Prognostic Impact of Active Mechanical Circulatory Support in Cardiogenic Shock Complicating Acute Myocardial Infarction, Results from the Culprit-Shock Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Clinical Endpoints
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Outcome Analysis
4. Discussion
5. Clinical Characteristics and Rates of MCS Implementation
6. Clinical Outcome
7. Study Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMI | acute myocardial infarction |
CS | cardiogenic shock |
ECMO | extracorporeal membrane oxygenation |
IABP | intra-aortic balloon pump |
IQR | interquartile range |
LV | left ventricular |
MCS | mechanical circulatory support |
PCI | percutaneous coronary intervention |
RCT | randomized controlled trial |
References
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Buller, C.E.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Dzavik, V.; Buller, C.E.; Aylward PCol, J.; White, H.D. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006, 295, 2511–2515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aissaoui, N.; Puymirat, E.; Tabone, X.; Charbonnier, B.; Schiele, F.; Lefevre, T.; Durand, E.; Blanchard, D.; Simon, T.; Cambou, J.P.; et al. Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: A report from the USIK 1995, USIC 2000, and FAST-MI French nationwide registries. Eur. Heart J. 2012, 33, 2535–2543. [Google Scholar] [CrossRef]
- Jeger, R.V.; Radovanovic, D.; Hunziker, P.R.; Pfisterer, M.E.; Stauffer, J.C.; Erne, P.; Urban, P. Ten-year trends in the incidence and treatment of cardiogenic shock. Ann. Intern. Med. 2008, 149, 618–626. [Google Scholar] [CrossRef]
- Rathod, K.S.; Koganti, S.; Iqbal, M.B.; Jain, A.K.; Kalra, S.S.; Astroulakis, Z.; Lim, P.; Rakhit, R.; Dalby, M.C.; Lockie, T.; et al. Contemporary trends in cardiogenic shock: Incidence, intra-aortic balloon pump utilisation and outcomes from the London Heart Attack Group. Eur. Heart. J. Acute Cardiovasc. Care 2018, 7, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; de Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Final 12 month results of a randomised, open-label trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2018, 139. [Google Scholar] [CrossRef]
- Scholz, K.H.; Maier, S.K.G.; Maier, L.S.; Lengenfelder, B.; Jacobshagen, C.; Jung, J.; Fleischmann, C.; Werner, G.S.; Olbrich, H.G.; Ott, R.; et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: Results from the German prospective, multicentre FITT-STEMI trial. Eur. Heart J. 2018, 39, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Schrage, B.; Sinning, C.R.; Schmack, B.; Fluschnik, N.; Schwarzl, M.; Waldeyer, C.; Lindner, D.; Seiffert, M.; Neumann, J.T.; et al. Venoarterial Extracorporeal Membrane Oxygenation for Cardiopulmonary Support. Circulation 2018, 138, 2298–2300. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Brodie, D.; Strassmann, S.; Stoelben, E.; Philipp, A.; Bein, T.; Muller, T.; Windisch, W. Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensive Care Med. 2016, 42, 889–996. [Google Scholar] [CrossRef] [PubMed]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.; Vis, M.M.; Wykrzykowska, J.J.; Koch, K.T.; Baan, J.; et al. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Ibrahim, K.; Loehn, T.; Werner, N.; Sinning, J.M.; Pappalardo, F.; Pieri, M.; Skurk, C.; Lauten, A.; Landmesser, U.; et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation 2019, 139, 1249–1258. [Google Scholar] [CrossRef]
