Effects of Rapid Recovery on Alcohol Hangover Severity: A Double-Blind, Placebo-Controlled, Randomized, Balanced Crossover Trial
Abstract
:1. Introduction
2. Experimental Section
2.1. Method
2.2. Design
2.3. Participants
2.4. Measures
2.4.1. Breath Alcohol Concentration (BAC)
2.4.2. Assessment of Hangover Severity
2.4.3. Sleep Quality Assessments
2.4.4. Assessment of Biomarkers for Inflammation and Liver Function
2.4.5. Assessment of Cognitive Performance
Reaction Test (RT)
Determination Test (DT)
Adaptive Tachistoscopic Traffic Perception Test (ATAVT)
2.4.6. Perceived Treatment Order
2.5. Procedure
2.6. Statistics and Analyses
3. Results
3.1. BAC Levels
3.2. Hangover Symptom Severity
3.3. Sleep Quality and Cognitive Performance
3.4. Levels of Biomarkers for Inflammation and Liver Function
3.5. Percieved Treatment Order and Adverse Events
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Verster, J.C.; Scholey, A.; van de Loo, A.J.; Benson, S.; Stock, A.-K. Updating the definition of the alcohol hangover. J. Clin. Med. 2020, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- van Schrojenstein Lantman, M.; van de Loo, A.J.A.E.; Mackus, M.; Verster, J.C. Development of a definition for the alcohol hangover: Consumer descriptions and expert consensus. Curr. Drug Abuse Rev. 2016, 9, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Rohsenow, D.J.; Howland, J.; Minsky, S.J.; Greece, J.; Almeida, A.; Roehrs, T.A. The Acute Hangover Scale: A new measure of immediate hangover symptoms. Addict. Behav. 2007, 32, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Verster, J.C.; Stephens, R.; Penning, R.; Rohsenow, D.; McGeary, J.; Levy, D.; McKinney, A.; Finnigan, F.; Piasecki, T.M.; Adan, A.; et al. The alcohol hangover research group consensus statement on best practice in alcohol hangover research. Curr. Drug Abuse Rev. 2010, 3, 116–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc Kinney, A.; Coyle, K. Alcohol hangover effects on measures of affect the morning after a normal night’s drinking. Alcohol Alcohol. 2006, 41, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, S.; Ayre, E.; Garrisson, H.; Wetherell, M.A.; Verster, J.C.; Scholey, A. Alcohol Hangover and Multitasking: Effects on Mood, Cognitive Performance, Stress Reactivity, and Perceived Effort. J. Clin. Med. 2020, 9, 1154. [Google Scholar] [CrossRef]
- Gunn, C.; Mackus, M.; Griffin, C.; Munafò, M.R.; Adams, S. A systematic review of the next-day effects of heavy alcohol consumption on cognitive performance. Addiction 2018, 113, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Benson, S.; Kaufman, J.; Terpstra, C.; Ayre, E.; Verster, J.C.; Allen, C.; Devilly, G.J. Effects of alcohol hangover on cognitive performance: Findings from a field/internet mixed methodology study. J. Clin. Med. 2019, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Verster, J.C.; Bervoets, A.C.; de Klerk, S.; Vreman, R.A.; Olivier, B.; Roth, T.; Brookhuis, K.A. Effects of alcohol hangover on simulated highway driving performance. Psychopharmacology 2014, 231, 2999–3008. [Google Scholar] [CrossRef]
- Alford, C.; Broom, C.; Carver, H.; Johnson, S.J.; Lands, S.; Reece, R.; Verster, J.C. The Impact of Alcohol Hangover on Simulated Driving Performance During a ‘Commute to Work’—Zero and Residual Alcohol Effects Compared. J. Clin. Med. 2020, 9, 1435. [Google Scholar] [CrossRef]
- Frone, M.R. Employee psychoactive substance involvement: Historical context, key findings, and future directions. Ann. Rev. Organ. Psychol. Organ. Behav. 2019, 6, 273–297. [Google Scholar] [CrossRef]
