Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy
Abstract
:1. Background
2. Methods
2.1. Patients
2.2. Data Collection
2.3. Vascular Risk Factors
2.4. Measurement of Blood Glucose
2.5. Clinical Assessment
2.5.1. Trial of ORG 10,172 in Acute Stroke Treatment classification
2.5.2. National Institute of Health Stroke Scale Score
2.5.3. Modified Rankin Scale
2.5.4. Hemorrhagic Transformation
2.6. Thrombectomy Procedure
2.7. Outcome Measures
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association of Hyperglycemic Patterns with Clinical Outcomes in Univariate Analysis
3.3. Association of Hyperglycemic Patterns with Clinical Outcomes in Multivariate Analysis
3.4. Predictive Value of Hyperglycemic Patterns
4. Discussions
Author Contributions
Conflicts of Interest
References
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American heart association/American stroke association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; van der Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. REVASCAT Trial Investigators. Thrombectomy within 8 h after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Merlino, G.; Sponza, M.; Petralia, B.; Vit, A.; Gavrilovic, V.; Pellegrin, A.; Rana, M.; Cancelli, I.; Naliato, S.; Lorenzut, S.; et al. Short and long-term outcomes after combined intravenous thrombolysis and mechanical thrombectomy versus direct mechanical thrombectomy: A prospective single-center study. J. Thromb. Thrombolysis 2017, 44, 203–209. [Google Scholar] [CrossRef]
- Sallustio, F.; Koch, G.; Alemseged, F.; Konda, D.; Fabiano, S.; Pampana, E.; Morosetti, D.; Gandini, R.; Diomedi, M. Effect of mechanical thrombectomy alone or in combination with intravenous thrombolysis for acute ischemic stroke. J. Neurol. 2018, 265, 2875–2880. [Google Scholar] [CrossRef]
- Minnerup, J.; Wersching, H.; Teuber, A.; Wellmann, J.; Eyding, J.; Weber, R.; Reimann, G.; Weber, W.; Krause, L.U.; Kurth, T.; et al. Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: A prospective observational study. Stroke 2016, 47, 1584–1592. [Google Scholar] [CrossRef]
- Cho, B.H.; Kim, J.T.; Lee, J.S.; Park, M.S.; Kang, K.W.; Choi, K.H.; Lee, S.H.; Choi, S.M.; Kim, B.C.; Kim, M.K.; et al. Associations of various blood pressure parameters with functional outcomes after endovascular thrombectomy in acute ischaemic stroke. Eur. J. Neurol. 2019, 26, 1019–1027. [Google Scholar] [CrossRef]
- Maïer, B.; Dargazanli, C.; Bourcier, R.; Kyheng, M.; Labreuche, J.; Mosimann, P.J.; Puccinelli, F.; Taylor, G.; Le Guen, M.; Riem, R.; et al. Effect of steady and dynamic blood pressure parameters during thrombectomy according to the collateral status. Stroke 2020, 51, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Meinel, T.R.; Kaesmacher, J.; Mordasini, P.; Mosimann, P.J.; Jung, S.; Arnold, M.; Heldner, M.R.; Michel, P.; Hajdu, S.D.; Ribo, M.; et al. Outcome, efficacy and safety of endovascular thrombectomy in ischaemic stroke according to time to reperfusion: Data from a multicentre registry. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419835708. [Google Scholar] [CrossRef] [PubMed]