- Thiele, H.; Jobs, A.; Ouweneel, D.M.; Henriques, J.P.; Seyfarth, M.; Desch, S.; Eitel, I.; Poess, J.; Fuernau, G.; de Waha, S. Percutaneous short-term active mechanical support devices in cardiogenic shock: A systematic review and collaborative meta-analysis of randomized trials. Eur. Heart J. 2017, 38, 3523–3531. [Google Scholar] [CrossRef] [Green Version]
- Ouweneel, D.M.; Schotborgh, J.V.; Limpens, J.; Sjauw, K.D.; Engstrom, A.E.; Lagrand, W.K.; Cherpanath, T.G.V.; Driessen, A.H.G.; de Mol, B.; Henriques, J.P.S. Extracorporeal life support during cardiac arrest and cardiogenic shock: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1922–1934. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Desch, S.; Piek, J.J.; Stepinska, J.; Oldroyd, K.; Serpytis, P.; Montalescot, G.; Noc, M.; Huber, K.; Fuernau, G.; et al. Multivessel versus culprit lesion only percutaneous revascularization plus potential staged revascularization in patients with acute myocardial infarction complicated by cardiogenic shock: Design and rationale of CULPRIT-SHOCK trial. Am. Heart J. 2016, 172, 160–169. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; de Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Akin, I.; Sandri, M.; de Waha-Thiele, S.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Nordbeck, P.; Geisler, T.; Landmesser, U.; et al. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N. Engl. J. Med. 2018, 379, 1699–1710. [Google Scholar] [CrossRef]
- Mehran, R.; Rao, S.V.; Bhatt, D.L.; Gibson, C.M.; Caixeta, A.; Eikelboom, J.; Kaul, S.; Wiviott, S.D.; Menon, V.; Nikolsky, E.; et al. Standardized bleeding definitions for cardiovascular clinical trials: A consensus report from the Bleeding Academic Research Consortium. Circulation 2011, 123, 2736–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, H.; Sick, P.; Boudriot, E.; Diederich, K.W.; Hambrecht, R.; Niebauer, J.; Schuler, G. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 2005, 26, 1276–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhoff, D.; Cohen, H.; Brunckhorst, C.; O’Neill, W.W.; TandemHeart Investigators, G. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am. Heart J. 2006, 152, 469.e1-8. [Google Scholar] [CrossRef]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Frohlich, G.; Bott-Flugel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schomig, A. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alushi, B.; Douedari, A.; Froehlig, G.; Knie, W.; Wurster, T.H.; Leistner, D.M.; Stahli, B.E.; Mochmann, H.C.; Pieske, B.; Landmesser, U.; et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Heart 2019, 6, e000987. [Google Scholar] [CrossRef] [Green Version]
- Khera, R.; Cram, P.; Lu, X.; Vyas, A.; Gerke, A.; Rosenthal, G.E.; Horwitz, P.A.; Girotra, S. Trends in the use of percutaneous ventricular assist devices: Analysis of national inpatient sample data, 2007 through 2012. JAMA Intern. Med. 2015, 175, 941–950. [Google Scholar] [CrossRef]
- Berg, D.D.; Barnett, C.F.; Kenigsberg, B.B.; Papolos, A.; Alviar, C.L.; Baird-Zars, V.M.; Barsness, G.W.; Bohula, E.A.; Brennan, J.; Burke, J.A.; et al. Clinical Practice Patterns in Temporary Mechanical Circulatory Support for Shock in the Critical Care Cardiology Trials Network (CCCTN) Registry. Circ. Heart Fail. 2019, 12, e006635. [Google Scholar] [CrossRef]
