Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM
Abstract
:1. Introduction
2. Metabolomics and Early Biomarker of Type 2 Diabetes Mellitus (T2DM)
3. Biomarkers of Disturbed Protein Metabolism
4. Biomarkers of Disturbed Lipid Metabolism
5. Biomarkers of Disturbed Microbiome and Microbiome-Related Metabolites
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1-deoxysphinganine | (1-deoxySA) |
2-hydroxybiphenyl | (2HBP) |
8-pentamethoxyisoflavan | (HPMF) |
adenosine monophosphate-activated protein kinase | (AMPK) |
alkylacyl phosphatidylcholines | (PCe) |
alkylacyl phosphatidylethanolamines | (PEe) |
amino acids | (AA) |
area-under-curve | (AUC) |
Atherosclerosis Risk in Communities | (ARIC) |
branched-chain a-ketoacid dehydrogenase | (BCKD) |
branched-chain amino acid aminotransferase | (BCATm) |
branched-chain aminotransferase | (BCATm) |
branched-chain keto acid dehydrogenase | (BCKDH) |
branched-chained AA | (BCAA) |
branched-chain-OA | (BCOA) |
Ceramides | (Cer) |
cholesterol esters | (CE) |
cholesterol esters | (ChoE) |
cholesteryl ester | (CE) |
choline ether phospholipid | (PCae) |
combined glucose tolerance | (CGT) |
Cooperative Health Research in the Region of Augsburg | (KORA) |
coronary artery disease | (CAD) |
deoxysphingosine | (1-deoxySO) |
diabetes mellitus | (DM) |
diabetic nephropathy | (DN) |
diabetic retinopathy | (DR) |
diacylglycerols | (DAG) |
dihydroceramides | (DHC) |
Dongfeng-Tongji | (DFTJ) |
endogenous glucose production | (EGP) |
European Prospective Investigation into Cancer and Nutrition | (EPIC) |
False Discovery rate | (FDR) |
farnesoid X receptor | (FXR) |
fold change | (FC) |
Free Fatty Acid Receptor 2 | (FFAR2) |
Free fatty acids | (FFA) |
Gestational diabetes | (GDM) |
glucagon-like peptide-1 | (GLP-1) |
glucose-6-phosphotase | (G6P) |
glycated hemoglobin | (HbA1c) |
glycerophospholipids | (GPL) |
G-protein-coupled receptors | (GPCR) |
Health Professionals Follow-Up Study | (HPFS) |
High-density-lipoprotein-cholesterol | (HDL-C) |
References
- The International Diabetes Federation (IDF). Can. J. Diabetes 2009, 33, 13. [CrossRef]
- World Health Organization. Organisation for Economic Co-Operation and Development (OECD); WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Savolainen, O.; Fagerberg, B.; Lind, M.V.; Sandberg, A.-S.; Ross, A.B.; Bergström, G. Biomarkers for predicting type 2 diabetes development—Can metabolomics improve on existing biomarkers? PLoS ONE 2017, 12, e0177738. [Google Scholar] [CrossRef] [PubMed]
- Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012, 8, 615. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef]
- Klein, M.; Shearer, J. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application. J. Diabetes Res. 2015, 2016, 3898502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santaguida, P.L.; Balion, C.; Hunt, D.; Morrison, K.; Gerstein, H.; Raina, P.; Booker, L.; Yazdi, H. Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose. In AHRQ Evidence Report Summaries; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2005. [Google Scholar]
- Fagerberg, B.; Kellis, D.; Bergström, G.; Behre, C.J. Adiponectin in relation to insulin sensitivity and insulin secretion in the development of type 2 diabetes: A prospective study in 64-year-old women. J. Intern. Med. 2010, 269, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tian, Y.; Li, G.; Li, Y.; Yin, X.; Peng, C.; Xu, F.; Zhang, Z. Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and 1H NMR based metabolomics. Anal. Bioanal. Chem. 2013, 405, 4811–4822. [Google Scholar] [CrossRef]
- Bender, D.A. The metabolism of “surplus” amino acids. Br. J. Nutr. 2012, 108, S113–S121. [Google Scholar] [CrossRef] [Green Version]
- Schutz, Y. Protein Turnover, Ureagenesis and Gluconeogenesis. Int. J. Vitam. Nutr. Res. 2011, 81, 101–107. [Google Scholar] [CrossRef]
- Wester, T.; Kraft, G.; Dardevet, D.; Polakof, S.; Ortigues-Marty, I.; Rémond, D.; Savary-Auzeloux, I. Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: Concepts arising fromin vivostudies. Nutr. Res. Rev. 2015, 28, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Akter, S.; Kuwahara, K.; Matsushita, Y.; Nakagawa, T.; Konishi, M.; Honda, T.; Yamamoto, S.; Hayashi, T.; Noda, M.; et al. Serum amino acid profiles and risk of type 2 diabetes among Japanese adults in the Hitachi Health Study. Sci. Rep. 2019, 9, 7010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, M.; Krssak, M.; Bernroider, E.; Anderwald, C.H.; Brehm, A.; Meyerspeer, M.; Nowotny, P.; Roth, E.; Waldhäusl, W.; Roden, M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002, 51, 599–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patti, M.E.; Brambilla, E.; Luzi, L.; Landaker, E.J.; Kahn, C.R. Bidirectional modulation of insulin action by amino acids. J. Clin. Investig. 1998, 101, 1519–1529. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Palmer, N.D.; Stevens, R.D.; Antinozzi, P.A.; Anderson, A.; Bergman, R.N.; Wagenknecht, L.E.; Newgard, C.B.; Bowden, N.W. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J. Clin. Endocrinol. Metab. 2014, 100, E463–E468. [Google Scholar] [CrossRef] [PubMed]