- Baird, T.A.; Parsons, M.W.; Phan, T.; Butcher, K.S.; Desmond, P.M.; Tress, B.M.; Colman, P.G.; Chambers, B.R.; Davis, S.M. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke 2003, 34, 2208–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, B.; Castillo, J.; San José, B.; Leira, R.; Serena, J.; Vivancos, J.; Dávalos, A.; Nuñez, A.G.; Egido, J.; Díez-Tejedor, E. Stroke Project of the Cerebrovascular Diseases Study Group, Spanish Society of Neurology The prognostic value of capillary glucose levels in acute stroke: The GLycemia in Acute Stroke (GLIAS) study. Stroke 2009, 40, 562–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capes, S.E.; Hunt, D.; Malmberg, K.; Pathak, P.; Gerstein, H.C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: A systematic overview. Stroke 2001, 32, 2426–2432. [Google Scholar] [CrossRef] [Green Version]
- Rom, S.; Zuluaga-Ramirez, V.; Gajghate, S.; Seliga, A.; Winfield, M.; Heldt, N.A.; Kolpakov, M.A.; Bashkirova, Y.V.; Sabri, A.K.; Persidsky, Y. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol. Neurobiol. 2019, 56, 1883–1896. [Google Scholar] [CrossRef]
- Desilles, J.P.; Syvannarath, V.; Ollivier, V.; Journé, C.; Delbosc, S.; Ducroux, C.; Boisseau, W.; Louedec, L.; Di Meglio, L.; Loyau, S.; et al. Exacerbation of thromboinflammation by hyperglycemia precipitates cerebral infarct growth and hemorrhagic transformation. Stroke 2017, 48, 1932–1940. [Google Scholar] [CrossRef]
- Robbins, N.M.; Swanson, R.A. Opposing effects of glucose on stroke and reperfusion injury: Acidosis, oxidative stress, and energy metabolism. Stroke 2014, 45, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Won, S.J.; Tang, X.N.; Suh, S.W.; Yenari, M.A.; Swanson, R.A. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by Increasing superoxide production. Ann. Neurol. 2011, 70, 583–590. [Google Scholar] [CrossRef]
- Poppe, A.Y.; Majumdar, S.R.; Jeerakathil, T.; Ghali, W.; Buchan, A.M.; Hill, M.D. Canadian Alteplase for Stroke Effectiveness Study Investigators. Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care 2009, 32, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T.; Jahan, R.; Saver, J.L. SWIFT Investigators. Impact of glucose on outcomes in patients treated with mechanical thrombectomy: A post hoc analysis of the solitaire flow restoration with the intention for thrombectomy study. Stroke 2016, 47, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Goyal, N.; Tsivgoulis, G.; Pandhi, A.; Dillard, K.; Katsanos, A.H.; Magoufis, G.; Chang, J.J.; Zand, R.; Hoit, D.; Safouris, A.; et al. Admission hyperglycemia and outcomes in large vessel occlusion strokes treated with mechanical thrombectomy. J. Neurointerv. Surg. 2018, 10, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Osei, E.; den Hertog, H.M.; Berkhemer, O.A.; Fransen, P.S.S.; Roos, Y.B.W.E.M.; Beumer, D.; van Oostenbrugge, R.J.; Schonewille, W.J.; Boiten, J.; Zandbergen, A.A.M.; et al. MR CLEAN Investigators. Admission glucose and effect of intra-arterial treatment in patients with acute ischemic stroke. Stroke 2017, 48, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, Á.; Brown, S.; Amaro, S.; Hill, M.D.; Muir, K.W.; Dippel, D.W.J.; van Zwam, W.; Butcher, K.; Ford, G.A.; den Hertog, H.M.; et al. HERMES Collaborators. Glucose modifies the effect of endovascular thrombectomy in patients with acute stroke. Stroke 2019, 50, 690–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia: An essential survival response! Crit. Care 2013, 17, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Ren, Y.; Cui, X.; Liu, P.; Chen, F.; Zhao, H.; Han, Z.; Huang, Y.; Ma, Q.; Luo, Y. Postoperative hyperglycemia predicts symptomatic intracranial hemorrhage after endovascular treatment in patients with acute anterior circulation large artery occlusion. J. Neurol. Sci. 2020, 409, 116588. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.; Kaste, M. Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-II trial. Stroke 2008, 39, 2749–2755. [Google Scholar] [CrossRef] [Green Version]
