Early Respiratory Impairment and Pneumonia after Hybrid Laparoscopically Assisted Esophagectomy—A Comparison with the Open Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Surgery
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Surgical Procedure
3.3. Inflammation
3.4. General Outcome
3.5. Pulmonary Outcome
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 381, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Zingg, U.; Smithers, B.M.; Gotley, D.C.; Smith, G.; Aly, A.; Clough, A.; Esterman, A.J.; Jamieson, G.G.; Watson, D.I. Factors associated with postoperative pulmonary morbidity after esophagectomy for cancer. Ann. Surg. Oncol. 2011, 18, 1460–1468. [Google Scholar] [CrossRef]
- McCulloch, P.; Ward, J.; Tekkis, P.P. Mortality and morbidity in gastro-oesophageal cancer surgery: Initial results of ASCOT multicentre prospective cohort study. BMJ 2003, 327, 1192–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avendano, C.E.; Flume, P.A.; Silvestri, G.A.; King, L.B.; Reed, C.E. Pulmonary complications after esophagectomy. Ann. Thorac. Surg. 2002, 73, 922–926. [Google Scholar] [CrossRef]
- Reichert, M.; Schistek, M.; Uhle, F.; Koch, C.; Bodner, J.; Hecker, M.; Horbelt, R.; Grau, V.; Padberg, W.; Weigand, M.A.; et al. Ivor Lewis esophagectomy patients are particularly vulnerable to respiratory impairment—A comparison to major lung resection. Sci. Rep. 2019, 9, 11856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, M.K.; Durkin, A.E. Preoperative prediction of the risk of pulmonary complications after esophagectomy for cancer. J. Thorac. Cardiovasc. Surg. 2002, 123, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, S.; Wong, K.H.; Kwok, K.F.; Chu, K.M.; Wong, J. Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann. Surg. 2004, 240, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, N.S.; Strong, S.; McNair, A.G.K.; Brookes, S.T.; Crosby, T.; Griffin, S.M.; Blazeby, J.M. Reporting of short-term clinical outcomes after esophagectomy: A systematic review. Ann. Surg. 2012, 255, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Seesing, M.F.J.; Wirsching, A.; Van Rossum, P.S.N.; Weijs, T.J.; Ruurda, J.P.; Van Hillegersberg, R.; Low, D.E. Defining pneumonia after esophagectomy for cancer: Validation of the Uniform Pneumonia Score in a high volume center in North America. Dis. Esophagus 2018, 31, 1–8. [Google Scholar] [CrossRef]
- Bhayani, N.H.; Gupta, A.; Dunst, C.M.; Kurian, A.A.; Reavis, K.M.; Swanström, L.L. Esophagectomies with thoracic incisions carry increased pulmonary morbidity. JAMA Surg. 2013, 148, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Kinugasa, S.; Tachibana, M.; Yoshimura, H.; Ueda, S.; Fujii, T.; Dhar, D.K.; Nakamoto, T.; Nagasue, N. Postoperative pulmonary complications are associated with worse short- and long-term outcomes after extended esophagectomy. J. Surg. Oncol. 2004, 88, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Park, K.U.; Rubinfeld, I.; Hodari, A.; Hammoud, Z. Prolonged length of stay after esophageal resection: Identifying drivers of increased length of stay using the NSQIP database. J. Am. Coll. Surg. 2016, 223, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Howells, P.; Thickett, D.; Knox, C.; Park, D.; Gao, F.; Tucker, O.; Whitehouse, T.; Mcauley, D.; Perkins, G. The impact of the acute respiratory distress syndrome on outcome after oesophagectomy. Br. J. Anaesth. 