- Moore, R.S.; Ames, G.M.; Duke, M.R.; Cunradi, C.B. Food service employee alcohol use, hangovers and norms during and after work hours. J. Subst. Use 2012, 17, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howland, J.; Rohsenow, D.J.; Allensworth-Davies, D.; Greece, J.; Almeida, A.; Minsky, S.J.; Arnedt, J.T.; Hermos, J. The incidence and severity of hangover the morning after moderate alcohol intoxication. Addiction 2008, 103, 758–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A. Financial Headache: The Cost of Workplace Hangovers and Intoxication to the UK Economy; Institute of Alcohol Studies: London, UK, 2019. [Google Scholar]
- Roche, A.; Pidd, K.; Kostadinov, V. Alcohol- and drug-related absenteeism: A costly problem. Aust. N. Z. J. Public Health 2016, 40, 236–238. [Google Scholar] [CrossRef] [Green Version]
- Bouchery, E.E.; Harwood, H.J.; Sacks, J.J.; Simon, C.J.; Brewer, R.D. Economic costs of excessive alcohol consumption in the US, 2006. Am. J. Prev. Med. 2011, 41, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penning, R.; van Nuland, M.; Fliervoet, L.A.L.; Olivier, B.; Verster, J.C. The pathology of alcohol hangover. Curr. Drug Abuse Rev. 2010, 3, 68–75. [Google Scholar] [CrossRef]
- Tipple, C.; Benson, S.; Scholey, A. A review of the physiological factors associated with alcohol hangover. Curr. Drug Abuse Rev. 2016, 9, 93–98. [Google Scholar] [CrossRef]
- Palmer, E.; Tyacke, R.; Sastre, M.; Lingford-Hughes, A.; Nutt, D.; Ward, R.J. Alcohol Hangover: Underlying Biochemical, Inflammatory and Neurochemical Mechanisms. Alcohol Alcohol. 2019, 54, 196–203. [Google Scholar] [CrossRef]
- Powers, S.K.; Hamilton, K. Antioxidants and exercise. Clin. Sports Med. 1999, 18, 525–536. [Google Scholar] [CrossRef]
- Yan, T.; Zhao, Y.; Zhang, X. Acetaldehyde induces cytotoxicity of SH-SY5Y cells via inhibition of Akt activation and induction of oxidative stress. Oxidative Med. Cell. Longev. 2016, 4512309. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Jensen, K.; Krogh, H. Alcohol-Induced hangover; A double-blind comparison of pyritinol and placebo in preventing hangover symptoms. Q. J. Stud. Alcohol 1973, 34, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Baluci, C.; Saliba, C.; Gutierrez, G.; Collie, A.; Agius, C. Cognitive effects of acute alcohol consumption are reduced by TEX-OE pre-conditioning. J. Psychopharmacol. 2005, A25. [Google Scholar]
- Kaivola, S.; Parantainen, J.; Österman, T.; Timonen, H. Hangover headache and prostaglandins: Prophylactic treatment with tolfenamic acid. Cephalalgia 1983, 3, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Wiese, J.; McPherson, S.; Odden, M.C.; Shlipak, M.G. Effect of Opuntia ficus indica on symptoms of the alcohol hangover. Arch. Intern. Med. 2004, 164, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Ylikahri, R.; Huttunen, M.; Eriksson, C.; Nikklä, E. Metabolic studies on the pathogenesis of hangover. Eur. J. Clin. Investig. 1974, 4, 93–100. [Google Scholar] [CrossRef]
- Vallés, S.L.; Blanco, A.M.; Pascual, M.; Guerri, C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 2004, 14, 365–371. [Google Scholar] [CrossRef]
- Tiwari, V.; Kuhad, A.; Chopra, K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav. Brain Res. 2009, 203, 296–303. [Google Scholar] [CrossRef]
