Attenuated Visual Function in Patients with Major Depressive Disorder
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. Baseline Characteristics
3.2. Stress and Depression Scale
3.3. Visual Field Test and Optical Coherence Tomography Parameters
3.4. Relationship Between Visual Field Test Parameters or Optical Coherence Tomography and Stress or Depression Scale
3.5. Representative Cases
3.6. The Influence of Drug Use by Patients with Major Depressive Disorder on GCIPL Thickness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mabuchi, F.; Yoshimura, K.; Kashiwagi, K.; Shioe, K.; Yamagata, Z.; Kanba, S.; Iijima, H.; Tsukahara, S. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J. Glaucoma 2008, 17, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.L.; Boisjoly, H.; Schmaltz, H.; Kergoat, M.J.; Rousseau, J.; Moghadaszadeh, S.; Djafari, F.; Freeman, E.E. Explaining the relationship between three eye diseases and depressive symptoms in older adults. Invest. Ophthalmol. Vis. Sci. 2012, 53, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Singh, K.; Lin, S.C. Prevalence and predictors of depression among participants with glaucoma in a nationally representative population sample. Am. J. Ophthalmol. 2012, 154, 436–444.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, E.E.; Munoz, B.; Rubin, G.; West, S.K. Visual field loss increases the risk of falls in older adults: The Salisbury eye evaluation. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4445–4450. [Google Scholar] [CrossRef]
- Ramulu, P.Y.; West, S.K.; Munoz, B.; Jampel, H.D.; Friedman, D.S. Driving cessation and driving limitation in glaucoma: The Salisbury eye evaluation project. Ophthalmology 2009, 116, 1846–1853. [Google Scholar] [CrossRef] [Green Version]
- Jampel, H.D.; Frick, K.D.; Janz, N.K.; Wren, P.A.; Musch, D.C.; Rimal, R.; Lichter, P.R.; Group, C.S. Depression and mood indicators in newly diagnosed glaucoma patients. Am. J. Ophthalmol. 2007, 144, 238–244. [Google Scholar] [CrossRef]
- Jung, K.I.; Park, C.K. Mental health status and quality of life in undiagnosed glaucoma patients: A nationwide population-based study. Med. (Baltim.) 2016, 95, e3523. [Google Scholar] [CrossRef]
- Hirschfeld, R.M.; Keller, M.B.; Panico, S.; Arons, B.S.; Barlow, D.; Davidoff, F.; Endicott, J.; Froom, J.; Goldstein, M.; Gorman, J.M.; et al. The national depressive and manic-depressive association consensus statement on the undertreatment of depression. JAMA 1997, 277, 333–340. [Google Scholar] [CrossRef]
- Drevets, W.C. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog. Brain Res. 2000, 126, 413–431. [Google Scholar] [CrossRef]
- Kang, H.J.; Voleti, B.; Hajszan, T.; Rajkowska, G.; Stockmeier, C.A.; Licznerski, P.; Lepack, A.; Majik, M.S.; Jeong, L.S.; Banasr, M.; et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 2012, 18, 1413–1417. [Google Scholar] [CrossRef]
- Minckler, D.S.; Bunt, A.H.; Johanson, G.W. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest. Ophthalmol. Vis. Sci. 1977, 16, 426–441. [Google Scholar] [PubMed]
- Quigley, H.A.; Addicks, E.M.; Green, W.R.; Maumenee, A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 1981, 99, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.M.; Rumsfeld, J.S. Depression and cardiovascular disease. Trends Cardiovasc. Med. 2015, 25, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, E.; Newby, D.E.; Webb, D.J.; Hadoke, P.W.; O’Brien, C.J. Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest. Ophthalmol. Vis. Sci. 2006, 47, 2528–2532. [Google Scholar] [CrossRef] [Green Version]
- Su, W.W.; Cheng, S.T.; Ho, W.J.; Tsay, P.K.; Wu, S.C.; Chang, S.H. Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology 2008, 115, 1173–1178. [Google Scholar] [CrossRef]
- Na, K.S.; Lee, N.Y.; Park, S.H.; Park, C.K. Autonomic dysfunction in normal tension glaucoma: The short-term heart rate variability analysis. J. Glaucoma 2010, 19, 377–381. [Google Scholar] [CrossRef]