2016, 117, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Klevebro, F.; Elliott, J.A.; Slaman, A.; Vermeulen, B.D.; Kamiya, S.; Rosman, C.; Gisbertz, S.S.; Boshier, P.R.; Reynolds, J.V.; Rouvelas, I.; et al. Cardiorespiratory Comorbidity and postoperative complications following esophagectomy: A european multicenter cohort study. Ann. Surg. Oncol. 2019, 26, 2864–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molena, D.; Mungo, B.; Stem, M.; Lidor, A.O. Incidence and risk factors for respiratory complications in patients undergoing esophagectomy for malignancy: A NSQIP analysis. Semin. Thorac. Cardiovasc. Surg. 2014, 26, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Boshier, P.R.; Anderson, O.; Hanna, G.B. Transthoracic versus transhiatal esophagectomy for the treatment of esophagogastric cancer: A meta-analysis. Ann. Surg. 2011, 254, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Reid, P.T.; Donnelly, S.C.; MacGregor, I.R.; Grant, I.S.; Cameron, E.; Walker, W.; Merrick, M.V.; Haslett, C. Pulmonary endothelial permeability and circulating neutrophil-endothelial markers in patients undergoing esophagogastrectomy. Crit. Care Med. 2000, 28, 3161–3165. [Google Scholar] [CrossRef]
- Shiozaki, A.; Fujiwara, H.; Okamura, H.; Murayama, Y.; Komatsu, S.; Kuriu, Y.; Ikoma, H.; Nakanishi, M.; Ichikawa, D.; Okamoto, K.; et al. Risk factors for postoperative respiratory complications following esophageal cancer resection. Oncol. Lett. 2012, 3, 907–912. [Google Scholar] [CrossRef]
- Boshier, P.R.; Marczin, N.; Hanna, G.B. Pathophysiology of acute lung injury following esophagectomy. Dis. Esophagus 2015, 28, 797–804. [Google Scholar] [CrossRef]
- Morita, M.; Yoshida, R.; Ikeda, K.; Egashira, A.; Oki, E.; Sadanaga, N.; Kakeji, Y.; Ichiki, Y.; Sugio, K.; Yasumoto, K.; et al. Acute lung injury following an esophagectomy for esophageal cancer, with special reference to the clinical factors and cytokine levels of peripheral blood and pleural drainage fluid. Dis. Esophagus 2008, 21, 30–36. [Google Scholar] [CrossRef]
- Mariette, C.; Markar, S.R.; Dabakuyo-Yonli, T.S.; Meunier, B.; Pezet, D.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrere, N.; et al. Hybrid minimally invasive esophagectomy for esophageal cancer. N. Engl. J. Med. 2019, 380, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Briez, N.; Piessen, G.; Torres, F.; Lebuffe, G.; Triboulet, J.P.; Mariette, C. Effects of hybrid minimally invasive oesophagectomy on major postoperative pulmonary complications. Br. J. Surg. 2012, 99, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- van der Sluis, P.C.; van der Horst, S.; May, A.M.; Schippers, C.; Brosens, L.A.A.; Joore, H.C.A.; Kroese, C.C.; Haj Mohammad, N.; Mook, S.; Vleggaar, F.P.; et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: A randomized controlled trial. Ann. Surg. 2019, 269, 621–630. [Google Scholar] [CrossRef]
- Glatz, T.; Marjanovic, G.; Kulemann, B.; Sick, O.; Hopt, U.T.; Hoeppner, J. Hybrid minimally invasive esophagectomy vs. open esophagectomy: A matched case analysis in 120 patients. Langenbeck Arch. Surg. 2017, 402, 323–331. [Google Scholar] [CrossRef]