- Kishore, R.; Hill, J.R.; McMullen, M.R.; Frenkel, J.; Nagy, L.E. ERK1/2 and Egr-1 contribute to increased TNF-α production in rat Kupffer cells after chronic ethanol feeding. Am. J. Physiol.-Gastrointest. Liver Physiol. 2002, 282, G6–G15. [Google Scholar] [CrossRef]
- Pascual, M.; Montesinos, J.; Marcos, M.; Torres, J.L.; Costa-Alba, P.; García-García, F.; Laso, F.J.; Guerri, C. Gender differences in the inflammatory cytokine and chemokine profiles induced by binge ethanol drinking in adolescence. Addict. Biol. 2017, 22, 1829–1841. [Google Scholar] [CrossRef]
- Neupane, S.P.; Skulberg, A.; Skulberg, K.R.; Aass, H.C.D.; Bramness, J.G. Cytokine changes following acute ethanol intoxication in healthy men: A crossover study. Mediat. Inflamm. 2016, 3758590. [Google Scholar] [CrossRef]
- Davis, R.L.; Syapin, P.J. Ethanol increases nuclear factor-κB activity in human astroglial cells. Neurosci. Lett. 2004, 371, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Mandrekar, P.; Oak, S.; Mayerle, J. Effect of ethanol on inflammatory responses. Pancreatology 2007, 7, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, N.A.; Brydon, L.; Walker, C.; Gray, M.A.; Steptoe, A.; Critchley, H.D. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatr. 2009, 66, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantzer, R. Cytokine-Induced sickness behaviour: A neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 2004, 500, 399–411. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Dominguez-Santalla, M.; Perez, L.; Vidal, C.; Lojo, S.; Barrio, E. Influence of acute alcohol intake and alcohol withdrawal on circulating levels of IL-6, IL-8, IL-10 and IL-12. Cytokine 2000, 12, 1437–1440. [Google Scholar] [CrossRef]
- Kim, D.-J.; Kim, W.; Yoon, S.-J.; Choi, B.-M.; Kim, J.-S.; Go, H.J.; Kim, Y.-K.; Jeong, J. Effects of alcohol hangover on cytokine production in healthy subjects. Alcohol 2003, 31, 167–170. [Google Scholar] [CrossRef]
- Van de Loo, A.; Slot, K.; Kleinjan, M.; Knipping, K.; Garssen, J.; Verster, J. Time-Dependent changes in saliva cytokine concentrations during alcohol hangover: A comparison of two naturalistic studies. Alcohol. Clin. Exp. Res. 2016, 40, 95A. [Google Scholar]
- Bang, J.S.; Chung, Y.H.; Chung, S.J.; Lee, H.S.; Song, E.H.; Shin, Y.K.; Lee, Y.J.; Kim, H.-C.; Nam, Y.; Yeong, J.H. Clinical effect of a polysaccharide-rich extract of Acanthopanax senticosus on alcohol hangover. Die Pharm.-An. Int. J. Pharm. Sci. 2015, 70, 269–273. [Google Scholar]
- George, A.; Udani, J.K.; Yusof, A. Effects of Phyllanthus amarus PHYLLPROTM leaves on hangover symptoms: A randomized, double-blind, placebo-controlled crossover study. Pharm. Biol. 2019, 57, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Mackus, M.; van Schrojenstein Lantman, M.; van de Loo, A.J.A.E.; Nutt, D.; Verster, J.C. An effective hangover treatment: Friend or foe? Drug Sci. Policy Law 2017, 3, 2050324517741038. [Google Scholar] [CrossRef]
- Verster, J.C.; Penning, R. Treatment and prevention of alcohol hangover. Curr. Drug Abuse Rev. 2010, 3, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Verster, J.C.; van Schrojenstein Lantman, M.; Mackus, M.; van de Loo, A.J.; Garssen, J.; Scholey, A. Differences in the Temporal Typology of Alcohol Hangover. Alcohol. Clin. Exp. Res. 2018, 42, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verster, J.C.; Slot, K.A.; Arnoldy, L.; van Lawick van Pabst, A.E.; van de Loo, A.J.; Benson, S.; Scholey, A. The Association between Alcohol Hangover Frequency and Severity: Evidence for Reverse Tolerance? J. Clin. Med. 2019, 8, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slutske, W.S.; Piasecki, T.M.; Nathanson, L.; Statham, D.J.; Martin, N.G. Genetic influences on alcohol-related hangover. Addiction 2014, 109, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Isse, T.; Kawamoto, T.; Baik, H.W.; Park, J.Y.; Yang, M. Effect of Korean pear (Pyruspyrifolia cv. Shingo) juice on hangover severity following alcohol consumption. Food Chem. Toxicol. 2013, 58, 101–106. [Google Scholar] [CrossRef]