- Tillin, T.; Hughes, A.; Wang, Q.; Würtz, P.; Ala-Korpela, M.; Sattar, N.; Forouhi, N.G.; Godsland, I.F.; Eastwood, S.V.; McKeigue, P.M.; et al. Diabetes risk and amino acid profiles: Cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 2015, 58, 968–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakado, M.; Nagao, K.; Imaizumi, A.; Tani, M.; Toda, A.; Tanaka, T.; Jinzu, H.; Miyano, H.; Yamamoto, H.; Daimon, T.; et al. Plasma Free Amino Acid Profiles Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia and Hypertension in Japanese Population. Sci. Rep. 2015, 5, 11918. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ni, Y.; Ma, X.; Bao, Y.; Liu, J.; Huang, F.; Hu, C.; Xie, G.; Zhao, A.; Jia, W.; et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 2016, 6, 20594. [Google Scholar] [CrossRef] [Green Version]
- Stancáková, A.; Civelek, M.; Saleem, N.K.; Soininen, P.; Kangas, A.; Cederberg, H.; Paananen, J.; Pihlajamäki, J.; Bonnycastle, L.L.; Morken, M.A.; et al. Hyperglycemia and a Common Variant of GCKR Are Associated with the Levels of Eight Amino Acids in 9,369 Finnish Men. Diabetes 2012, 61, 1895–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J.; Ngo, D.; Psychogios, N.; Dejam, A.; Larson, M.G.; Vasan, R.S.; Ghorbani, A.; O’Sullivan, J.; Cheng, S.; Rhee, E.P.; et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J. Clin. Investig. 2013, 123, 4309–4317. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Maeda, T.; Toyo’Oka, T.; Min, J.Z.; Inagaki, S.; Higashi, T.; Kagawa, Y. Practical Analytical Approach for the Identification of Biomarker Candidates in Prediabetic State Based upon Metabonomic Study by Ultraperformance Liquid Chromatography Coupled to Electrospray Ionization Time-of-Flight Mass Spectrometry. J. Proteome Res. 2010, 9, 3912–3922. [Google Scholar] [CrossRef]
- Arora, S.; Henderson, S.O.; Long, T.; Menchine, M. Diagnostic Accuracy of Point-of-Care Testing for Diabetic Ketoacidosis at Emergency-Department Triage. Diabetes Care 2011, 34, 852–854. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.; Zheng, Y.; Wang, H.; Sun, J.; Ma, H.; Xiao, Y.; Li, Y.; Yuan, Y.; Yang, H.; Li, X.; et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults. Int. J. Epidemiol. 2016, 45, 1507–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangipurapu, J.; Stančáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine Amino Acids Are Associated with Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5,181 Finnish Men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Stefan, N.; Yu, Z.; Mühlenbruch, K.; Drogan, D.; Joost, H.-G.; Fritsche, A.; Häring, H.-U.; De Angelis, M.H.; Peters, A.; et al. Identification of Serum Metabolites Associated with Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontiroli, A.E.; Pizzocri, P.; Caumo, A.; Perseghin, G.; Luzi, L. Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: Differences between NGT, IFG, IGT, and type 2 diabetes mellitus. A cross-sectional and follow-up study. Acta Diabetol. 2004, 41, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Felig, P.; Marliss, E.; Ohman, J.L.; Cahill, G.F. Plasma Amino Acid Levels in Diabetic Ketoacidosis. Diabetes 1970, 19, 727–729. [Google Scholar] [CrossRef]
- Lackey, D.E.; Lynch, C.J.; Olson, K.C.; Mostaedi, R.; Ali, M.; Smith, W.H.; Karpe, F.; Humphreys, S.; Bedinger, D.; Dunn, T.N.; et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Metab. 2013, 304, E1175–E1187. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 565–566. [Google Scholar] [CrossRef] [Green Version]
- Mihalik, S.J.; Michaliszyn, S.F.; Heras, J.D.L.; Bacha, F.; Lee, S.; Chace, D.H.; DeJesus, V.R.; Vockley, J.; Arslanian, S. Metabolomic Profiling of Fatty Acid and Amino Acid Metabolism in Youth with Obesity and Type 2 Diabetes. Diabetes Care 2012, 35, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Würtz, P.; Soininen, P.; Kangas, A.; Rönnemaa, T.; Lehtimäki, T.; Kahonen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O.; Garvey, W.T.; Newman, J.W.; Lok, K.H.; Hoppel, C.L.; Adams, S.H. Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women. PLoS ONE 2010, 5, e15234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Saaddine, J.B.; Chou, C.-F.; Cotch, M.F.; Cheng, Y.J.; Geiss, L.S.; Gregg, E.; Albright, A.L.; Klein, B.E.K.; Klein, R. Prevalence of Diabetic Retinopathy in the United States, 2005–2008. JAMA 2010, 304, 649–656. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Y.; Guo, Z.; Yang, J.; Wu, M.; Hu, X.-S. The application of visceral adiposity index in identifying type 2 diabetes risks based on a prospective cohort in China. Lipids Health Dis. 2014, 13, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, M.; Che, Z.; Liang, Y.; Wang, B.; Chen, X.; Li, H.; Deng, J.; Zhou, Z. GC–MS Based Plasma Metabolic Profiling of Type 2 Diabetes Mellitus. Chromatographia 2009, 69, 941–948. [Google Scholar] [CrossRef]
