Prediabetes Is Independently Associated with Subclinical Carotid Atherosclerosis: An Observational Study in a Non-Urban Mediterranean Population
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Measures and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Carotid-IMT and Plaque Burden
3.2. Predictors of c-IMT and Atherosclerotic Plaque Burden
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [PubMed]
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Cai, X.; Chen, P.; Mai, W.; Tang, H.; Huang, Y.; Hu, Y. Associations of prediabetes with all-cause and cardiovascular mortality: A meta-analysis. Ann. Med. 2014, 46, 684–692. [Google Scholar] [CrossRef]
- Scicali, R.; Giral, P.; Gallo, A.; Di Pino, A.; Rabuazzo, A.M.; Purrello, F.; Cluzel, P.; Redheuil, A.; Bruckert, E.; Rosenbaum, D. HbA1c increase is associated with higher coronary and peripheral atherosclerotic burden in non diabetic patients. Atherosclerosis 2016, 255, 102–108. [Google Scholar] [CrossRef]
- The DECODE Study Group. European Diabetes Epidemiology Group. Glucose tolerance and mortality: Comparison of WHO and American Diabetes Association diagnostic criteria. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet 1999, 354, 617–621. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar]
- Baber, U.; Mehran, R.; Sartori, S.; Schoos, M.M.; Sillesen, H.; Muntendam, P.; Garcia, M.J.; Gregson, J.; Pocock, S.; Falk, E.; et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: The BioImage study. J. Am. Coll. Cardiol. 2015, 65, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.; Veglia, F.; de Faire, U.; Giral, P.; Rauramaa, R.; Smit, A.J.; Kurl, S.; Ravani, A.; Frigerio, B.; Sansaro, D.; et al. Carotid plaque-thickness and common carotid IMT show additive value in cardiovascular risk prediction and reclassification. Atherosclerosis 2017, 263, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Inaba, Y.; Chen, J.A.; Bergmann, S.R. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: A meta-analysis. Atherosclerosis 2012, 220, 128–133. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Sillesen, H.H.; Rundek, T.; Mathiesen, E.B.; Spence, J.D. Carotid Intima-Media Thickness Versus Carotid Plaque Burden for Predicting Cardiovascular Risk. Angiology 2019, 71, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Rubinat, E.; Marsal, J.R.; Vidal, T.; Cebrian, C.; Falguera, M.; Vilanova, M.B.; Betriu, A.; Fernandez, E.; Franch, J.; Mauricio, D. Subclinical Carotid Atherosclerosis in Asymptomatic Subjects With Type 2 Diabetes Mellitus. J. Cardiovasc. Nurs. 2016, 31, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Brohall, G.; Schmidt, C.; Behre, C.J.; Hulthe, J.; Wikstrand, J.; Fagerberg, B. Association between impaired glucose tolerance and carotid atherosclerosis: A study in 64-year-old women and a meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, A.; Scicali, R.; Calanna, S.; Urbano, F.; Mantegna, C.; Rabuazzo, A.M.; Purrello, F.; Piro, S. Cardiovascular risk profile in subjects with prediabetes and new-onset type 2 diabetes identified by HbA(1c) according to American Diabetes Association criteria. Diabetes Care 2014, 37, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Toulis, K.A.; Jiang, C.Q.; Hemming, K.; Nirantharakumar, K.; Cheng, K.K.; Lam, T.H.; Thomas, G.N. Glycated Hemoglobin, Albuminuria and Surrogate Markers of Macrovascular Disease in Adults Without Diabetes: The Guangzhou Biobank Cohort Study, Cardiovascular Disease Subcohort. Can. J. Diabetes 2018, 42, 245–250.e1. [Google Scholar] [CrossRef]