- Strom, J.B.; Zhao, Y.; Shen, C.; Chung, M.; Pinto, D.S.; Popma, J.J.; Cohen, D.J.; Yeh, R.W. Hospital Variation in the Utilization of Short-Term Nondurable Mechanical Circulatory Support in Myocardial Infarction Complicated by Cardiogenic Shock. Circ. Cardiovasc. Interv. 2019, 12, e007270. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.P.; Spertus, J.A.; Curtis, J.P.; Desai, N.; Masoudi, F.A.; Bach, R.G.; McNeely, C.; Al-Badarin, F.; House, J.A.; Kulkarni, H.; et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention with Mechanical Circulatory Support. Circulation 2020, 141, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Guenther, S.P.W.; Lackermair, K.; Peterss, S.; Orban, M.; Boulesteix, A.L.; Michel, S.; Hausleiter, J.; Massberg, S.; Hagl, C. Extracorporeal Life Support in Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2355–2357. [Google Scholar] [CrossRef]
- Karami, M.; den Uil, C.A.; Ouweneel, D.M.; Scholte, N.T.; Engstrom, A.E.; Akin, S.; Lagrand, W.K.; Vlaar, A.P.; Jewbali, L.S.; Henriques, J.P. Mechanical circulatory support in cardiogenic shock from acute myocardial infarction: Impella CP/5.0 versus ECMO. Eur. Heart. J. Acute Cardiovasc. Care 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, J.B.; Zhao, Y.; Shen, C.; Chung, M.; Pinto, D.S.; Popma, J.J.; Yeh, R.W. National trends, predictors of use, and in-hospital outcomes in mechanical circulatory support for cardiogenic shock. EuroIntervention 2018, 13, e2152–e2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyridopoulos, I.; Noman, A.; Ahmed, J.M.; Das, R.; Edwards, R.; Purcell, I.; Bagnall, A.; Zaman, A.; Egred, M. Shock-index as a novel predictor of long-term outcome following primary percutaneous coronary intervention. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.; McCoy, L.A.; Negi, S.I.; Hameed, I.; Atri, P.; Al’Aref, S.J.; Curtis, J.; McNulty, E.; Anderson, H.V.; Shroff, A.; et al. Use of mechanical circulatory support in patients undergoing percutaneous coronary intervention: Insights from the National Cardiovascular Data Registry. Circulation 2015, 132, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, L.; Radovanovic, D.; Jeger, R.; Pedrazzini, G.; Cuculi, F.; Urban, P.; Erne, P.; Rickli, H.; Pilgrim, T. Twenty-Year Trends in the Incidence and Outcome of Cardiogenic Shock in AMIS Plus Registry. Circ. Cardiovasc. Interv. 2019, 12, e007293. [Google Scholar] [CrossRef] [PubMed]
- Helgestad, O.K.L.; Josiassen, J.; Hassager, C.; Jensen, L.O.; Holmvang, L.; Sorensen, A.; Frydland, M.; Lassen, A.T.; Udesen, N.L.J.; Schmidt, H.; et al. Temporal trends in incidence and patient characteristics in cardiogenic shock following acute myocardial infarction from 2010 to 2017: A Danish cohort study. Eur. J. Heart. Fail. 2019, 21, 1370–1378. [Google Scholar] [CrossRef]
- Barbone, A.; Malvindi, P.G.; Ferrara, P.; Tarelli, G. Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 293–295. [Google Scholar] [CrossRef]
- Ogawa, S.; Richardson, J.E.; Sakai, T.; Ide, M.; Tanaka, K.A. High mortality associated with intracardiac and intrapulmonary thromboses after cardiopulmonary bypass. J. Anesth. 2012, 26, 9–19. [Google Scholar] [CrossRef]
- Koeckert, M.S.; Jorde, U.P.; Naka, Y.; Moses, J.W.; Takayama, H. Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J. Card. Surg. 2011, 26, 666–668. [Google Scholar] [CrossRef]
- Russo, J.J.; Aleksova, N.; Pitcher, I.; Couture, E.; Parlow, S.; Faraz, M.; Visintini, S.; Simard, T.; Di Santo, P.; Mathew, R.; et al. Left Ventricular Unloading During Extracorporeal Membrane Oxygenation in Patients with Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 654–662. [Google Scholar] [CrossRef]