- Stančáková, A.; Javorský, M.; Kuulasmaa, T.; Haffner, S.M.; Kuusisto, J.; Laakso, M. Changes in Insulin Sensitivity and Insulin Release in Relation to Glycemia and Glucose Tolerance in 6,414 Finnish Men. Diabetes 2009, 58, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.F.; Meigs, J.B.; Sullivan, L.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B. Prediction of Incident Diabetes Mellitus in Middle-aged Adults. Arch. Intern. Med. 2007, 167, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, B.D.; Graham, J.L.; Stanhope, K.L.; Fiehn, O.; Havel, P.; Adams, S.H. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model. Am. J. Physiol. Metab. 2016, 310, E958–E969. [Google Scholar] [CrossRef] [Green Version]
- Michaliszyn, S.F.; Sjaarda, L.A.; Mihalik, S.J.; Lee, S.; Bacha, F.; Chace, D.H.; De Jesús, V.R.; Vockley, J.; Arslanian, S. Metabolomic profiling of amino acids and β-cell function relative to insulin sensitivity in youth. J. Clin. Endocrinol. Metab. 2012, 97, E2119–E2124. [Google Scholar] [CrossRef] [Green Version]
- Tai, E.S.; Tan, M.L.S.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.M.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.M.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, C.; Kondo, M.; Kishimoto, N.; Shibata, T.; Nagai, Y.; Imanishi, T.; Oroguchi, T.; Ishii, N.; Nishizaki, Y. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects. J. Diabetes Investig. 2015, 6, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhu, Y.; Hyun, N.; Zeng, N.; Uppal, K.; Tran, V.T.; Yu, T.; Jones, D.; He, J.; Lee, E.T.; et al. Novel Metabolic Markers for the Risk of Diabetes Development in American Indians. Diabetes Care 2014, 38, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Watkins, S.M.; Lorenzo, C.; Wagenknecht, L.E.; Il’Yasova, R.; Chen, Y.-D.I.; Haffner, S.M.; Hanley, A.J. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2016, 39, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, B.D.; Comerford, K.B.; Karakas, S.E.; Knotts, T.A.; Fiehn, O.; Adams, S.H. Whey Protein Supplementation Does Not Alter Plasma Branched-Chained Amino Acid Profiles but Results in Unique Metabolomics Patterns in Obese Women Enrolled in an 8-Week Weight Loss Trial. J. Nutr. 2015, 145, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.; Kastenmuller, G.; Shin, S.-Y.; Petersen, A.-K.; Hyde, C.; Psatha, M.; Ward, K.J.; et al. Biomarkers for Type 2 Diabetes and Impaired Fasting Glucose Using a Nontargeted Metabolomics Approach. Diabetes 2013, 62, 4270–4276. [Google Scholar] [CrossRef] [Green Version]
- She, P.; Olson, K.C.; Kadota, Y.; Inukai, A.; Shimomura, Y.; Hoppel, C.L.; Adams, S.H.; Kawamata, Y.; Matsumoto, H.; Sakai, R.; et al. Leucine and Protein Metabolism in Obese Zucker Rats. PLoS ONE 2013, 8, e59443. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.R.; Adamski, J. The search for predictive metabolic biomarkers for incident T2DM. Nat. Rev. Endocrinol. 2018, 14, 444–446. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Fang, L.; Li, F. Chronic High-Fat Diets Induce Oxide Injuries and Fibrogenesis of Pancreatic Cells in Rats. Pancreas 2008, 37, e31–e38. [Google Scholar] [CrossRef]
- Devkota, S.; Layman, D. Protein metabolic roles in treatment of obesity. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 403–407. [Google Scholar] [CrossRef]
- Nairizi, A.; She, P.; Vary, T.C.; Lynch, C.J. Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J. Nutr. 2009, 139, 715–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougeon, R.; Morais, J.A.; Chevalier, S.; Pereira, S.; Lamarche, M.; Marliss, E.B. Determinants of Whole-Body Protein Metabolism in Subjects with and Without Type 2 Diabetes. Diabetes Care 2007, 31, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, M.; Tonjes, A.; Kovács, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, C.; Chen, L.; Han, X.; Ji, L. Human serum acylcarnitine profiles in different glucose tolerance states. Diabetes Res. Clin. Pract. 2014, 104, 376–382. [Google Scholar] [CrossRef]
- Oberbach, A.; Blüher, M.; Wirth, H.; Till, H.; Kovács, P.; Kullnick, Y.; Schlichting, N.; Tomm, J.M.; Rolle-Kampczyk, U.; Murugaiyan, J.; et al. Combined Proteomic and Metabolomic Profiling of Serum Reveals Association of the Complement System with Obesity and Identifies Novel Markers of Body Fat Mass Changes. J. Proteome Res. 2011, 10, 4769–4788. [Google Scholar] [CrossRef]
- Suvitaival, T.; Bondia-Pons, I.; Yetukuri, L.; Pöhö, P.; Nolan, J.J.; Hyotylainen, T.; Kuusisto, J.; Oresic, M. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018, 78, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, E.J. Invited Review: Effects of acute exercise and exercise training on insulin resistance. J. Appl. Physiol. 2002, 93, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2012, 1821, 754–761. [Google Scholar] [CrossRef]
- Magnusson, C.D.; Haraldsson, G.G. Ether lipids. Chem. Phys. Lipids 2011, 164, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Wallner, S.; Schmitz, G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 2011, 164, 573–589. [Google Scholar] [CrossRef]