- Lee, N.Y.; Park, H.Y.; Park, C.K.; Ahn, M.D. Analysis of systemic endothelin-1, matrix metalloproteinase-9, macrophage chemoattractant protein-1, and high-sensitivity C-reactive protein in normal-tension glaucoma. Curr. Eye Res. 2012, 37, 1121–1126. [Google Scholar] [CrossRef]
- Kalenderoglu, A.; Celik, M.; Sevgi-Karadag, A.; Egilmez, O.B. Optic coherence tomography shows inflammation and degeneration in major depressive disorder patients correlated with disease severity. J. Affect. Disord. 2016, 204, 159–165. [Google Scholar] [CrossRef]
- Yildiz, M.; Alim, S.; Batmaz, S.; Demir, S.; Songur, E.; Ortak, H.; Demirci, K. Duration of the depressive episode is correlated with ganglion cell inner plexifrom layer and nasal retinal fiber layer thicknesses: Optical coherence tomography findings in major depression. Psychiatry Res. Neuroimaging 2016, 251, 60–66. [Google Scholar] [CrossRef]
- Sonmez, I.; Kosger, F.; Aykan, U. Retinal nerve fiber layer thickness measurement by spectral-domain optical coherence tomography in patients with major depressive disorder. Noro Psikiyatr. Ars. 2017, 54, 62–66. [Google Scholar] [CrossRef]
- Lee, E.H. Review of the psychometric evidence of the perceived stress scale. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2012, 6, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.B. Standardizing the Hamilton depression rating scale: Past, present, and future. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.A.; Keltner, J.L.; Miller, J.P.; Parrish, R.K., 2nd.; Wilson, M.R.; et al. The ocular hypertension treatment study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Meira-Freitas, D.; Tatham, A.J.; Lisboa, R.; Kuang, T.M.; Zangwill, L.M.; Weinreb, R.N.; Girkin, C.A.; Liebmann, J.M.; Medeiros, F.A. Predicting progression of glaucoma from rates of frequency doubling technology perimetry change. Ophthalmology 2014, 121, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Sample, P.A.; Medeiros, F.A.; Racette, L.; Pascual, J.P.; Boden, C.; Zangwill, L.M.; Bowd, C.; Weinreb, R.N. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3381–3389. [Google Scholar] [CrossRef] [Green Version]
- Bubl, E.; Ebert, D.; Kern, E.; van Elst, L.T.; Bach, M. Effect of antidepressive therapy on retinal contrast processing in depressive disorder. Br. J. Psychiatry 2012, 201, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Bubl, E.; Kern, E.; Ebert, D.; Bach, M.; van Elst, L.T. Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biol. Psychiatry 2010, 68, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Bubl, E.; Kern, E.; Ebert, D.; Riedel, A.; van Elst, L.T.; Bach, M. Retinal dysfunction of contrast processing in major depression also apparent in cortical activity. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 343–350. [Google Scholar] [CrossRef]
- Fam, J.; Rush, A.J.; Haaland, B.; Barbier, S.; Luu, C. Visual contrast sensitivity in major depressive disorder. J. Psychosom. Res. 2013, 75, 83–86. [Google Scholar] [CrossRef]
- Schwitzer, T.; Lavoie, J.; Giersch, A.; Schwan, R.; Laprevote, V. The emerging field of retinal electrophysiological measurements in psychiatric research: A review of the findings and the perspectives in major depressive disorder. J. Psychiatry Res. 2015, 70, 113–120. [Google Scholar] [CrossRef]
- Rey, G.; Knoblauch, K.; Prevost, M.; Komano, O.; Jouvent, R.; Dubal, S. Visual modulation of pleasure in subjects with physical and social anhedonia. Psychiatry Res. 2010, 176, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Masland, R.H. The neuronal organization of the retina. Neuron 2012, 76, 266–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004, 5, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Charney, D.S.; Manji, H.K. Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Sci. STKE 2004, 2004, re5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, E.; Fornito, A.; Pantelis, C.; Yucel, M. Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. J. Affect. Disord. 2012, 138, 9–18. [Google Scholar] [CrossRef]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef]