- Berlth, F.; Plum, P.S.; Chon, S.-H.; Gutschow, C.A.; Bollschweiler, E.; Holscher, A.H. Total minimally invasive esophagectomy for esophageal adenocarcinoma reduces postoperative pain and pneumonia compared to hybrid esophagectomy. Surg. Endosc. 2018, 32, 4957–4965. [Google Scholar] [CrossRef] [PubMed]
- Biere, S.S.A.Y.; van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.G.; Hollmann, M.W.; de Lange, E.S.M.; et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: A multicentre, open-label, randomised controlled trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef]
- Bonavina, L.; Scolari, F.; Aiolfi, A.; Bonitta, G.; Sironi, A.; Saino, G.; Asti, E. Early outcome of thoracoscopic and hybrid esophagectomy: Propensity-matched comparative analysis. Surgery 2016, 159, 1073–1081. [Google Scholar] [CrossRef]
- Dantoc, M.M.; Cox, M.R.; Eslick, G.D. Does minimally invasive esophagectomy (MIE) provide for comparable oncologic outcomes to open techniques? A systematic review. J. Gastrointest. Surg. 2012, 16, 486–494. [Google Scholar] [CrossRef]
- Lee, J.-M.; Cheng, J.-W.; Lin, M.-T.; Huang, P.-M.; Chen, J.-S.; Lee, Y.-C. Is there any benefit to incorporating a laparoscopic procedure into minimally invasive esophagectomy? The impact on perioperative results in patients with esophageal cancer. World J. Surg. 2011, 35, 790–797. [Google Scholar] [CrossRef]
- Booka, E.; Tsubosa, Y.; Haneda, R.; Ishii, K. Ability of laparoscopic gastric mobilization to prevent pulmonary complications after open thoracotomy or thoracoscopic esophagectomy for esophageal cancer: A systematic review and meta-analysis. World J. Surg. 2019, 44, 980–989. [Google Scholar] [CrossRef]
- Yun, J.K.; Chong, B.K.; Kim, H.J.; Lee, I.-S.; Gong, C.-S.; Kim, B.S.; Lee, G.D.; Choi, S.; Kim, H.R.; Kim, D.K.; et al. Comparative outcomes of robot-assisted minimally invasive versus open esophagectomy in patients with esophageal squamous cell carcinoma: A propensity score-weighted analysis. Dis. Esophagus Off. J. Int. Soc. Dis. Esophagus 2019, 33, doz071. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Li, F.; Xu, C.; Fan, X.; Xiang, B.; Huang, L.; Jiang, X.; Yang, G. Thoracoscopic treatment of late-presenting congenital diaphragmatic hernia in infants and children. J. Laparoendosc. Adv. Surg. Tech. A 2019, 29, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Sihag, S.; Wright, C.D.; Wain, J.C.; Gaissert, H.A.; Lanuti, M.; Allan, J.S.; Mathisen, D.J.; Morse, C.R. Comparison of perioperative outcomes following open versus minimally invasive Ivor Lewis oesophagectomy at a single, high-volume centre. Eur. J. Cardio Thorac. Surg. 2012, 42, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozaki, I.; Mizusawa, J.; Kato, K.; Igaki, H.; Ito, Y.; Daiko, H.; Yano, M.; Udagawa, H.; Nakagawa, S.; Takagi, M.; et al. Impact of laparoscopy on the prevention of pulmonary complications after thoracoscopic esophagectomy using data from JCOG0502: A prospective multicenter study. Surg. Endosc. 2018, 32, 651–659. [Google Scholar] [CrossRef]