- Pietiläinen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Jarvinen, H.; Kaprio, J.; Oresic, M. Acquired Obesity Is Associated with Changes in the Serum Lipidomic Profile Independent of Genetic Effects—A Monozygotic Twin Study. PLoS ONE 2007, 2, e218. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.M.; et al. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting. PLoS ONE 2010, 5, e13953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhre, K.; Schwartz, J.E.; Sharma, V.K.; Chen, Q.; Lee, J.R.; Muthukumar, T.; Dadhania, D.M.; Ding, R.; Ikle, D.N.; Bridges, N.D.; et al. Urine Metabolite Profiles Predictive of Human Kidney Allograft Status. J. Am. Soc. Nephrol. 2015, 27, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.P.; Cheng, S.; Larson, M.G.; Walford, G.A.; Lewis, G.D.; McCabe, E.; Yang, E.; Farrell, L.; Fox, C.S.; O’Donnell, C.J.; et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Investig. 2011, 121, 1402–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloszy, J.O. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 2005, 99, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Rhee, M.; Ho, Y.-L.; Raghavan, S.; Vassy, J.L.; Cho, K.; Gagnon, D.; Staimez, L.R.; Ford, C.N.; Wilson, P.W.F.; Phillips, L.S. Random plasma glucose predicts the diagnosis of diabetes. PLoS ONE 2019, 14, e0219964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrannini, E.; Natali, A.; Camastra, S.; Nannipieri, M.; Mari, A.; Adam, K.-P.; Milburn, M.V.; Kastenmuller, G.; Adamski, J.; Tuomi, T.; et al. Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance. Diabetes 2013, 62, 1730–1737. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Barlow, C.K.; Weir, J.M.; Jowett, J.B.M.; Magliano, D.J.; Zimmet, P.Z.; Shaw, J.; Meikle, P.J. Inclusion of Plasma Lipid Species Improves Classification of Individuals at Risk of Type 2 Diabetes. PLoS ONE 2013, 8, e76577. [Google Scholar] [CrossRef]
- Stahlman, M.; Pham, H.T.; Adiels, M.; Mitchell, T.W.; Blanksby, S.J.; Fagerberg, B.; Ekroos, K.; Borén, J. Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes. Diabetologia 2012, 55, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Tulipani, S.; Palau-Rodriguez, M.; Alonso, A.M.; Cardona, F.; Marco-Ramell, A.; Zonja, B.; De Alda, M.L.; Muñoz-Garach, A.; Sánchez-Pla, A.; Tinahones, F.J.; et al. Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes. Clin. Chim. Acta 2016, 463, 53–61. [Google Scholar] [CrossRef]
- Then, C.; Wahl, S.; Kirchhofer, A.; Grallert, H.; Krug, S.; Kastenmuller, G.; Römisch-Margl, W.; Claussnitzer, M.; Illig, T.; Heier, M.; et al. Plasma Metabolomics Reveal Alterations of Sphingo- and Glycerophospholipid Levels in Non-Diabetic Carriers of the Transcription Factor 7-Like 2 Polymorphism rs7903146. PLoS ONE 2013, 8, e78430. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Tong, R.; Tong, W.; Yang, Q.; Qiu, M.; Xiong, A.; Sun, S.; Ding, L.; Zhang, H.; Yang, L.; et al. Author Correction: Metabolic Biomarkers for Prognostic Prediction of Pre-diabetes: Results from a longitudinal cohort study. Sci. Rep. 2017, 7, 16165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drogan, D.; Dunn, W.; Lin, W.; Buijsse, B.; Schulze, M.B.; Langenberg, C.; Brown, M.; Floegel, A.; Dietrich, S.; Rolandsson, O.; et al. Untargeted Metabolic Profiling Identifies Altered Serum Metabolites of Type 2 Diabetes Mellitus in a Prospective, Nested Case Control Study. Clin. Chem. 2015, 61, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, S.C.; Hansen, M.K.; Corner, A.; Smith, R.F.; Ryan, T.E. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol. BioSyst. 2010, 6, 909–921. [Google Scholar] [CrossRef]
- Fontana, B.G.; Morales-Santana, S.; Díaz, C.; Rozas-Moreno, P.; Genilloud, O.; Pérez, F.V.; Del Palacio, J.P.; Muñoz-Torres, M.; Muñoz-Torres, M. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. Talanta 2016, 148, 135–143. [Google Scholar] [CrossRef]
- Wigger, L.; Cruciani-Guglielmacci, C.; Nicolas, A.; Denom, J.; Fernandez, N.; Fumeron, F.; Marques-Vidal, P.; Ktorza, A.; Kramer, W.; Schulte, A.; et al. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Rep. 2017, 18, 2269–2279. [Google Scholar] [CrossRef]
- Mittermayer, F.; Caveney, E.; De Oliveira, C.; Gourgiotis, L.; Puri, M.; Tai, L.-J.; Turner, J.R. Addressing Unmet Medical Needs in Type 2 Diabetes: A Narrative Review of Drugs under Development. Curr. Diabetes Rev. 2015, 11, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Stratford, S.; Hoehn, K.L.; Liu, F.; Summers, S.A. Regulation of Insulin Action by Ceramide. J. Biol. Chem. 2004, 279, 36608–36615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichur, S.; Brunner, B.; Bielohuby, M.; Hansen, G.; Pfenninger, A.; Wang, B.; Bruning, J.C.; Larsen, P.J.; Tennagels, N. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol. Metab. 2019, 21, 36–50. [Google Scholar] [CrossRef]