- Brooks, P.J.; Enoch, M.-A.; Goldman, D.; Li, T.-K.; Yokoyama, A. The alcohol flushing response: An unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 2009, 6. [Google Scholar] [CrossRef]
- Harada, S.; Agarwal, D.; Goedde, H.; Tagaki, S.; Ishikawa, B. Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet 1982, 320, 827. [Google Scholar] [CrossRef]
- Yokoyama, M.; Yokoyama, A.; Yokoyama, T.; Funazu, K.; Hamana, G.; Kondo, S.; Yamashita, T.; Nakamura, H. Hangover susceptibility in relation to aldehyde dehydrogenase-2 genotype, alcohol flushing, and mean corpuscular volume in Japanese workers. Alcohol. Clin. Exp. Res. 2005, 29, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, M.; Suzuki, N.; Yokoyama, T.; Yokoyama, A.; Funazu, K.; Shimizu, T.; Shibata, M. Interactions between migraine and tension-type headache and alcohol drinking, alcohol flushing, and hangover in Japanese. J. Headache Pain 2012, 13, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, T.M., Jr.; Tuma, D.J.; Sorrell, M.F. Acetaldehyde adducts with proteins: Binding of [14C] acetaldehyde to serum albumin. Arch. Biochem. Biophys. 1983, 220, 239–246. [Google Scholar] [CrossRef]
- Sprince, H.; Parker, C.M.; Smith, G.G.; Gonzales, L.J. Protection against acetaldehyde toxicity in the rat by L-cysteine, thiamin and L-2-methylthiazolidine-4-carboxylic acid. Agents Actions 1974, 4, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Penning, R.; McKinney, A.; Bus, L.D.; Olivier, B.; Slot, K.; Verster, J.C. Measurement of alcohol hangover severity: Development of the Alcohol Hangover Severity Scale (AHSS). Psychopharmacology 2013, 225, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Slutske, W.S.; Piasecki, T.M.; Hunt-Carter, E.E. Development and initial validation of the Hangover Symptoms Scale: Prevalence and correlates of hangover symptoms in college students. Alcohol. Clin. Exp. Res. 2003, 27, 1442–1450. [Google Scholar] [CrossRef] [Green Version]
- Hogewoning, A.; Van de Loo, A.; Mackus, M.; Raasveld, S.; De Zeeuw, R.; Bosma, E.; Bouwmeester, N.; Brookhuis, K.; Garssen, J.; Verster, J. Characteristics of social drinkers with and without a hangover after heavy alcohol consumption. Subst. Abuse Rehabil. 2016, 7, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Meulen, W.M.-H.; Wijnberg, J.; Hollander, J.; De Diana, I.; Van den Hoofdakker, R. Measurement of subjective sleep quality. In Proceedings of the Amsterdam: Fifth European Sleep Congress of the European Sleep Research Society, Amsterdam, The Netherlands, 2–5 September 1980; p. 98. [Google Scholar]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.F.; Powell, J.W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 652–655. [Google Scholar] [CrossRef]
- Neuwirth, W.; Benesch, M. Manual DT: Determination Test, version 33.00; SCHUHFRIED GmbH: Mödling, Austria, 2007. [Google Scholar]
- Schuhfried, G. Manual ATAVT: The Adaptive Tachistoscopic Traffic; SCHUHFRIED GmbH: Mödling, Austria, 2009. [Google Scholar]