- Scarpa, M.; Cavallin, F.; Saadeh, L.M.; Pinto, E.; Alfieri, R.; Cagol, M.; Da Roit, A.; Pizzolato, E.; Noaro, G.; Pozza, G.; et al. Hybrid minimally invasive esophagectomy for cancer: Impact on postoperative inflammatory and nutritional status. Dis. Esophagus Off. J. Int. Soc. Dis. Esophagus 2016, 29, 1064–1070. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin definition. JAMA J. Am. Med. Assoc. 2012, 307, 2526–2533. [Google Scholar]
- Weijs, T.J.; Seesing, M.F.J.; Van Rossum, P.S.N.; Koëter, M.; Van Der Sluis, P.C.; Luyer, M.D.P.; Ruurda, J.P.; Nieuwenhuijzen, G.A.P.; Hillegersberg, R. Van internal and external validation of a multivariable model to define hospital-acquired pneumonia after esophagectomy. J. Gastrointest. Surg. 2016, 20, 680–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecker, A.; Reichert, M.; Reuss, C.J.; Schmoch, T.; Riedel, J.G.; Schneck, E.; Padberg, W.; Weigand, M.A.; Hecker, M. Intra-abdominal sepsis: New definitions and current clinical standards. Langenbeck Arch. Surg. 2019, 404, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Rubinkiewicz, M.; Witowski, J.; Su, M.; Major, P.; Pedziwiatr, M. Enhanced recovery after surgery (ERAS) programs for esophagectomy. J. Thorac. Dis. 2019, 11, S685–S691. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Ge, K.; Yang, J.-L. Efficacy of hybrid minimally invasive esophagectomy vs open esophagectomy for esophageal cancer: A meta-analysis. World J. Gastrointest. Oncol. 2019, 11, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Weijs, T.J.; Ruurda, J.P.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van Hillegersberg, R.; Bleys, R.L.A.W. Topography and extent of pulmonary vagus nerve supply with respect to transthoracic oesophagectomy. J. Anat. 2015, 227, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedy, J.; Zicha, J.; Kunes, J.; Jendelova, P.; Sykova, E. Mechanisms of neurogenic pulmonary edema development. Physiol. Res. 2008, 57, 499–506. [Google Scholar] [PubMed]
- Busl, K.M.; Bleck, T.P. Neurogenic pulmonary edema. Crit. Care Med. 2015, 43, 1710–1715. [Google Scholar] [CrossRef]
- Weijs, T.J.; Ruurda, J.P.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van der Horst, S.; Bleys, R.L.A.W.; van Hillegersberg, R. Preserving the pulmonary vagus nerve branches during thoracoscopic esophagectomy. Surg. Endosc. 2016, 30, 3816–3822. [Google Scholar] [CrossRef]
- Akiyama, H.; Tsurumaru, M.; Ono, Y.; Udagawa, H.; Kajiyama, Y. Esophagectomy without thoracotomy with vagal preservation. J. Am. Coll. Surg. 1994, 178, 83–85. [Google Scholar]
- Banki, F.; Mason, R.J.; DeMeester, S.R.; Hagen, J.A.; Balaji, N.S.; Crookes, P.F.; Bremner, C.G.; Peters, J.H.; DeMeester, T.R. Vagal-sparing esophagectomy: A more physiologic alternative. Ann. Surg. 2002, 236, 324–326. [Google Scholar] [CrossRef]
- Peyre, C.G.; DeMeester, S.R.; Rizzetto, C.; Bansal, N.; Tang, A.L.; Ayazi, S.; Leers, J.M.; Lipham, J.C.; Hagen, J.A.; DeMeester, T.R. Vagal-sparing esophagectomy: The ideal operation for intramucosal adenocarcinoma and barrett with high-grade dysplasia. Ann. Surg. 2007, 246, 664–665. [Google Scholar] [CrossRef]
- Fujita, H.; Hawahara, H.; Yamana, H.; Shirohazu, G.; Yoshimura, Y.; Minami, T.; Negoto, Y.; Irie, H.; Shima, I.; Machi, J. Mediastinal lymphnode dissection procedure during esophageal cancer operation—Carefully considered for preserving respiratory function. Jpn. J. Surg. 1988, 18, 31–34. [Google Scholar] [CrossRef]