- Putaala, J.; Sairanen, T.; Meretoja, A.; Lindsberg, P.J.; Tiainen, M.; Liebkind, R.; Strbian, D.; Atula, S.; Artto, V.; Rantanen, K.; et al. Post-thrombolytic hyperglycemia and 3-month outcome in acute ischemic stroke. Cerebrovasc. Dis. 2011, 31, 83–92. [Google Scholar] [CrossRef]
- Yoo, D.S.; Chang, J.; Kim, J.T.; Choi, M.J.; Choi, J.; Choi, K.H.; Park, M.S.; Cho, K.H. Various blood glucose parameters that indicate hyperglycemia after intravenous thrombolysis in acute ischemic stroke could predict worse outcome. PLoS ONE 2014, 9, e94364. [Google Scholar] [CrossRef]
- Merlino, G.; Sponza, M.; Gigli, G.L.; Lorenzut, S.; Vit, A.; Gavrilovic, V.; Pellegrin, A.; Cargnelutti, D.; Valente, M. Prior use of antiplatelet therapy and outcomes after endovascular therapy in acute ischemic stroke due to large vessel occlusion: A single-center experience. J. Clin. Med. 2018, 7, 518. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, Z.; Miao, J.; Zheng, W.; Yang, Q.; Ye, X.; Zhuang, X.; Peng, F. High Stress hyperglycemia ratio predicts poor outcome after mechanical thrombectomy for ischemic stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Pan, Y.; Jing, J.; Meng, X.; Zhao, X.; Liu, L.; Wang, Y.; Wang, Y.; Wang, Z. Stress hyperglycemia and outcome of non-diabetic patients after acute ischemic stroke. Front. Neurol. 2019, 10, 1003. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brott, T.; Adams, H.P., Jr.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V.; et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.L.; Johnston, K.C.; Wagner, D.P.; Haley, E.C., Jr. Predicting major neurological improvement with intravenous recombinant tissue plasminogen activator treatment of stroke. Stroke 2004, 35, 147–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saposnik, G.; Di Legge, S.; Webster, F.; Hachinski, V. Predictors of major neurologic improvement after thrombolysis in acute stroke. Neurology 2005, 65, 1169–1774. [Google Scholar] [CrossRef]
- Yaghi, S.; Hinduja, A.; Bianchi, N. Predictors of major improvement after intravenous thrombolysis in acute ischemic stroke. Int. J. Neurosci. 2016, 126, 67–69. [Google Scholar] [CrossRef] [PubMed]
- van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Hacke, W.; Kaste, M.; Fieschi, C.; Toni, D.; Lesaffre, E.; von Kummer, R.; Boysen, G.; Bluhmki, E.; Höxter, G.; Mahagne, M.H.; et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995, 274, 1017–1025. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Ovbiagele, B.; Feng, W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. Am. J. Med. Sci. 2016, 351, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, E. Reactive hyperglycaemia in patients with acute stroke. J. Neurol. Sci. 1976, 29, 267–275. [Google Scholar] [CrossRef]
- Sewdarsen, M.; Jialal, I.; Vythilingum, S.; Govender, G.; Rajput, M.C. Stress hyperglycaemia is a predictor of abnormal glucose tolerance in Indian patients with acute myocardial infarction. Diabetes Res. 1987, 6, 47–49. [Google Scholar]
- Capes, S.E.; Hunt, D.; Malmberg, K.; Gerstein, H.C. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: A systematic overview. Lancet 2000, 355, 773–778. [Google Scholar] [CrossRef]
- Christensen, H.; Boysen, G. Blood glucose increases early after stroke onset: A study on serial measurements of blood glucose in acute stroke. Eur. J. Neurol. 2002, 9, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.C.; Bruno, A.; Pauls, Q.; Hall, C.E.; Barrett, K.M.; Barsan, W.; Fansler, A.; Van de Bruinhorst, K.; Janis, S.; Durkalski-Mauldin, V.L.; et al. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke: The SHINE randomized clinical trial. JAMA 2019, 322, 326–335. [Google Scholar] [CrossRef]