- Wagenmakers, E.-J.; Wetzels, R.; Borsboom, D.; Van Der Maas, H.L. Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem. J. Pers. Soc. Psychol. 2011, 100, 426–432. [Google Scholar]
- van Schrojenstein Lantman, M.; Roth, T.; Roehrs, T.; Verster, J.C. Alcohol hangover, sleep quality, and daytime sleepiness. Sleep Vigil. 2017, 1, 37–41. [Google Scholar] [CrossRef]
- van Schrojenstein Lantman, M.; Mackus, M.; Roth, T.; Verster, J.C. Total sleep time, alcohol consumption, and the duration and severity of alcohol hangover. Nat. Sci. Sleep 2017, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Devenney, L.E.; Coyle, K.B.; Roth, T.; Verster, J.C. Sleep after heavy alcohol consumption and physical activity levels during alcohol hangover. J. Clin. Med. 2019, 8, 752. [Google Scholar] [CrossRef] [Green Version]
- Alatalo, P.; Koivisto, H.; Puukka, K.; Hietala, J.; Anttila, P.; Bloigu, R.; Niemelä, O. Biomarkers of liver status in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol. 2009, 44, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conigrave, K.M.; Degenhardt, L.J.; Whitfield, J.B.; Saunders, J.B.; Helander, A.; Tabakoff, B.; Group, W.I.S. CDT, GGT, and AST as markers of alcohol use: The WHO/ISBRA collaborative project. Alcohol. Clin. Exp. Res. 2002, 26, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Conigrave, K.M.; Davies, P.; Haber, P.; Whitfield, J.B. Traditional markers of excessive alcohol use. Addiction 2003, 98, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.O.; Arnoldy, L.; Ayre, E.; Benson, S.; Balikji, S.; Bruce, G.; Chen, F.; van Lawick van Pabst, A.E.; van de Loo, A.J.A.E.; O’Neill, S.; et al. In Proceedings of the 11th Alcohol Hangover Research Group Meeting, Nadi, Fiji. Proceedings 2020, 43, 1. [Google Scholar] [CrossRef] [Green Version]
- Raasveld, S.; Hogewoning, A.; Van de Loo, A.; De Zeeuw, R.; Bosma, E.R.; Bouwmeester, N.; Lukkes, M.; Brookhuis, K.; Knipping, K.; Garssen, J. Cytokine concentrations after heavy alcohol consumption in people with and without a hangover. Eur. Neuropsychopharmacol. 2015, 25, 228. [Google Scholar] [CrossRef]
- Verster, J.C.; Kruisselbrink, L.D.; Slot, K.A.; Anogeianaki, A.; Adams, S.; Alford, C.; Arnoldy, L.; Ayre, E.; Balikji, S.; Benson, S.; et al. Sensitivity to experiencing alcohol hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) threshold for having a hangover. J. Clin. Med. 2020, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Stephens, R.; Grange, J.A.; Jones, K.; Owen, L. A critical analysis of alcohol hangover research methodology for surveys or studies of effects on cognition. Psychopharmacology 2014, 231, 2223–2236. [Google Scholar] [CrossRef]
- Prat, G.; Adan, A.; Pérez-Pàmies, M.; Sànchez-Turet, M. Neurocognitive effects of alcohol hangover. Addict. Behav. 2008, 33, 15–23. [Google Scholar] [CrossRef]
- Verster, J.C.; van de Loo, A.J.; Adams, S.; Stock, A.-K.; Benson, S.; Scholey, A.; Alford, C.; Bruce, G. Advantages and Limitations of Naturalistic Study Designs and Their Implementation in Alcohol Hangover Research. J. Clin. Med. 2019, 8, 2160. [Google Scholar] [CrossRef] [Green Version]
- J. Rohsenow, D.; Howland, J. The role of beverage congeners in hangover and other residual effects of alcohol intoxication: A review. Curr. Drug Abuse Rev. 2010, 3, 76–79. [Google Scholar] [CrossRef]
Item | Placebo M (SD) | Rapid Recovery M (SD) | p Value | BF Value |
---|---|---|---|---|
Single-Item Severity Scale | ||||