- DeMeester, S.R. Vagal-sparing esophagectomy: Is it a useful addition? Ann. Thorac. Surg. 2010, 89, 2156–2158. [Google Scholar] [CrossRef]
- D’Journo, X.B.; Michelet, P.; Marin, V.; Diesnis, I.; Blayac, D.; Doddoli, C.; Bongrand, P.; Thomas, P.A. An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur. J. Cardiothorac. Surg. 2010, 37, 1144–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, A.; Takeuchi, H.; Matsuda, S.; Ogura, M.; Miyasho, T.; Nakamura, R.; Takahashi, T.; Wada, N.; Kawakubo, H.; Saikawa, Y.; et al. Factors affecting cytokine change after esophagectomy for esophageal cancer. Ann. Surg. Oncol. 2015, 22, 3130–3135. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, T.; Saito, T.; Shigemitsu, Y.; Kinoshita, T.; Shiraishi, N.; Kitano, S. Relation between tumour necrosis factor alpha and interleukin 1beta producing capacity of peripheral monocytes and pulmonary complications following oesophagectomy. Br. J. Surg. 1998, 85, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Babic, B.; Tagkalos, E.; Gockel, I.; Corvinus, F.; Hadzijusufovic, E.; Hoppe-Lotichius, M.; Lang, H.; van der Sluis, P.C.; Grimminger, P.P. C-reactive protein levels after esophagectomy are associated with increased surgical trauma and complications. Ann. Thorac. Surg. 2020, 109, 1574–1583. [Google Scholar] [CrossRef]
- Schroder, C.; Engenhart-Cabillic, R.; Kirschner, S.; Blank, E.; Buchali, A. Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas—An automated analysis of follow up CT scans. Radiat. Oncol. 2019, 14, 72. [Google Scholar] [CrossRef]
- Reynolds, J.V.; Ravi, N.; Hollywood, D.; Kennedy, M.J.; Rowley, S.; Ryan, A.; Hughes, N.; Carey, M.; Byrne, P. Neoadjuvant chemoradiation may increase the risk of respiratory complications and sepsis after transthoracic esophagectomy. J. Thorac. Cardiovasc. Surg. 2006, 132, 549–555. [Google Scholar] [CrossRef] [Green Version]
Variables | Conventional Open Esophagectomy (n = 105) | Laparoscopically Assisted Esophagectomy (n = 38) | p-Value |
---|---|---|---|
Male gender (n) | 86 (81.9%) | 33 (86.8%) | 0.62 |
Age (years) | 64 (40–86) | 62.5 (42–77) | 0.34 |
BMI (kg/m2) | 24.5 (15.6–41.3) | 24.1 (16.2–31.7) | 0.35 |
ASA (median) | 3 (1–4) | 2 (1–3) | 0.43 |
1 (n) | 5 | 2 | |
2 (n) | 44 | 18 | |
3 (n) | 52 | 18 | |
4 (n) | 4 | 0 | |
History of malignancy (n) | 19 (18.1%) | 5 (13.2%) | 0.62 |
Arterial hypertension (n) | 67 (63.8%) | 16 (42.1%) | 0.02 |
Coronary artery disease (n) | 18 (17.1%) | 7 (18.4%) | 0.81 |
Chronic lung disease (n) | 19 (18.1%) | 7 (18.4%) | 1 |
Chronic kidney failure (n) | 7 (6.7%) | 3 (7.9%) | 0.73 |
Induction therapy (n) | 57 (54.3%) | 22 (51.9%) | 0.85 |
Chemo | 22 | 9 | |
Radio–Chemo | 35 | 13 | |
Indication (n) | 0.65 | ||
Malignancy | 100% | 100% | |
Adenocarcinoma | 62 (59.0%) | 24 (63.2%) | |
Squamous cell | 40 (38.1%) | 12 (31.6%) | |
carcinoma | |||
Other | 3 (2.9%) * | 2 (5.3%) # | |
Pathological tumor stage (n) § | |||
T 0 | 13 (12.6%) | 7 (19.4%) | 0.71 |
T 1 | 13 (12.6%) | 3 (8.3%) | |
T 2 | 30 (29.1%) | 11 (30.6%) | |
T 3 | 46 (44.7%) | 14 (38.9%) | |
T 4 | 1 (1.0%) | 1 (2.8%) | |
N 0 | 52 (50.5%) | 18 (50%) | 1 |
N + | 51 (49.5%) | 18 (50%) | |
M + $ | 11 (10.7%) | 1 (2.3%) | 0.3 |