- Muller, C.; Cheung, N.W.; Dewey, H.; Churilov, L.; Middleton, S.; Thijs, V.; Ekinci, E.I.; Levi, C.; Lindley, R.; Donnan, G.; et al. Treatment with exenatide in acute ischemic stroke trial protocol: A prospective, randomized, open label, blinded end-point study of exenatide vs. standard care in post stroke hyperglycemia. Int. J. Stroke 2018, 13, 857–862. [Google Scholar] [CrossRef]
Persistent Normoglycemia | Baseline Hyperglycemia | 24-h Hyperglycemia | Persistent Hyperglycemia | p | |
---|---|---|---|---|---|
(n = 116) | (n = 36) | (n = 17) | (n = 31) | ||
Demographic data | |||||
Age, years | 73 (67–80) | 75 (68.2–82) | 75 (66.5–78.5) | 72 (69–79) | 0.7 |
Males, n (%) | 61 (52.6) | 14 (38.9) | 7 (41.2) | 19 (61.3) | 0.2 |
Vascular risk factors | |||||
Previous transient ischemic attack/stroke, n (%) | 11 (9.5) | 2 (5.6) | 3 (17.6) | 3 (9.7) | 0.6 |
Cardiovascular disease, n (%) | 22 (19.0) | 7 (19.4) | 3 (17.6) | 5 (16.1) | 0.9 |
Atrial fibrillation, n (%) | 31 (26.7) | 13 (36.1) | 3 (17.6) | 6 (19.4) | 0.4 |
Hypertension, n (%) | 83 (72.2) | 26 (72.2) | 13 (76.5) | 26 (83.9) | 0.6 |
Diabetes mellitus, n (%) | 7 (6.0) | 6 (16.7) | 3 (17.6) | 13 (41.9) | 0.001 |
Hypercholesterolemia, n (%) | 25 (21.6) | 9 (25.0) | 1 (5.9) | 13 (41.9) | 0.03 |
Current smoking, n (%) | 21 (18.1) | 7 (19.4) | 5 (29.4) | 9 (29.0) | 0.5 |
Laboratory findings | |||||
HbA1c values, % | 5.7 (5.4–6.0) | 6.0 (5.7–6.4) | 6.0 (5.9–6.4) | 6.4 (5.8–7.1) | 0.001 |
Total cholesterol, mg/dL | 164 (145–195.5) | 171 (145–194) | 166 (122.2–206.7) | 154 (135.2–170) | 0.5 |
HDL cholesterol, mg/dL | 51 (41–62) | 50 (41–63.2) | 47.5 (30.75–62.2) | 46 (39–59) | 0.7 |
LDL cholesterol, mg/dL | 95 (77–121.2) | 95.5 (80–121.2) | 94.5 (67.2–124.5) | 87 (68–101) | 0.8 |
Triglycerides, mg/dL | 92 (70–130.5) | 85 (63–123) | 73.5 (56.7–139) | 95 (67.5–143.5) | 0.4 |
Blood pressure | |||||
Systolic blood pressure, mmHg | 151 (130–170) | 155 (143–163) | 154 (145–168) | 155 (138–180) | 0.7 |
Antithrombotic treatment at admission | |||||
Antiplatelets, n (%) | 28 (24.1) | 13 (36.1) | 5 (29.4) | 14 (45.2) | 0.1 |
Anticoagulants, n (%) | 16 (13.8) | 6 (16.7) | 2 (11.8) | 3 (9.7) | 0.9 |
Stroke subtypes based on TOAST classification | 0.6 | ||||
Large arterial atherosclerosis, n (%) | 19 (16.4) | 6 (16.7) | 2 (11.8) | 6 (19.4) | |
Cardioembolism, n (%) | 60 (51.7) | 16 (44.4) | 10 (58.8) | 14 (45.2) | |
Other determined etiology, n (%) | 6 (5.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Undetermined etiology, n (%) | 31 (26.7) | 14 (38.9) | 5 (29.4) | 11 (35.5) | |
Baseline clinical characteristics | |||||
Alteplase use before MT, n (%) | 66 (56.9) | 22 (61.1) | 8 (47.1) | 20 (64.5) | 0.7 |
NIHSS score at admission | 16.5 (13–20) | 19 (15.2–22) | 17 (14.5–19.5) | 18 (15–22) | 0.2 |
NIHSS score at discharge | 3 (1–8.7) | 9 (2–16.7) | 7.5 (1.7–17.7) | 12 (2.5–16.5) | 0.04 |
Pre-stroke mRS 0–2, n (%) | 103 (88.8) | 34 (94.4) | 17 (100) | 28 (90.3) | 0.4 |
Persistent Normoglycemia | Baseline Hyperglycemia | 24-h Hyperglycemia | Persistent Hyperglycemia | p | |
---|---|---|---|---|---|
(n = 116) | (n = 36) | (n = 17) | (n = 31) | ||
Site of LVO | 0.5 | ||||
MCA, n (%) | 80 (69.0) | 22 (61.1) | 13 (76.5) | 24 (77.4) | |
Tandem, n (%) | 26 (22.4) | 7 (19.4) | 3 (17.6) | 5 (16.1) | |