- Dhruva, S.S.; Ross, J.S.; Mortazavi, B.J.; Hurley, N.C.; Krumholz, H.M.; Curtis, J.P.; Berkowitz, A.; Masoudi, F.A.; Messenger, J.C.; Parzynski, C.S.; et al. Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump with In-Hospital Mortality and Major Bleeding Among Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA 2020, e200254. [Google Scholar] [CrossRef] [PubMed]
- Freund, A.; Jobs, A.; Lurz, P.; Feistritzer, H.J.; de Waha-Thiele, S.; Meyer-Saraei, R.; Montalescot, G.; Huber, K.; Noc, M.; Windecker, S.; et al. Frequency and Impact of Bleeding on Outcome in Patients with Cardiogenic Shock. JACC Cardiovasc. Interv. 2020, 13, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
Total Study (n = 1055) | Active MCS (n = 200) | No Active MCS (n = 855) | p-Value | |
---|---|---|---|---|
Age, years (n = 1055) | 68 (59–77) | 66 (57–75) | 69 (59–77) | 0.004 |
Male gender, n (%) | 778/1038 (75) | 158/200 (79) | 620/838 (74) | 0.14 |
Body mass index, kg/m² (n = 970) | 27 (25–29) | 27 (25–30) | 26 (24–29) | 0.04 |
Cardiovascular risk factors, n (%) | ||||
Current smoking | 296/985 (30) | 58/189 (31) | 238/796 (30) | 0.83 |
Hypertension | 602/1001 (60) | 115/194 (59) | 487/807 (60) | 0.78 |
Dyslipidemia | 335/999 (34) | 61/193 (32) | 274/806 (34) | 0.53 |
Diabetes mellitus | 302/1001 (30) | 71/193 (37) | 231/808 (29) | 0.03 |
Medical history, n (%) | ||||
Prior myocardial infarction | 167/1005 (17) | 30/193 (16) | 137/812 (17) | 0.66 |
Prior PCI | 180/1005 (18) | 38/193 (20) | 142/812 (17) | 0.47 |
Prior CABG | 50/1010 (5) | 10/194 (5) | 40/816 (5) | 0.88 |
Prior stroke | 76/1008 (8) | 13/194 (7) | 63/814 (8) | 0.62 |
Peripheral artery disease | 112/1009 (11) | 16/194 (8) | 96/815 (12) | 0.16 |
Chronic renal insufficiency | 63/1006 (6) | 16/194 (8) | 47/812 (6) | 0.20 |
Hemodynamic parameters on admission, n (%) | ||||
Heart rate, bpm (n = 990) | 91 (72–109) | 99 (80–112) | 90 (70–108) | <0.001 |
Systolic blood pressure, mmHg (n = 881) | 100 (84–124) | 102 (80–125) | 100 (85–123) | 0.99 |
Diastolic blood pressure, mmHg (n = 867) | 60 (50–79) | 63 (50–80) | 60 (50–78) | 0.38 |
Resuscitation before randomization, n (%) | 550/1015 (54) | 108/196 (55) | 442/819 (54) | 0.77 |
Arterial lactate pre-PCI, mmol/l (n = 609) | 5.2 (2.7–8.6) | 6.5 (3.5–11.0) | 4.9 (2.5–7.9) | <0.001 |
pH < 7.36 on admission, n (%) | 609/988 (62) | 123/192 (64) | 486/796 (61) | 0.44 |
Coronary 3-vessel disease, n (%) | 573/1031 (56) | 123/200 (62) | 450/831 (54) | 0.02 |
Culprit lesion, n (%) | ||||
RCA | 292/1028 (28) | 44/200 (22) | 248/828 (30) | 0.03 |
LM | 82/1028 (8) | 26/200 (13) | 56/828 (7) | 0.003 |
LAD | 443/1028 (43) | 87/200 (44) | 356/828 (43) | 0.90 |
LCX | 199/1028 (19) | 42/200 (21) | 157/828 (19) | 0.51 |
Bypass | 12/1028 (1.1) | 1/200 (0.5) | 11/828 (1.3) | 0.33 |
Angiographic parameters, n (%) | ||||
TIMI flow 0 pre-PCI culprit lesion, n (%) | 577/1016 (57) | 116/199 (58) | 461/817 (56) | 0.55 |
TIMI flow 3 post-PCI culprit lesion, n (%) | 854/1022 (84) | 168/199 (84) | 686/823 (83) | 0.64 |
PCI and stent implantation culprit lesion, n (%) | 952/1033 (92) | 192/200 (96) | 760/833 (91) | 0.02 |
Immediate PCI of non-culprit lesions, n (%) | 466/1036 (45) | 106/200 (53) | 360/836 (43) | 0.01 |
Functional parameters | ||||
LV ejection fraction, % (n = 374) | 32 (25–40) | 28 (20–40) | 35 (25–44) | <0.001 |
Mechanical support system used, n (%) | ||||
Any, n (%) | 312/1055 (30) | 200/200 (100) | 112/855 (13) | <0.001 |
IABP | 129/1055 (12) | 17/200 (9) | 112/855 (13) | <0.001 |