- Mostaza, J.M.; Lahoz, C.; Salinero-Fort, M.A.; de Burgos-Lunar, C.; Laguna, F.; Estirado, E.; Garcia-Iglesias, F.; Gonzalez-Alegre, T.; Cornejo-Del-Rio, V.; Sabin, C.; et al. Carotid atherosclerosis severity in relation to glycemic status: A cross-sectional population study. Atherosclerosis 2015, 242, 377–382. [Google Scholar] [CrossRef]
- Yan, Z.; Liang, Y.; Jiang, H.; Cai, C.; Sun, B.; Qiu, C. Metabolic syndrome and subclinical carotid atherosclerosis among Chinese elderly people living in a rural community. Metab. Syndr. Relat. Disord. 2014, 12, 269–276. [Google Scholar] [CrossRef]
- Gateva, A.; Assyov, Y.; Gatev, T.; Kamenov, Z. Endothelial dysfunction and intima media thickness are selectively related to the different carbohydrate disturbances across the glucose continuum. Arch. Physiol. Biochem. 2019, 125, 430–434. [Google Scholar] [CrossRef]
- Bulut, A.; Avci, B. Carotid intima-media thickness values are significantly higher in patients with prediabetes compared to normal glucose metabolism. Medicine (Baltimore) 2019, 98, e17805. [Google Scholar] [CrossRef]
- Sanchez, E.; Betriu, A.; Lopez-Cano, C.; Hernandez, M.; Fernandez, E.; Purroy, F.; Bermudez-Lopez, M.; Farras-Salles, C.; Barril, S.; Pamplona, R.; et al. Characteristics of atheromatosis in the prediabetes stage: A cross-sectional investigation of the ILERVAS project. Cardiovasc. Diabetol. 2019, 18, 154. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Matsuoka, T.A.; Shimomura, I. Clinical utility of carotid ultrasonography: Application for the management of patients with diabetes. J. Diabetes Investig. 2019, 10, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Panico, S.; Mattiello, A. Epidemiology of cardiovascular diseases in women in Europe. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D. Epidemiology of cardiovascular diseases in Europe. Public Health Nutr. 2001, 4, 441–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, E.; Halverson, J. Disparities in premature coronary heart disease mortality by region and urbanicity among black and white adults ages 35–64, 1985–1995. Public Health Rep. 2000, 115, 52–64. [Google Scholar]
- Sergeev, A.V. Racial and rural-urban disparities in stroke mortality outside the Stroke Belt. Ethn. Dis. 2011, 21, 307–313. [Google Scholar] [CrossRef]
- Martell-Claros, N.; Abad-Cardiel, M.; Álvarez-Álvarez, B.; García-Donaire, J.A. Blood pressure control and cardiovascular risk among rural and urban population in Spain. Hipertens. Riesgo Vasc. 2014, 31, 88–95. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Lam, T.H.; Lin, J.M.; Liu, B.; Yue, X.J.; Cheng, K.K.; Tomlinson, B.; Wong, K.S.; Cheung, B.M.; Thomas, G.N. An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): A platform for multidisciplinary collaboration. J. Hum. Hypertens. 2010, 24, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Castelblanco, E.; Granado-Casas, M.; Miro, N.; Mollo, A.; Mata-Cases, M.; et al. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: The prospective Mollerussa cohort study. BMJ Open 2017, 7, e015158. [Google Scholar] [CrossRef] [Green Version]