Vertebrobasilar, n (%) | 10 (8.6) | 7 (19.4) | 1 (5.9) | 2 (6.5) | |
Type of device use for MT | 0.6 | ||||
Thromboaspiration, n (%) | 42 (36.2) | 11 (30.6) | 6 (35.3) | 9 (29) | |
Stent retriever, n (%) | 5 (4.3) | 2 (5.6) | 2 (11.8) | 3 (9.7) | |
Thromboaspiration plus stent retriever, n (%) | 49 (42.2) | 17 (47.2) | 9 (52.9) | 12 (38.7) | |
Permanent stenting, n (%) | 20 (17.2) | 6 (16.7) | 0 (0.0) | 7 (22.6) | |
Other information on MT | |||||
Secondary embolization, n (%) | 6 (5.2) | 4 (11.1) | 3 (17.6) | 3 (9.7) | 0.3 |
Time from symptoms onset to MT, min | 210 (170–260) | 236 (205–270) | 225 (195–310) | 210 (155–255) | 0.08 |
Procedure length, min | 67.5 (50–98.7) | 70 (50–85) | 70 (42.5–95) | 65 (40–120) | 0.9 |
Successful recanalization rate, n (%) | 102 (87.9) | 29 (80.6) | 13 (76.5) | 26 (83.9) | 0.5 |
Persistent Normoglycemia | Baseline Hyperglycemia | 24-h Hyperglycemia | Persistent Hyperglycemia | |
---|---|---|---|---|
Three-month poor outcome † | 1 | 0.99 (0.41–2.38) | 1.75 (0.54–5.67) | 6.89 (1.98–23.94) p = 0.002 |
No major neurological improvement at discharge † | 1 | 3.37 (1.39–8.19) p = 0.007 | 3.41 (0.96–12.16) | 11.15 (2.99–41.52) p = 0.001 |
In-hospital mortality † | 1 | 0.39 (0.07–2.12) | 2.67 (0.58–12.30) | 5.37 (1.61–17.96) p = 0.006 |
Three-month mortality † | 1 | 0.50 (0.14–1.82) | 1.33 (0.31–5.66) | 4.43 (1.40–13.97) p = 0.01 |
Presence of ICH ‡ | 1 | 1.15 (0.43–3.08) | 0.45 (0.08–2.44) | 6.89 (2.35–20.21) p = 0.001 |
Presence of SICH ‡ | 1 | 1.25 (0.33–4.71) | 1.31 (0.21–8.31) | 5.42 (1.54–19.15) p = 0.009 |
Persistent Normoglycemia | Baseline Hyperglycemia | 24-h Hyperglycemia | Persistent Hyperglycemia | |
---|---|---|---|---|
three-month poor outcome † | 1 | 1.20 (0.43–3.31) | 3.01 (0.75–12.70) | 4.91 (1.15–20.94) p = 0.03 |
No major neurological improvement at discharge † | 1 | 4.43 (1.57–12.53) p = 0.005 | 4.29 (1.01–12.53) p = 0.05 | 8.62 (2.01–36.99) p = 0.004 |
In-hospital mortality † | 1 | 0.25 (0.02–2.47) | 3.27 (0.57–18.64) | 2.80 (0.65–12.08) |
three-month mortality † | 1 | 0.49 (0.11–2.11) | 1.24 (0.26–5.97) | 1.81 (0.44–7.45) |
Presence of ICH ‡ | 1 | 0.93 (0.28–3.03) | 0.16 (0.01–1.84) | 7.15 (1.98–25.76) p = 0.003 |
Presence of SICH ‡ | 1 | 1.26 (0.29–5.52) | 1.27 (0.18–9.07) | 8.26 (1.95–35.01) p = 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlino, G.; Smeralda, C.; Sponza, M.; Gigli, G.L.; Lorenzut, S.; Marini, A.; Surcinelli, A.; Pez, S.; Vit, A.; Gavrilovic, V.; et al. Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. J. Clin. Med. 2020, 9, 1932. https://doi.org/10.3390/jcm9061932
Merlino G, Smeralda C, Sponza M, Gigli GL, Lorenzut S, Marini A, Surcinelli A, Pez S, Vit A, Gavrilovic V, et al. Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Journal of Clinical Medicine. 2020; 9(6):1932. https://doi.org/10.3390/jcm9061932
Chicago/Turabian StyleMerlino, Giovanni, Carmelo Smeralda, Massimo Sponza, Gian Luigi Gigli, Simone Lorenzut, Alessandro Marini, Andrea Surcinelli, Sara Pez, Alessandro Vit, Vladimir Gavrilovic, and et al. 2020. "Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy" Journal of Clinical Medicine 9, no. 6: 1932. https://doi.org/10.3390/jcm9061932
APA StyleMerlino, G., Smeralda, C., Sponza, M., Gigli, G. L., Lorenzut, S., Marini, A., Surcinelli, A., Pez, S., Vit, A., Gavrilovic, V., & Valente, M. (2020). Dynamic Hyperglycemic Patterns Predict Adverse Outcomes in Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Journal of Clinical Medicine, 9(6), 1932. https://doi.org/10.3390/jcm9061932