (20) | 2 (4.34) | 6 (22.22) | 7 (28) |
HCQ role code | ||||||||||
Primary Suspect | 11 (73) | 32 (72.72) | 8 (20) | 84 (73.04) | 24 (96) | 14 (82.35) | 17 (68) | 37 (80.43) | 4 (14.81) | 19 (76) |
Secondary Suspect | 2 (13.33) | 8 (18.18) | 7 (17.5) | 8 (6.95) | 0 (0) | 1 (5.88) | 0 (0) | 3 (6.52) | 5 (18.51) | 3 (12) |
Concomitant | 2 (13.33) | 4 (9.09) | 25 (62.5) | 22 (19.13) | 1 (4) | 2 (11.76) | 8 (32) | 6 (13.04) | 18 (66.66) | 3 (12) |
Interacting | 0 (0) | 0 (0) | 0 (0) | 1 (0.86) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Serious outcomes | ||||||||||
Hospitalization | 1 (6.66) | 30 (68.18) | 25 (62.5) | 52 (45.22) | 5 (20) | 7 (41.18) | 6 (24) | 19 (41.30) | 11 (40.74) | 9 (36) |
Life-threatening | 1 (6.66) | 9 (20.45) | 0 (0) | 42 (36.52) | 1 (4) | 0 (0) | 3 (12) | 5 (10.86) | 0 (0) | 2 (8) |
Death | 7 (46.66) | 5 (11.36) | 1 (2.5) | 0 (0) | 6 (24) | 3 (17.65) | 5 (20) | 12 (26.08) | 14 (51.85) | 4 (16) |
Other | 6 (40) | 0 (0) | 14 (35) | 21 (18.26) | 13 (52) | 7 (41.18) | 11 (44) | 10 (21.73) | 2 (7.40) | 10 (40) |
Reporter Country | ||||||||||
USA | 8 (53.33) | 28 (63.63) | 22 (55) | 66 (57.39) | 5 (20) | 5 (29.41) | 4 (16) | 25 (54.34) | 13 (48.14) | 8 (32) |
Canada | 5 (33.33) | 0 (0) | 1 (2.5) | 3 (2.60) | 15 (60) | 7 (41.18) | 0 (0) | 2 (4.34) | 1 (3.70) | 3 (12) |
Other Countries | 2 (13.33) | 15 (34.09) | 12 (30) | 41 (35.65) | 4 (16) | 5 (29.41) | 20 (80) | 13 (28.26) | 8 (29.62) | 10 (40) |
Not specified | 0 (0) | 1 (2.27) | 5 (12.5) | 5 (4.34) | 1 (4) | 0 (0) | 1 (4) | 6 (13.04) | 5 (18.51) | 4 (16) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.P.; Tousif, S.; Umbarkar, P.; Lal, H. A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation. J. Clin. Med. 2020, 9, 1867. https://doi.org/10.3390/jcm9061867
Singh AP, Tousif S, Umbarkar P, Lal H. A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation. Journal of Clinical Medicine. 2020; 9(6):1867. https://doi.org/10.3390/jcm9061867
Chicago/Turabian StyleSingh, Anand Prakash, Sultan Tousif, Prachi Umbarkar, and Hind Lal. 2020. "A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation" Journal of Clinical Medicine 9, no. 6: 1867. https://doi.org/10.3390/jcm9061867
APA StyleSingh, A. P., Tousif, S., Umbarkar, P., & Lal, H. (2020). A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation. Journal of Clinical Medicine, 9(6), 1867. https://doi.org/10.3390/jcm9061867