- Falguera, M.; Vilanova, M.B.; Alcubierre, N.; Granado-Casas, M.; Marsal, J.R.; Miro, N.; Cebrian, C.; Molló, A.; Franch-Nadal, J.; Mata-Cases, M.; et al. Prevalence of prediabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia. BMJ Open 2019, 10, e033332. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Hodis, H.N.; Detrano, R.; Liu, C.R.; Liu, C.H.; Mack, W.J. Relation of Framingham risk score to subclinical atherosclerosis evaluated across three arterial sites. Am. J. Cardiol. 2008, 102, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Development Core Team. R: A language and environment for statistical computing. In Vienna, Austria: R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2013. [Google Scholar]
- Ishizaka, N.; Ishizaka, Y.; Takahashi, E.; Unuma, T.; Tooda, E.; Nagai, R.; Togo, M.; Tsukamoto, K.; Hashimoto, H.; Yamakado, M. Association between insulin resistance and carotid arteriosclerosis in subjects with normal fasting glucose and normal glucose tolerance. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjarnason, T.A.; Hafthorsson, S.O.; Kristinsdottir, L.B.; Oskarsdottir, E.S.; Aspelund, T.; Sigurdsson, S.; Gudnason, V.; Andersen, K. Oral glucose tolerance test predicts increased carotid plaque burden in patients with acute coronary syndrome. PLoS ONE 2017, 12, e0183839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storz, C.; Rospleszcz, S.; Lorbeer, R.; Hetterich, H.; Auweter, S.D.; Sommer, W.; Machann, J.; Gatidis, S.; Rathmann, W.; Heier, M.; et al. Phenotypic Multiorgan Involvement of Subclinical Disease as Quantified by Magnetic Resonance Imaging in Subjects With Prediabetes, Diabetes, and Normal Glucose Tolerance. Investig. Radiol. 2018, 53, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Bamberg, F.; Hetterich, H.; Rospleszcz, S.; Lorbeer, R.; Auweter, S.D.; Schlett, C.L.; Schafnitzel, A.; Bayerl, C.; Schindler, A.; Saam, T.; et al. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study. Diabetes 2017, 66, 158–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldassarre, D.; Nyyssonen, K.; Rauramaa, R.; de Faire, U.; Hamsten, A.; Smit, A.J.; Mannarino, E.; Humphries, S.E.; Giral, P.; Grossi, E.; et al. Cross-sectional analysis of baseline data to identify the major determinants of carotid intima-media thickness in a European population: The IMPROVE study. Eur. Heart J. 2010, 31, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.C.; Lin, R.T.; Chen, C.F.; Chen, C.H.; Juo, S.H.; Lin, H.F. Predictors of Carotid Intima-Media Thickness and Plaque Progression in a Chinese Population. J. Atheroscler. Thromb. 2016, 23, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Baroncini, L.A.V.; de Castro Sylvestre, L.; Filho, R.P. Carotid intima-media thickness and carotid plaque represent different adaptive responses to traditional cardiovascular risk factors. Int. J. Cardiol. Heart Vasc. 2015, 9, 48–51. [Google Scholar]
- Mathiesen, E.B.; Johnsen, S.H.; Wilsgaard, T.; Bonaa, K.H.; Lochen, M.L.; Njolstad, I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: A 10-year follow-up of 6584 men and women: The Tromso Study. Stroke 2011, 42, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lim, S.; Park, K.S.; Jang, H.C.; Choi, S.H. Total and differential WBC counts are related with coronary artery atherosclerosis and increase the risk for cardiovascular disease in Koreans. PLoS ONE 2017, 12, e0180332. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Noh, J.H.; Kim, D.-J. Association between White Blood Cell Counts within Normal Range and Hemoglobin A1c in a Korean Population. Endocrinol. Metab. 2018, 33, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.S.; Cheng, J.; Boden-Albala, B.; Paik, M.C.; Sacco, R.L.; Northern Manhattan Stroke Study. Elevated white blood cell count and carotid plaque thickness: The northern manhattan stroke study. Stroke 2001, 32, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Elkind, M.S.; Sciacca, R.; Boden-Albala, B.; Homma, S.; Di Tullio, M.R. Leukocyte count is associated with aortic arch plaque thickness. Stroke 2002, 33, 2587–2592. [Google Scholar] [CrossRef] [Green Version]