- Raichur, S.; Wang, S.T.; Chan, P.W.; Li, Y.; Ching, J.; Chaurasia, B.; Dogra, S.; Öhman, M.K.; Takeda, K.; Sugii, S.; et al. CerS2 Haploinsufficiency Inhibits β-Oxidation and Confers Susceptibility to Diet-Induced Steatohepatitis and Insulin Resistance. Cell Metab. 2014, 20, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turpin-Nolan, S.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; et al. Obesity-Induced CerS6-Dependent C16:0 Ceramide Production Promotes Weight Gain and Glucose Intolerance. Cell Metab. 2014, 20, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.L.; Brozinick, J.T.; Wang, L.-P.; Hawkins, E.D.; Sargent, K.M.; Liu, Y.; Narra, K.; Hoehn, K.L.; Knotts, T.A.; Siesky, A.; et al. Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metab. 2007, 5, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.; Saely, C.H.; Muendlein, A.; Vonbank, A.; Drexel, H.; Von Eckardstein, A.; Hornemann, T. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 2015, 3, e000073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brozinick, J.T.; Hawkins, E.; Bui, H.H.; Kuo, M.-S.; Tan, B.; Kievit, P.; Grove, K. Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet. Int. J. Obes. 2012, 37, 1064–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; DeFronzo, R.A.; Kirwan, J. Plasma Ceramides Are Elevated in Obese Subjects with Type 2 Diabetes and Correlate with the Severity of Insulin Resistance. Diabetes 2008, 58, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic Signature Shift in Type 2 Diabetes Mellitus Revealed by Mass Spectrometry-based Metabolomics. J. Clin. Endocrinol. Metab. 2013, 98, E1060–E1065. [Google Scholar] [CrossRef]
- Shui, G.; Stebbins, J.W.; Lam, B.D.; Cheong, W.F.; Lam, S.M.; Grégoire, F.; Kusonoki, J.; Wenk, M.R. Comparative Plasma Lipidome between Human and Cynomolgus Monkey: Are Plasma Polar Lipids Good Biomarkers for Diabetic Monkeys? PLoS ONE 2011, 6, e19731. [Google Scholar] [CrossRef] [PubMed]
- Di Cianni, G.; Miccoli, R.; Volpe, L.; Lencioni, C.; Del Prato, S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes/Metab. Res. Rev. 2003, 19, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Kowalczyk, A.; et al. Plasma Lipid Profiling Shows Similar Associations with Prediabetes and Type 2 Diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Koulman, A.; Petry, C.J.; Jenkins, B.; Matthews, L.; Hughes, I.A.; Acerini, C.L.; Ong, K.K.; Dunger, D.B. An Unbiased Lipidomics Approach Identifies Early Second Trimester Lipids Predictive of Maternal Glycemic Traits and Gestational Diabetes Mellitus. Diabetes Care 2016, 39, 2232–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, S.; Schiller, K.; Jansen, E.H.J.M.; Boeing, H.; Schulze, M.B.; Kröger, J. Evaluation of various biomarkers as potential mediators of the association between Δ5 desaturase, Δ6 desaturase, and stearoyl-CoA desaturase activity and incident type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition–Potsdam Study. Am. J. Clin. Nutr. 2015, 102, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, C.J.; Koulman, A.; Lu, L.; Jenkins, B.; Furse, S.; Prentice, P.; Matthews, L.; Hughes, I.A.; Acerini, C.L.; Ong, K.K.; et al. Associations between the maternal circulating lipid profile in pregnancy and fetal imprinted gene alleles: A cohort study. Reprod. Biol. Endocrinol. 2018, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Scholl, T.O.; Leskiw, M.; Savaille, J.; Stein, T.P. Differences in Maternal Circulating Fatty Acid Composition and Dietary Fat Intake in Women with Gestational Diabetes Mellitus or Mild Gestational Hyperglycemia. Diabetes Care 2010, 33, 2049–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudzik, D.; Żórawski, M.; Skotnicki, M.; Zarzycki, W.; Kozlowska, G.; Bibik-Malinowska, K.; Vallejo, M.; Garcia, A.; Barbas, C.; Ramos, M.P.; et al. Metabolic fingerprint of Gestational Diabetes Mellitus. J. Proteom. 2014, 103, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.G.; Dunn, W.B.; Banerjee, M.; Brown, M.; Broadhurst, D.I.; Goodacre, R.; Cooper, G.J.S.; Kell, D.B.; Cruickshank, J.K. Evidence That Multiple Defects in Lipid Regulation Occur before Hyperglycemia during the Prodrome of Type-2 Diabetes. PLoS ONE 2014, 9, e103217. [Google Scholar] [CrossRef] [Green Version]
- Allalou, A.; Nalla, A.; Prentice, K.J.; Liu, Y.; Zhang, M.; Dai, F.F.; Ning, X.; Osborne, L.R.; Cox, B.J.; Gunderson, E.P.; et al. A Predictive Metabolic Signature for the Transition from Gestational Diabetes Mellitus to Type 2 Diabetes. Diabetes 2016, 65, 2529–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Kloet, F.M.; Tempels, F.W.A.; Ismail, N.; Van Der Heijden, R.; Kasper, P.T.; Rojas-Cherto, M.; Van Doorn, R.; Spijksma, G.; Koek, M.; Van Der Greef, J.; et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics 2011, 8, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lappas, M.; Mundra, P.A.; Wong, G.; Huynh, K.; Jinks, D.; Georgiou, H.M.; Permezel, M.; Meikle, P.J. The prediction of type 2 diabetes in women with previous gestational diabetes mellitus using lipidomics. Diabetologia 2015, 58, 1436–1442. [Google Scholar] [CrossRef]