Variables | Conventional Open Esophagectomy (n = 105) | Laparoscopically Assisted Esophagectomy (n = 38) | p-Value |
---|---|---|---|
Main procedure | 0.19 | ||
Thoracic anastomosis | 93 (88.6%) | 37 (97.4%) | |
Cervical anastomosis | 12 (11.4%) | 1 (2.6%) | |
Lymph node dissection | 100% | 100% | 1 |
Relevant abdomino/thoracic extended procedures (additional to main procedure) (n) | n patients = 35 (33.3%) | n patients = 10 (26.3%) | 0.54 |
esophagogastrectomy: 1 (1.0%) * | esophagogastrectomy: 0 | 1 | |
Major lung resection: 1 (1.0%) | Major lung resection: 1 (2.6%) | 0.46 | |
Minor lung resection: 7 (6.7) | Minor lung resection: 4 (10.5%) | 0.48 | |
Minor liver resection: 13 (12.4%) | Minor liver resection: 1 (2.6%) | 0.11 | |
Jejunum catheter: 4 (3.8%) | Jejunum catheter: 0 | 0.57 | |
Cholecystectomy: 3 (2.9%) | Cholecystectomy: 1 (2.6%) | 1 | |
Colon resection: 1 (1.0%) | Colon resection: 2 (5.3%) | 0.17 | |
Appendectomy: 2 (1.9%) | Appendectomy: 0 | 1 | |
Omentectomy: 4 (3.8%) | Omentectomy: 1 (2.6%) | 1 | |
Left adrenalectomy: 2 (1.9%) | Left adrenalectomy: 0 | 1 | |
Other minor resections: 3 (2.9%) | Other minor resections: 2 (5.3%) | 0.61 | |
Duration of the thoracic part of Ivor Lewis procedure (min) # | 118 (45–304) § | 146.5 (86–423) | 0.004 |
Total duration of surgery (min) | 288 (177–537) | 315 (190–635) | 0.07 |
IO Blood loss (mL) | 600 (100–4800) | 432.5 (50–2500) | 0.01 |
IO transfusion (n patients) & | 28 (26.7%) | 7 (18.4%) | 0.38 |
Peridural anesthesia (n) | 76 (72.4%) | 30 (78.9%) | 0.52 |
Variables | Conventional Open Esophagectomy (n = 105) | Laparoscopically Assisted Esophagectomy (n = 38) | p-Value | ||
---|---|---|---|---|---|
Leukocytes (giga/L) | missing | missing | |||
values | values | ||||
pre–operatively | 6.6 (2.0–16.4) | – | 6.7 (3.6–15.5) | – | 0.83 |
POD 0 (on arrival at ICU) | 9.3 (3.0–29.6) | – | 7.8 (4.3–28.9) | 1 | 0.54 |
POD 1 | 10.5 (4.0–23.6) | – | 10.2 (6.2–19.1) | 1 | 0.72 |
POD 2 | 11.4 (1.8–21.9) | – | 11.4 (3.7–24.6) | – | 0.85 |
POD 3 | 9.5 (1.9–34.1) | 4 | 9.0 (5.5–21.5) | 4 | 0.57 |
POD 4 | 8.1 (2.7–106.0) | 12 * | 7.9 (3.9–17.9) | 6 | 0.37 |
POD 5 | 7.8 (3.4–22.0) | 20 * | 7.8 (3.9–16.3) | 9 | 0.46 |
POD 6 | 9.1 (3.4–26.1) | 24 # | 9.0 (4.8–17.6) | 14 | 0.4 |
POD 7 | 9.9 (3.0–29.0) | 26 # | 9.3 (5.4–23.0) | 13 | 0.72 |
POD 8 | 11.0 (4.1–33.3) | 32 # | 10.0 (5.9–22.5) | 17 | 0.41 |
POD 9 | 12.3 (4.5–49.7) | 29 # | 10.4 (5.3–30.2) | 16 | 0.37 |
POD 10 | 12.6 (4.7–38.7) | 36 § & | 10.4 (4.2–36.7) | 18 € | 0.29 |
at discharge | 8.1 (3.1–19.0) | 13 $ | 6.9 (4.2–15.7) | 2 # | 0.07 |
C–reactive protein (mg/L) | missing values | missing values | |||
pre–operatively | 3.8 (0.5–159.1) | – | 2.4 (0.5–124.4 | – | 0.53 |
POD 0 (on arrival at ICU) | 6.8 (0–256.0) | 5 | 3.1 (0.5–76.6) | 2 | 0.05 |
POD 1 | 94.4 (31.6–226.2) | – | 78.0 (31.2–205.2) | 1 | 0.07 |
POD 2 | 199.2 (55.3–359.4) | – | 192.9 (97.7–329.3) | – | 0.6 |
POD 3 | 185.7 (26.3–403.9) | 4 | 161.3 (69.2–359.5) | 4 | 0.26 |
POD 4 | 159.8 (30.1–410.0) | 12 * | 129.0 (64.0–391.0) | 6 | 0.15 |
POD 5 | 136.4 (25.4–539.1) | 20 * | 135.6 (32.7–287.7) | 9 | 0.5 |
POD 6 | 129.8 (14.1–423.2) | 23 # | 119.7 (26.6–281.4) | 14 | 0.66 |
POD 7 | 123.1 (8.3–445.1) | 26 # | 121.9 (27.4–333.4) | 13 | 0.74 |
POD 8 | 144.5 (6.0–491.9) | 33 # | 131.5 (30.4–361.7) | 17 | 0.72 |