- Twig, G.; Afek, A.; Shamiss, A.; Derazne, E.; Tzur, D.; Gordon, B.; Tirosh, A. White blood cells count and incidence of type 2 diabetes in young men. Diabetes Care 2013, 36, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Wang, T.; Xu, M.; Xu, Y.; Li, M.; Lu, J.; Zhu, X.; Ning, G. Advanced research on risk factors of type 2 diabetes. Diabetes Metab. Res. Rev. 2012, 28 (Suppl. 2), 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gokulakrishnan, K.; Deepa, R.; Sampathkumar, R.; Balasubramanyam, M.; Mohan, V. Association of leukocyte count with varying degrees of glucose intolerance in Asian Indians: The Chennai Urban Rural Epidemiology Study (CURES-26). Metab. Syndr. Relat. Disord. 2009, 7, 205–210. [Google Scholar] [CrossRef]
- Nakanishi, N.; Yoshida, H.; Matsuo, Y.; Suzuki, K.; Tatara, K. White blood-cell count and the risk of impaired fasting glucose or Type II diabetes in middle-aged Japanese men. Diabetologia 2002, 45, 42–48. [Google Scholar] [CrossRef]
- Li, G.; Zhang, P.; Wang, J.; An, Y.; Gong, Q.; Gregg, E.W.; Yang, W.; Zhang, B.; Shuai, Y.; Hong, J.; et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014, 2, 474–480. [Google Scholar] [CrossRef]
- Gossain, V.V.; Aldasouqi, S. The challenge of undiagnosed pre-diabetes, diabetes and associated cardiovascular disease. Int. J. Diabetes Mellit. 2010, 2, 43–46. [Google Scholar] [CrossRef] [Green Version]
All Subjects | NGT | Prediabetes | p-Value | |
---|---|---|---|---|
Sample size, N (%) | 550 | 326 (59.3%) | 224 (40.7%) | |
Gender (women), n (%) | 321 (58.4) | 190 (58.3) | 131 (58.5) | 0.963 |
Age (years), mean (SD) | 50.1 (13) | 47.3 (12.8) | 54.3 (12.2) | <0.001 |
BMI (kg/m2), mean (SD) | 26.1 (4.5) | 25.3 (4.3) | 27.3 (4.5) | <0.001 |
Waist (cm), mean (SD) | 93.8 (12.2) | 91.8 (12.0) | 96.7 (12.0) | <0.001 |
Tobacco exposure, n (%) | 283 (51.5%) | 162 (49.7%) | 121 (54%) | <0.001 |
FPG (mg/dL), mean (SD) | 90.8 (10.3) | 86.6 (7.0) | 97 (11.2) | <0.001 |
A1C (%), mean (SD) | 5.5 (0.4) | 5.2 (0.3) | 5.8 (0.3) | <0.001 |
Dyslipidemia, n (%) | 65 (11.8%) | 27 (8.3%) | 38 (17%) | 0.002 |
Total-c (mg/dL), mean (SD) | 201 (36.2) | 197.8 (38.3) | 205.7 (32.4) | 0.006 |
HDL-c (mg/dL), mean (SD) | 58.7 (14.7) | 58.7 (14.8) | 58.8 (14.4) | 0.911 |
LDL-c (mg/dL), mean (SD) | 122 (30.7) | 119.4 (31.3) | 125.6 (29.4) | 0.010 |
Triglycerides (mg/dL), mean (SD) | 107.2 (80.9) | 104.5 (90.8) | 111 (63.7) | 0.070 |
Hypertension (%), n (%) | 84 (15.3) | 37 (11.3) | 47 (21) | 0.002 |
SBP (mmHg), mean (SD) | 122 (16.7) | 119.2 (16.3) | 125.9 (16.5) | <0.001 |
DBP (mmHg), mean (SD) | 76.8 (10.1) | 75.7 (10.1) | 78.4 (9.9) | 0.001 |
Creatinine (mg/dL), mean (SD) | 0.8 (0.2) | 0.8 (0.2) | 0.8 (0.2) | 0.412 |
eGFR (ml/min), mean (SD) | 94.2 (15.1) | 96.7 (14.1) | 90.6 (15.8) | <0.001 |
Serum urate (mg/dL), mean (SD) | 4.9 (1.3) | 4.8 (1.2) | 5 (1.3) | 0.056 |
ALT (U/L), mean (SD) | 20.4 (17.4) | 20.4 (20.5) | 20.3 (11.5) | 0.190 |
Leukocytes (× 109/L), mean (SD) | 6.6 (1.7) | 6.4 (1.6) | 6.8 (1.8) | 0.033 |