- Khan, S.R.; Mohan, H.; Liu, Y.; Batchuluun, B.; Gohil, H.; Al Rijjal, D.; Manialawy, Y.; Cox, B.J.; Gunderson, E.P.; Wheeler, M.B. The discovery of novel predictive biomarkers and early-stage pathophysiology for the transition from gestational diabetes to type 2 diabetes. Diabetologia 2019, 62, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Tamamoğullari, N.; Siliğ, Y.; Içağasioğlu, S.; Atalay, A. Carnitine Deficiency in Diabetes Mellitus Complications. J. Diabetes Complicat. 1999, 13, 251–253. [Google Scholar] [CrossRef]
- Batchuluun, B.; Al Rijjal, D.; Prentice, K.J.; Eversley, J.A.; Burdett, E.; Mohan, H.; Bhattacharjee, A.; Gunderson, E.P.; Liu, Y.; Wheeler, M.B. Elevated Medium-Chain Acylcarnitines Are Associated with Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic β-Cell Dysfunction. Diabetes 2018, 67, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Möder, M.; Kießling, A.; Löster, H.; Brüggemann, L. The pattern of urinary acylcarnitines determined by electrospray mass spectrometry: A new tool in the diagnosis of diabetes mellitus. Anal. Bioanal. Chem. 2003, 375, 200–210. [Google Scholar] [CrossRef]
- Saggerson, E.D. Malonyl-CoA, a Key Signaling Molecule in Mammalian Cells. Annu. Rev. Nutr. 2008, 28, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.H.; Hoppel, C.L.; Lok, K.H.; Zhao, L.; Wong, S.W.; Minkler, P.E.; Hwang, D.H.; Newman, J.W.; Garvey, W.T. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J. Nutr. 2009, 139, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liang, L.; Gao, X.; Zhang, H.; Yao, P.; Hu, Y.; Ma, Y.; Wang, F.; Jin, Q.; Li, H.; et al. Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study. Diabetes Care 2016, 39, 1563–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Ruiz-Canela, M.; Li, J.; Zheng, Y.; Bulló, M.; Wang, D.D.; Toledo, E.; Clish, C.; Corella, D.; Estruch, R.; et al. Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2018, 104, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; Chace, D.H.; Vockley, J.; Toledo, F.G.; Delany, J.P. Increased Levels of Plasma Acylcarnitines in Obesity and Type 2 Diabetes and Identification of a Marker of Glucolipotoxicity. Obesity 2010, 18, 1695–1700. [Google Scholar] [CrossRef] [Green Version]
- Nowak, C.; Hetty, S.; Salihovic, S.; Castillejo-López, C.; Ganna, A.; Cook, N.; Broeckling, C.D.; Prenni, J.E.; Shen, X.; Giedraitis, V.; et al. Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance. Sci. Rep. 2018, 8, 8691. [Google Scholar] [CrossRef]
- Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018, 6, e5410. [Google Scholar] [CrossRef] [Green Version]
- Dellow, W.J.; Chambers, S.T.; Lever, M.; Lunt, H.; Robson, R.A. Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Res. Clin. Pract. 1999, 43, 91–99. [Google Scholar] [CrossRef]
- Gunderson, E.P.; Hurston, S.R.; Ning, X.; Lo, J.C.; Crites, Y.; Walton, D.; Dewey, K.G.; Azevedo, R.A.; Young, S.; Fox, G.; et al. Lactation and Progression to Type 2 Diabetes Mellitus After Gestational Diabetes Mellitus. Ann. Intern. Med. 2015, 163, 889–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.-P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; et al. α-Hydroxybutyrate Is an Early Biomarker of Insulin Resistance and Glucose Intolerance in a Nondiabetic Population. PLoS ONE 2010, 5, e10883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunderson, E.P.; Matias, S.; Hurston, S.R.; Dewey, K.G.; Ferrara, A.; Quesenberry, C.P.; Lo, J.; Sternfeld, B.; Selby, J.V. Study of Women, Infant feeding, and Type 2 diabetes mellitus after GDM pregnancy (SWIFT), a prospective cohort study: Methodology and design. BMC Public Health 2011, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Randle, P.; Garland, P.; Hales, C.; Newsholme, E. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 281, 785–789. [Google Scholar] [CrossRef]
- Jones, D.; Carter, R.; Mann, J. Indirect Evidence of Impairment of Platelet Desaturase Enzymes in Diabetes Mellitus. Horm. Metab. Res. 1986, 18, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.J.; Jennings, P.E.; Barnett, A.H.; Pandov, H.I.; Lawson, N. An alternative explanation for the changes in erythrocyte fatty acids observed in diabetes mellitus. Clin. Chem. 1987, 33, 2083–2085. [Google Scholar] [CrossRef]
- Mandal, S.; Causevic, A.; Dzudzevic-Cancar, H.; Semiz, S. Free fatty acid profile in Type 2 diabetic subjects with different control of glycemia. In CMBEBIH 2017; Springer: Singapore, 2017. [Google Scholar]
- Leekumjorn, S.; Cho, H.J.; Wu, Y.; Wright, N.T.; Sum, A.K.; Chan, C. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim. Biophys. Acta (BBA) Biomembr. 2009, 1788, 1508–1516. [Google Scholar] [CrossRef] [Green Version]
- Grapov, D.; Adams, S.H.; Pedersen, T.L.; Garvey, W.T.; Newman, J.W. Type 2 Diabetes Associated Changes in the Plasma Non-Esterified Fatty Acids, Oxylipins and Endocannabinoids. PLoS ONE 2012, 7, e48852. [Google Scholar] [CrossRef] [Green Version]
- Vessby, B.; Aro, A.; Skarfors, E.; Berglund, L.; Salminen, I.; Lithell, H. The Risk to Develop NIDDM Is Related to the Fatty Acid Composition of the Serum Cholesterol Esters. Diabetes 1994, 43, 1353–1357. [Google Scholar] [CrossRef]