Impella 2.5 | 44/1055 (4) | 44/200 (22) | 0/855 (0) | - |
Impella 5.0 | 0/1055 (0) | 0/200 (0) | 0/855 (0) | - |
Impella CP | 68/1055 (6) | 68/200 (34) | 0/855 (0) | - |
TandemHeart | 2/1055 (0.2) | 2/200 (1) | 0/855 (0) | - |
ECMO | 95/1055 (9) | 95/200 (48) | 0/855 (0) | - |
Other | 4/1055 (0.4) | 4/200 (2) | 0/855 (0) | - |
Time to hemodynamic stabilization, days (n =897) | 3 (1–6) | 3 (1–9) | 3 (1–5) | 0.02 |
Mild induced hypothermia, n (%) | 326/1031 (32) | 63/200 (32) | 263/831 (32) | 0.97 |
Total Study (n = 1024) | Active MCS (n = 197) | No Active MCS (n = 827) | p-Value | |
---|---|---|---|---|
All-cause death or renal replacement therapy at 30 days, n (%) | 516/1024 (50) | 142/197 (72) | 374/827 (45) | <0.001 |
All-cause death at 30 days, n (%) | 487/1024 (48) | 129/197 (65) | 358/827 (43) | <0.001 |
Renal replacement therapy at 30 days, n (%) | 126/1024 (12) | 54/197 (27) | 72/827 (9) | <0.001 |
Myocardial reinfarction at 30 days, n (%) | 11/1024 (1) | 2/197 (1) | 9/827 (1) | 0.93 |
Rehospitalization for congestive heart failure at 30 days, n (%) | 4/1024 (0.4) | 0/197 (0) | 4/827 (0.5) | 0.33 |
Stroke at 30 days, n (%) | 35/1024 (3) | 12/197 (6) | 23/827 (3) | 0.02 |
Repeat revascularization at 30 days, n (%) | 101/1024 (10) | 23/197 (12) | 78/827 (9) | 0.34 |
Bleeding at 30 days, n (%) | 196/1024 (19) | 72/197 (37) | 124/827 (15) | <0.001 |
All-cause death at 1 year, product limit estimator (%) | 72 | 48 | <0.001 |
OR (95% CI) * | p-Value | |
---|---|---|
All-cause death or renal replacement therapy at 30 days | 4.0 (2.7–5.9) | <0.001 |
All-cause death at 30 days | 3.1 (2.1–4.6) | <0.001 |
Renal replacement therapy at 30 days | 3.8 (2.4–5.9) | <0.001 |
Stroke at 30 days | 3.0 (1.4–6.7) | 0.01 |
Bleeding at 30 days | 3.1 (2.1–4.5) | <0.001 |
All-cause death at 1 year | 2.1 (1.6–2.5) ** | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feistritzer, H.-J.; Desch, S.; Freund, A.; Poess, J.; Zeymer, U.; Ouarrak, T.; Schneider, S.; de Waha-Thiele, S.; Fuernau, G.; Eitel, I.; et al. Prognostic Impact of Active Mechanical Circulatory Support in Cardiogenic Shock Complicating Acute Myocardial Infarction, Results from the Culprit-Shock Trial. J. Clin. Med. 2020, 9, 1976. https://doi.org/10.3390/jcm9061976
Feistritzer H-J, Desch S, Freund A, Poess J, Zeymer U, Ouarrak T, Schneider S, de Waha-Thiele S, Fuernau G, Eitel I, et al. Prognostic Impact of Active Mechanical Circulatory Support in Cardiogenic Shock Complicating Acute Myocardial Infarction, Results from the Culprit-Shock Trial. Journal of Clinical Medicine. 2020; 9(6):1976. https://doi.org/10.3390/jcm9061976
Chicago/Turabian StyleFeistritzer, Hans-Josef, Steffen Desch, Anne Freund, Janine Poess, Uwe Zeymer, Taoufik Ouarrak, Steffen Schneider, Suzanne de Waha-Thiele, Georg Fuernau, Ingo Eitel, and et al. 2020. "Prognostic Impact of Active Mechanical Circulatory Support in Cardiogenic Shock Complicating Acute Myocardial Infarction, Results from the Culprit-Shock Trial" Journal of Clinical Medicine 9, no. 6: 1976. https://doi.org/10.3390/jcm9061976
APA StyleFeistritzer, H. -J., Desch, S., Freund, A., Poess, J., Zeymer, U., Ouarrak, T., Schneider, S., de Waha-Thiele, S., Fuernau, G., Eitel, I., Noc, M., Stepinska, J., Huber, K., & Thiele, H. (2020). Prognostic Impact of Active Mechanical Circulatory Support in Cardiogenic Shock Complicating Acute Myocardial Infarction, Results from the Culprit-Shock Trial. Journal of Clinical Medicine, 9(6), 1976. https://doi.org/10.3390/jcm9061976