- Cowen, P.J.; Browning, M. What has serotonin to do with depression? World Psychiatry 2015, 14, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Gastinger, M.J.; Tian, N.; Horvath, T.; Marshak, D.W. Retinopetal axons in mammals: Emphasis on histamine and serotonin. Curr. Eye Res. 2006, 31, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Tseng, P.T.; Stubbs, B.; Carvalho, A.F.; Li, D.J.; Chen, T.Y.; Lin, P.Y.; Hsueh, Y.T.; Chen, Y.Z.; Chen, Y.W.; et al. The risk of glaucoma and serotonergic antidepressants: A systematic review and meta-analysis. J. Affect. Disord. 2018, 241, 63–70. [Google Scholar] [CrossRef]
- Mason, J.O., 3rd.; Patel, S.A. Bull’S eye maculopathy in a patient taking sertraline. Retin. Cases Br. Rep. 2015, 9, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Sener, E.C.; Kiratli, H. Presumed sertraline maculopathy. Acta Ophthalmol. Scand. 2001, 79, 428–430. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control (n = 50) | Depression (n = 49) | p Value | |
---|---|---|---|---|
Age | 45.5 ± 13.2 | 48.1 ± 15.7 | 0.377 | |
Gender (male/female) | 15/35 | 15/34 | 0.947 | |
Diabetes mellitus | 1 (2.0%) | 4 (8.0%) | 0.204 | |
Systemic hypertension | 6 (12.0%) | 6 (12.0%) | 1.000 | |
Ophthalmologic variables | Spherical equivalent (diopter) | −1.2 ± 2.3 | −1.5 ± 2.8 | 0.554 |
Axial length (mm) | 24.3 ± 1.2 | 24.0 ± 1.5 | 0.344 | |
Intraocular pressure (mmHg) | 14.0 ± 2.6 | 14.1 ± 2.4 | 0.873 | |
Socio-economic variables | Marital status (marriage) | 64.6% | 73.7% | 0.366 |
Education level (high) | 91.7% | 81.6% | 0.203 | |
Current smoker (%) | 10.4% | 21.1% | 0.229 | |
Employment (%) | 72.9% | 31.6% | <0.001 * |
OCT and Visual Field Parameter | Control | Depression | p Value a | |
---|---|---|---|---|
Visual field, dB | Mean deviation | −1.9 ± 1.8 | −2.4 ± 2.0 | 0.177 |
Pattern standard deviation | 1.6 ± 0.3 | 1.8 ± 0.5 | 0.017 * | |
Optic disc parameter | Disc area (mm2) | 1.3 ± 0.2 | 1.3 ± 0.2 | 0.836 |
Rim area (mm2) | 1.9 ± 0.4 | 1.9 ± 0.3 | 0.905 | |
Average CDR | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.960 | |
Vertical CDR | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.716 | |
Cup volume (mm3) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.714 | |
Parapapillary RNFL thickness, μm | Average | 96.6 ± 7.7 | 93.8 ± 7.8 | 0.077 |
Superior | 121.1 ± 13.6 | 118.2 ± 13.2 | 0.278 | |
Nasal | 66.7 ± 7.4 | 64.7 ± 7.2 | 0.190 | |
Inferior | 124.3 ± 14.5 | 121.2 ± 15.6 | 0.306 | |
Temporal | 74.1 ± 13.4 | 71.2 ± 12.6 | 0.271 | |
GCIPL thickness, μm | Average | 83.1 ± 4.4 | 81.6 ± 6.2 | 0.154 |
Minimum | 80.4 ± 4.4 | 77.5 ± 7.0 | 0.015 * | |
Superior | 84.3 ± 5.0 | 82.8 ± 7.0 | 0.225 | |
Superonasal | 85.3 ± 4.9 | 84.3 ± 6.1 | 0.409 | |
Inferonasal | 83.5 ± 5.1 | 81.8 ± 5.9 | 0.127 | |
Inferior | 81.0 ± 4.6 | 78.7 ± 7.0 | 0.058 | |
Inferotemporal | 83.1 ± 5.3 | 81.3 ± 6.8 | 0.141 | |
Superotemporal | 82.0 ± 4.8 | 80.6 ± 6.9 | 0.233 |
Pattern Standard Deviation, dB | |||
---|---|---|---|
Beta | 95% CI | p Value | |
Age (years) | 0.010 | 0.004–0.016 | 0.002 * |
Hamilton Depression Rating Scale | 0.013 | 0.001–0.025 | 0.028 * |
Employment | 0.030 | −0.161–0.221 | 0.754 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, K.I.; Hong, S.-Y.; Shin, D.Y.; Lee, N.Y.; Kim, T.-S.; Park, C.K. Attenuated Visual Function in Patients with Major Depressive Disorder. J. Clin. Med. 2020, 9, 1951. https://doi.org/10.3390/jcm9061951
Jung KI, Hong S-Y, Shin DY, Lee NY, Kim T-S, Park CK. Attenuated Visual Function in Patients with Major Depressive Disorder. Journal of Clinical Medicine. 2020; 9(6):1951. https://doi.org/10.3390/jcm9061951
Chicago/Turabian StyleJung, Kyoung In, Seo-Yeon Hong, Da Young Shin, Na Young Lee, Tae-Suk Kim, and Chan Kee Park. 2020. "Attenuated Visual Function in Patients with Major Depressive Disorder" Journal of Clinical Medicine 9, no. 6: 1951. https://doi.org/10.3390/jcm9061951
APA StyleJung, K. I., Hong, S. -Y., Shin, D. Y., Lee, N. Y., Kim, T. -S., & Park, C. K. (2020). Attenuated Visual Function in Patients with Major Depressive Disorder. Journal of Clinical Medicine, 9(6), 1951. https://doi.org/10.3390/jcm9061951