- ARIC Study Investigators; Wang, L.; Folsom, A.R.; Zheng, Z.-J.; Pankow, J.S.; Eckfeldt, J.H. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2003, 78, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Lapolla, A.; Sartore, G.; Della Rovere, G.R.; Romanato, G.; Zambon, S.; Marin, R.; Manzato, E.; Fedele, D. Plasma fatty acids and lipoproteins in type 2 diabetic patients. Diabetes/Metab. Res. Rev. 2006, 22, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, G.; Hong, Q.; Liebich, H.M.; Lutz, K.; Schmülling, R.-M.; Wahl, H.G. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J. Chromatogr. B 2004, 813, 53–58. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.; Sánchez, M.-J.; Guevara, M.; Beulens, J.W.J.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Liang, Y.; Yi, L.; Li, H.; Zhou, Z.; Ji, X.; Deng, J. Identification of free fatty acids profiling of type 2 diabetes mellitus and exploring possible biomarkers by GC–MS coupled with chemometrics. Metabolomics 2009, 6, 219–228. [Google Scholar] [CrossRef]
- Matsuzaka, T.; Shimano, H.; Yahagi, N.; Kato, T.; Atsumi, A.; Yamamoto, T.; Inoue, N.; Ishikawa, M.; Okada, S.; Ishigaki, N.; et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 2007, 13, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Meng, L.; Li, L.; Ma, L.-N.; Mao, X. Plasma Free Fatty Acids Metabolic Profile Among Uyghurs and Kazaks with or Without Type 2 Diabetes Based on GC-MS. Exp. Clin. Endocrinol. Diabetes 2017, 126, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003, 52, 2882–2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankow, J.S.; Duncan, B.B.; Schmidt, M.I.; Ballantyne, C.M.; Couper, D.; Hoogeveen, R.; Golden, S.H. Fasting plasma free fatty acids and risk of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes Care 2004, 27, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Spiller, S.; Blüher, M.; Hoffmann, R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes Obes. Metab. 2018, 20, 2661–2669. [Google Scholar] [CrossRef]
- Yi, L.; He, J.; Liang, Y.-Z.; Yuan, D.-L.; Chau, F.-T. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett. 2006, 580, 6837–6845. [Google Scholar] [CrossRef] [Green Version]
- Yakoob, M.Y.; Shi, P.; Willett, W.C.; Rexrode, K.M.; Campos, H.; Orav, E.J.; Hu, F.B.; Mozaffarian, D. Circulating Biomarkers of Dairy Fat and Risk of Incident Diabetes Mellitus Among Men and Women in the United States in Two Large Prospective Cohorts. Circulation 2016, 133, 1645–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.M.; Hotamisligil, G.; Tsai, M.Y.; Siscovick, D.S.; Nettleton, J.A. Trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2013, 97, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Chen, X.; Capulong, E.; Mozzoli, M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001, 50, 810–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Stein, T.P.; Steer, R.A.; Scholl, T.O. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res. Care 2019, 7, e000632. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, M.; Yang, X.; Bi, M.; Na, L.; Niu, Y.; Li, Y.; Sun, C. Fasting Serum Lipid and Dehydroepiandrosterone Sulfate as Important Metabolites for Detecting Isolated Postchallenge Diabetes: Serum Metabolomics via Ultra-High-Performance LC-MS. Clin. Chem. 2013, 59, 1338–1348. [Google Scholar] [CrossRef]
- Louet, J.-F.; Chopra, A.R.; Sagen, J.V.; An, J.; York, B.; Tannour-Louet, M.; Saha, P.K.; Stevens, R.D.; Wenner, B.R.; Ilkayeva, O.R.; et al. The Coactivator SRC-1 Is an Essential Coordinator of Hepatic Glucose Production. Cell Metab. 2010, 12, 606–618. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niwa, T. The protein metabolite theory as a mechanism for the progression of renal failure. J. Ren. Nutr. 2001, 11, 181–182. [Google Scholar] [CrossRef]
- Han, J.; Lin, K.; Sequeira, C.; Borchers, C.H. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–Tandem mass spectrometry. Anal. Chim. Acta 2015, 854, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Maeda, K.; Ohki, T.; Saito, A.; Tsuchida, I. Gas chromatographic—Mass spectrometric profile of organic acids in urine and serum of diabetic ketotic patients. J. Chromatogr. B Biomed. Sci. Appl. 1981, 225, 1–8. [Google Scholar] [CrossRef]
- Yuan, K.; Kong, H.; Guan, Y.; Yang, J.; Xu, G. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J. Chromatogr. B 2007, 850, 236–240. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Lee, J.-H.; Lloyd, J.; Walter, P.; Rane, S.G. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion. J. Biol. Chem. 2013, 288, 25088–25097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Al-Lahham, S.H.; Roelofsen, H.; Priebe, M.; Weening, D.; Dijkstra, M.; Hoek, A.; Rezaee, F.; Venema, K.; Vonk, R.J. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Investig. 2010, 40, 401–407. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Puddu, A.; Sanguineti, R.; Montecucco, F.; Viviani, G.L. Evidence for the Gut Microbiota Short-Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes. Mediat. Inflamm. 2014, 2014, 162021. [Google Scholar] [CrossRef]