‘How severe is your hangover?’ | 3.18 (2.69) | 3.22 (2.07) | 0.962 | 5.856 |
Hangover Symptom Composite Scale | ||||
Concentration problems | 5.65 (2.40) | 5.43 (1.92) | 0.748 | 5.570 |
Thirst | 4.94 (2.51) | 5.12 (1.35) | 0.775 | 5.630 |
Tiredness | 4.78 (2.35) | 4.83 (2.43) | 0.957 | 5.854 |
Sleepiness | 4.53 (2.340 | 4.66 (2.50) | 0.874 | 5.790 |
Headache | 3.31 (3.07) | 3.31 (2.51) | 0.996 | 5.862 |
Apathy | 2.90 (2.64) | 2.79 (2.22) | 0.856 | 5.768 |
Clumsiness | 2.65 (2.01) | 2.66 (2.11) | 0.994 | 5.862 |
Weakness | 2.54 (2.63) | 2.71 (2.07) | 0.835 | 5.737 |
Sensitivity to light | 2.26 (2.54) | 2.38 (2.06) | 0.811 | 5.698 |
Nausea | 1.77 (1.72) | 2.37 (2.47) | 0.365 | 3.904 |
Sleep problems | 1.63 (1.75) | 2.59 (2.86) | 0.049 * | / |
Reduced appetite | 1.61 (1.80) | 2.57 (2.75) | 0.219 | 2.774 |
Dizziness | 1.53 (1.54) | 2.05 (1.97) | 0.360 | 3.870 |
Stomach pain | 1.37 (2.38) | 1.35 (2.08) | 0.977 | 5.860 |
Shaking, shivering | 1.23 (1.66) | 0.95 (1.31) | 0.407 | 4.169 |
Anxiety | 1.18 (1.54) | 1.07 (1.20) | 0.668 | 5.350 |
Confusion | 1.17 (1.54) | 0.98 (0.95) | 0.569 | 4.991 |
Regret | 1.05 (1.68) | 0.77 (1.00) | 0.429 | 4.298 |
Sweating | 0.93 (1.08) | 1.40 (1.68) | 0.238 | 2.940 |
Heart beating | 0.90 (1.31) | 1.41 (1.76) | 0.234 | 2.903 |
Depression | 0.73 (0.88) | 0.75 (0.97) | 0.935 | 5.843 |
Heart racing | 0.67 (0.95) | 0.84 (0.93) | 0.247 | 3.016 |
Vomiting | 0.39 (0.53) | 0.89 (1.70) | 0.193 | 2.529 |
Item | Rapid Recovery M (SD) | Placebo M (SD) | p-Value | BF Value |
---|---|---|---|---|
Sleep Quality | ||||
GSQ | 4.10 (3.54) | 3.35 (3.01) | 0.429 | 4.300 |
KSS | 5.00 (2.15) | 4.85 (2.06) | 0.845 | 5.753 |
RT | ||||
Reaction time (milliseconds) | 426.79 (57.23) | 415.37 (79.40) | 0.297 | 3.341 |
Motor time (milliseconds) | 152.84 (37.55) | 156.89 (34.64) | 0.584 | 4.788 |
Number of correct reactions | 15.95 (0.23) | 16.00 (0.00) | 0.331 | 3.580 |
DT | ||||
Reaction time (milliseconds) | 676.80 (61.20) | 668.90 (62.35) | 0.544 | 4.770 |
Number of correct responses | 283.05 (33.58) | 289.32 (27.03) | 0.367 | 3.826 |
Number of errors | 21.42 (11.76) | 22.21 (11.54) | 0.681 | 5.265 |
Number of missed responses | 14.21 (8.34) | 13.95 (6.93) | 0.823 | 5.586 |
ATAVT | ||||
Reaction time (seconds) | 8.98 (1.50) | 9.03 (1.47) | 0.893 | 5.675 |
Number of errors | 5.95 (2.37) | 6.00 (3.79) | 0.956 | 5.718 |
Baseline M (SD) | Rapid Recovery M (SD) | Placebo M (SD) | p-Value | BF Value | |
---|---|---|---|---|---|
Hs-CRP (mg/L) | 1.78 (2.86) | 1.49 (2.28) | 1.43 (2.37) | 0.813 | 5.150 |
GGT (U/L) | 27.56 (14.39) | 28.31 (15.17) | 27.13 (13.85) | 0.376 | 3.587 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholey, A.; Ayre, E.; Stock, A.-K.; Verster, J.C.; Benson, S. Effects of Rapid Recovery on Alcohol Hangover Severity: A Double-Blind, Placebo-Controlled, Randomized, Balanced Crossover Trial. J. Clin. Med. 2020, 9, 2175. https://doi.org/10.3390/jcm9072175
Scholey A, Ayre E, Stock A-K, Verster JC, Benson S. Effects of Rapid Recovery on Alcohol Hangover Severity: A Double-Blind, Placebo-Controlled, Randomized, Balanced Crossover Trial. Journal of Clinical Medicine. 2020; 9(7):2175. https://doi.org/10.3390/jcm9072175
Chicago/Turabian StyleScholey, Andrew, Elizabeth Ayre, Ann-Kathrin Stock, Joris C Verster, and Sarah Benson. 2020. "Effects of Rapid Recovery on Alcohol Hangover Severity: A Double-Blind, Placebo-Controlled, Randomized, Balanced Crossover Trial" Journal of Clinical Medicine 9, no. 7: 2175. https://doi.org/10.3390/jcm9072175