All Subjects | NGT | Prediabetes | p-Value | |
---|---|---|---|---|
c-IMT, mm, mean (SD) | 0.69 (0,1) | 0.67 (0.1) | 0.72 (0.1) | <0.001 |
Presence of carotid plaque, n (%) | ||||
No plaque | 401 (72.9) | 262 (80.4) | 139 (62.1) | <0.001 |
Significant plaque | 149 (27.1) | 64 (19.6) | 85 (37.9) | <0.001 |
Subjects with 1 plaque | 77 (14) | 33 (10.1) | 44 (19.6) | <0.001 |
Subjects with multiple plaques | 72 (13.1) | 31 (9.5) | 41 (18.3) | <0.001 |
Number of carotid plaques | ||||
Mean (SD) | 0.47 (0.9) | 0.36 (0.9) | 0.64 (1.0) | <0.001 |
Median (IQR) | 0 (0–1) | 0 (0–0) | 0 (0–1) |
Coefficient | 95% CI | p-Value | |
---|---|---|---|
Prediabetes | 0.47 | −1.23–2.17 | 0.589 |
Gender, male | 3.99 | 1.85–6.14 | <0.001 |
Age | 0.47 | 0.38–0.56 | <0.001 |
Tobacco exposure | 1.31 | −0.38–3.00 | 0.128 |
Waist | 0.01 | −0.07–0.10 | 0.738 |
LDL cholesterol | 0.03 | −0.00–0.05 | 0.067 |
HDL cholesterol | −0.02 | −0.08–0.05 | 0.645 |
Triglycerides | 0.00 | −0.01–0.01 | 0.976 |
eGFR | −0.04 | −0.11–0.03 | 0.244 |
Leukocytes | −0.11 | −0.62–0.41 | 0.683 |
Serum urate | −0.13 | −1.01–0.75 | 0.770 |
Systolic blood pressure | 0.11 | 0.03–0.19 | 0.007 |
Diastolic blood pressure | −0.08 | −0.20–0.04 | 0.206 |
OR | 95% CI | p-Value | |
---|---|---|---|
Prediabetes | 1.64 | 1.04–2.58 | 0.034 |
Gender, male | 1.94 | 1.09–3.49 | 0.026 |
Age | 1.08 | 1.06–1.11 | <0.001 |
Tobacco exposure | 1.70 | 1.04–2.81 | 0.036 |
Waist | 1.02 | 0.99–1.04 | 0.216 |
LDL cholesterol | 1.01 | 1.00–1.02 | 0.013 |
HDL cholesterol | 1.00 | 0.98–1.02 | 0.969 |
Triglycerides | 1.00 | 0.10–1.00 | 0.580 |
eGFR | 1.01 | 0.99–1.03 | 0.574 |
Leukocytes | 1.18 | 1.03–1.37 | 0.022 |
Serum urate | 0.95 | 0.75–1.21 | 0.696 |
Systolic blood pressure | 1.02 | 0.99–1.04 | 0.158 |
Diastolic blood pressure | 0.10 | 0.96–1.03 | 0.811 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilanova, M.B.; Franch-Nadal, J.; Falguera, M.; Marsal, J.R.; Canivell, S.; Rubinat, E.; Miró, N.; Molló, À.; Mata-Cases, M.; Gratacòs, M.; et al. Prediabetes Is Independently Associated with Subclinical Carotid Atherosclerosis: An Observational Study in a Non-Urban Mediterranean Population. J. Clin. Med. 2020, 9, 2139. https://doi.org/10.3390/jcm9072139
Vilanova MB, Franch-Nadal J, Falguera M, Marsal JR, Canivell S, Rubinat E, Miró N, Molló À, Mata-Cases M, Gratacòs M, et al. Prediabetes Is Independently Associated with Subclinical Carotid Atherosclerosis: An Observational Study in a Non-Urban Mediterranean Population. Journal of Clinical Medicine. 2020; 9(7):2139. https://doi.org/10.3390/jcm9072139
Chicago/Turabian StyleVilanova, Maria Belén, Josep Franch-Nadal, Mireia Falguera, Josep Ramon Marsal, Sílvia Canivell, Esther Rubinat, Neus Miró, Àngels Molló, Manel Mata-Cases, Mònica Gratacòs, and et al. 2020. "Prediabetes Is Independently Associated with Subclinical Carotid Atherosclerosis: An Observational Study in a Non-Urban Mediterranean Population" Journal of Clinical Medicine 9, no. 7: 2139. https://doi.org/10.3390/jcm9072139
APA StyleVilanova, M. B., Franch-Nadal, J., Falguera, M., Marsal, J. R., Canivell, S., Rubinat, E., Miró, N., Molló, À., Mata-Cases, M., Gratacòs, M., Castelblanco, E., & Mauricio, D. (2020). Prediabetes Is Independently Associated with Subclinical Carotid Atherosclerosis: An Observational Study in a Non-Urban Mediterranean Population. Journal of Clinical Medicine, 9(7), 2139. https://doi.org/10.3390/jcm9072139