POD 9 | 141.9 (5.6–446.9) | 30 # | 138.0 (27.1–283.6) | 18 | 0.97 |
POD 10 | 153.4 (8.1–393.9) | 36 § & | 109.3 (4.9–302.2) | 18 € | 0.19 |
at discharge | 32.0 (1.4–145.1) | 13 $ | 34.4 (4.9–144.9) | 2 # | 0.31 |
Variables | Conventional Open Esophagectomy (n = 105) | Laparoscopically Assisted Esophagectomy (n = 38) | p-Value |
---|---|---|---|
PO hospital stay Total (d) * | 18 (9–141) | 14.5 (9–75) | 0.14 |
Initial PO stay at the ICU (d) * | 5 (1–76) | 4 (1–35) | 0.15 |
Return to ICU (n patients) | 17 (16.2%) | 6 (15.8%) | 1 |
Cumulative PO stay at the ICU (d) * | 5.5 (1–84) | 5 (1–35) | 0.16 |
Cumulative perioperative mechanical ventilation (h) | 17.3 (4.8–2280) | 12.6 (5.3–26.3) | 0.05 |
Rate of invasive PO ventilation (n) # | |||
POD 0 (on arrival at ICU) | 83 (79.0%) | 32 (84.2%) | 0.64 |
POD 1 | 46 (43.8%) | 17 (44.7%) | 1 |
POD 2 | 12 (11.4%) | 2 (5.3%) | 0.35 |
POD 3 | 18 (17.1%) | 1 (2.6%) | 0.03 |
POD 4 | 20 (19.2%) § | 3 (7.9%) | 0.13 |
POD 5 | 21 (20.2%) § | 3 (7.9%) | 0.13 |
POD 6 | 21 (20.4%) $ | 3 (7.9%) | 0.13 |
POD 7 | 26 (25.2%) $ | 1 (2.6%) | 0.001 |
POD 8 | 23 (22.3%) $ | 2 (5.3%) | 0.02 |
POD 9 | 20 (19.4%) $ | 1 (2.6%) | 0.01 |
POD 10 | 20 (19.6%) & | 2 (5.3%) | 0.04 |
PO catecholamine administration (n patients) # € | |||
POD 0 | 48 (45.7%) | 14 (36.8%) | 0.45 |
POD 1 | 46 (43.8%) | 10 (26.3%) | 0.08 |
POD 2 | 32 (30.5%) | 9 (23.7%) | 0.53 |
POD 3 | 29 (27.6%) | 6 (15.8%) | 0.19 |
POD 4 | 22 (21.2%) § | 5 (13.2%) | 0.34 |
POD 5 | 17 (16.3%) § | 4 (10.5%) | 0.59 |
POD 6 | 16 (15.5%) $ | 4 (10.5%) | 0.59 |
POD 7 | 20 (19.4%) $ | 3 (7.9%) | 0.13 |
POD 8 | 16 (15.5%) $ | 2 (5.3%) | 0.16 |
POD 9 | 16 (15.5%) $ | 2 (5.3%) | 0.16 |
POD 10 | 19 (18.6%) & | 3 (7.9%) | 0.19 |
Re–do (revision) surgery during POD 1–30 | 17 (16.2%) | 3 (7.9%) | 0.28 |
Anastomotic complications (n patients) ¶ | 20 (19.0%) | 5 (13.2%) | 0.47 |
PO in–hospital mortality (n) ¥ | 13 (12.4%) | 2 (5.3%) | 0.36 |
Variables | Conventional Open Esophagectomy (n = 105) | Laparoscopically–Assisted Esophagectomy (n = 38) | p-Value |
---|---|---|---|
Pneumonia (n patients) * | 48 (45.7%) | 10 (26.3%) | 0.05 |
Pneumonia diagnosis on POD | 5 (1–25) | 8.5 (3–14) | 0.03 |
Tracheotomy (n patients) | 19 (18.1%) | 2 (5.3%) | 0.06 |
Initial extubation during first 12 h postoperatively (n patients) | 82 (78.1%) | 30 (78.9%) | 1 |
Re–intubation (n patients) # | 31 (29.5%) | 5 (13.2%) | 0.05 |
Perioperative PaO2/FiO2 < 300 mm Hg (n patients) § $ | |||
Overall during POD 1–10 | 78 (74.3%) | 32 (84.2%) | 0.27 |
First intraoperative | 25 (24.0%) & | 5 (13.2%) | 0.25 |
Last intraoperative | 61 (58.7%) & | 25 (65.8%) | 0.56 |
POD 0 (on arrival at ICU) | 39 (37.1%) | 10 (26.3%) | 0.32 |
POD 1 | 38 (36.2%) | 10 (26.3%) | 0.32 |
POD 2 | 50 (47.6%) | 14 (36.8%) | 0.34 |
POD 3 | 44 (41.9%) | 7 (18.4%) | 0.01 |
POD 4 | 30 (28.8%) ß | 8 (21.1%) | 0.4 |
POD 5 | 29 (27.9%) ß | 4 (10.5%) | 0.04 |
POD 6 | 28 (27.2%) € | 7 (18.4%) | 0.38 |
POD 7 | 27 (26.2%) € | 4 (10.5%) | 0.07 |
POD 8 | 26 (25.2%) € | 7 (18.4%) | 0.5 |
POD 9 | 24 (23.3%) € | 4 (10.5%) | 0.1 |
POD 10 | 23 (22.5%) ¶ | 3 (7.9%) | 0.05 |
PaO2/FiO2 Ratio | |||||
---|---|---|---|---|---|
Last IO (mm Hg) | POD 0 (mm Hg) | POD 1 (mm Hg) | POD 2 (mm Hg) | POD 3 (mm Hg) | |
Total duration of surgery (min) | |||||
OE-group | |||||
Correlation coefficient | 0.042 | −0.017 | −0.146 | −0.194 | −0.267 |
p-value (two-sided) | 0.67 | 0.87 | 0.14 | 0.05 | 0.01 |
Total duration of surgery (min) | |||||
LAE-group | |||||
Correlation coefficient | −0.079 | 0.116 | −0.047 | −0.028 | −0.187 |
p-value (two-sided) | 0.64 | 0.49 | 0.78 | 0.87 | 0.26 |
Duration of the thoracic part (min) | |||||
OE-group | |||||
Correlation coefficient | −0.014 | −0.017 | −0.136 | −0.128 | −0.205 |
p-value (two-sided) | 0.89 | 0.87 | 0.17 | 0.20 | 0.04 |
Duration of the thoracic part (min) | |||||
LAE-group | |||||
Correlation coefficient | −0.253 | 0.003 | −0.050 | −0.115 | −0.008 |
p-value (two-sided) | 0.13 | 0.98 | 0.77 | 0.49 | 0.96 |
Duration of the abdominal part (min) | |||||
OE-group | |||||
Correlation coefficient | 0.017 | −0.035 | −0.098 | −0.114 | −0.242 |
p-value (two-sided) | 0.86 | 0.72 | 0.32 | 0.25 | 0.01 |
Duration of the abdominal part (min) | |||||
LAE-group | |||||
Correlation coefficient | 0.085 | 0.117 | 0.064 | 0.165 | −0.178 |
p-value (two-sided) | 0.61 | 0.48 | 0.70 | 0.32 | 0.29 |
IO blood loss (mL) | |||||
OE-group | |||||
Correlation coefficient | 0.201 | 0.117 | −0.062 | −0.076 | −0.209 |
p-value (two-sided) | 0.04 | 0.23 | 0.53 | 0.44 | 0.03 |
IO blood loss (mL) | |||||
LAE-group | |||||
Correlation coefficient | 0.073 | 0.011 | −0.039 | −0.045 | 0.056 |
p-value (two-sided) | 0.66 | 0.95 | 0.81 | 0.79 | 0.74 |
IO transfusion (n patients) | |||||
OE-group | |||||
Correlation coefficient | 0.137 | 0.164 | 0.190 | 0.086 | −0.090 |
p-value (two-sided) | 0.17 | 0.09 | 0.05 | 0.38 | 0.36 |
IO transfusion (n patients) | |||||
LAE-group | |||||
Correlation coefficient | 0.170 | 0.160 | 0.245 | 0.121 | 0.174 |
p-value (two-sided) | 0.31 | 0.34 | 0.14 | 0.47 | 0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reichert, M.; Lang, M.; Hecker, M.; Schneck, E.; Sander, M.; Uhle, F.; Weigand, M.A.; Askevold, I.; Padberg, W.; Grau, V.; et al. Early Respiratory Impairment and Pneumonia after Hybrid Laparoscopically Assisted Esophagectomy—A Comparison with the Open Approach. J. Clin. Med. 2020, 9, 1896. https://doi.org/10.3390/jcm9061896
Reichert M, Lang M, Hecker M, Schneck E, Sander M, Uhle F, Weigand MA, Askevold I, Padberg W, Grau V, et al. Early Respiratory Impairment and Pneumonia after Hybrid Laparoscopically Assisted Esophagectomy—A Comparison with the Open Approach. Journal of Clinical Medicine. 2020; 9(6):1896. https://doi.org/10.3390/jcm9061896
Chicago/Turabian StyleReichert, Martin, Maike Lang, Matthias Hecker, Emmanuel Schneck, Michael Sander, Florian Uhle, Markus A. Weigand, Ingolf Askevold, Winfried Padberg, Veronika Grau, and et al. 2020. "Early Respiratory Impairment and Pneumonia after Hybrid Laparoscopically Assisted Esophagectomy—A Comparison with the Open Approach" Journal of Clinical Medicine 9, no. 6: 1896. https://doi.org/10.3390/jcm9061896
APA StyleReichert, M., Lang, M., Hecker, M., Schneck, E., Sander, M., Uhle, F., Weigand, M. A., Askevold, I., Padberg, W., Grau, V., & Hecker, A. (2020). Early Respiratory Impairment and Pneumonia after Hybrid Laparoscopically Assisted Esophagectomy—A Comparison with the Open Approach. Journal of Clinical Medicine, 9(6), 1896. https://doi.org/10.3390/jcm9061896