- Roelofsen, H.; Priebe, M.G.; Vonk, R.J. The interaction of short-chain fatty acids with adipose tissue: Relevance for prevention of type 2 diabetes. Benef. Microbes 2010, 1, 433–437. [Google Scholar] [CrossRef]
- Villarreal-Peréz, J.Z.; Villarreal-Martínez, J.Z.; Lavalle-González, F.; Torres-Sepúlveda, M.D.R.; Ruiz-Herrera, M.D.C.; Cerda-Flores, R.M.; Castillo-García, E.R.; Rodríguez-Sánchez, I.P.; Martínez-De-Villarreal, L.E. Plasma and urine metabolic profiles are reflective of altered beta-oxidation in non-diabetic obese subjects and patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2014, 6, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, J.; Liu, R.; Yu, J.; Liu, X.; Zhao, X.; Li, Y.; Liu, L.; Sun, C. Fasting serum α-hydroxybutyrate and pyroglutamic acid as important metabolites for detecting isolated post-challenge diabetes based on organic acid profiles. J. Chromatogr. B 2018, 1100, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Gaster, M.; Nehlin, J.O.; Minet, A.D. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: Marker or maker of the diabetic phenotype? Arch. Physiol. Biochem. 2012, 118, 156–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Hao, F.; Zhou, X.; Han, X.; Tang, H.; Ji, L. Human Serum Metabonomic Analysis Reveals Progression Axes for Glucose Intolerance and Insulin Resistance Statuses. J. Proteome Res. 2009, 8, 5188–5195. [Google Scholar] [CrossRef]
- Landaas, S. The formation of 2-hydroxybutyric acid in experimental animals. Clin. Chim. Acta 1975, 58, 23–32. [Google Scholar] [CrossRef]
- Hinder, L.M.; Vivekanandan-Giri, A.; McLean, L.L.; Pennathur, S.; Feldman, E.L. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J. Endocrinol. 2013, 216, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Van Diepen, J.A.; Robben, J.H.; Hooiveld, G.J.; Carmone, C.; Alsady, M.; Boutens, L.; Bekkenkamp-Grovenstein, M.; Hijmans, A.; Engelke, U.F.H.; Wevers, R.A.; et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 2017, 60, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Goto, H.; Abe, H.; Komiya, K.; Kawaguchi, M.; Shimizu, T.; Ogihara, T.; et al. Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients with Type 2 Diabetes. Diabetes Care 2014, 37, 2343–2350. [Google Scholar] [CrossRef] [Green Version]
- Kootte, R.S.; Vrieze, A.; Holleman, F.; Dallinga-Thie, G.M.; Zoetendal, E.G.; De Vos, W.M.; Groen, A.K.; Hoekstra, J.B.L.; Stroes, E.S.; Nieuwdorp, M. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 2011, 14, 112–120. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Low Urine pH: A Novel Feature of the Metabolic Syndrome. Clin. J. Am. Soc. Nephrol. 2007, 2, 883–888. [Google Scholar] [CrossRef]
- Abate, N.; Chandalia, M.; Cabo-Chan, A.V.; Moe, O.W.; Sakhaee, K.; Abate, M.C.N. The metabolic syndrome and uric acid nephrolithiasis: Novel features of renal manifestation of insulin resistance. Kidney Int. 2004, 65, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Sakhaee, K. Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 1277–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, N.; Vogensen, F.K.; Berg, F.V.D.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Abu Al-Soud, W.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef]
- Bobulescu, I.A.; Dubree, M.; Zhang, J.; McLeroy, P.; Moe, O.W. Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. American journal of physiology. Ren. Physiol. 2008, 294, F1315–F1322. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Ohno, H. Gut microbiome and metabolic diseases. Semin. Immunopathol. 2013, 36, 103–114. [Google Scholar] [CrossRef]
- Karlsson, F.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Aw, W.; Fukuda, S. Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin. Immunopathol. 2014, 37, 5–16. [Google Scholar] [CrossRef]
- Wen, L.; Ley, R.E.; Volchkov, P.Y.; Stranges, P.B.; Avanesyan, L.; Stonebraker, A.C.; Hu, C.; Wong, F.S.; Szot, G.L.; Bluestone, J.A.; et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455, 1109–1113. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, N.; Wang, X.; Chi, Y.; Zhang, Y.; Qiu, X.; Hu, Y.; Li, J.; Liu, Y.-L. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 2015, 5, 8096. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.H.; Knop, F.K.; Frost, M.; Hallas, J.; Pottegård, A. Use of Antibiotics and Risk of Type 2 Diabetes: A Population-Based Case-Control Study. J. Clin. Endocrinol. Metab. 2015, 100, 3633–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hylemon, P.B.; Zhou, H.; Pandak, W.M.; Ren, S.; Gil, G.; Dent, P. Bile acids as regulatory molecules. J. Lipid Res. 2009, 50, 1509–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Daitoku, H.; Shimamoto, Y.; Matsuzaki, H.; Hirota, K.; Ishida, J.; Fukamizu, A. Bile Acids Regulate Gluconeogenic Gene Expression via Small Heterodimer Partner-mediated Repression of Hepatocyte Nuclear Factor 4 and Foxo1. J. Biol. Chem. 2004, 279, 23158–23165. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.; Tremaroli, V.; Clemmensen, C.; Kovatcheva-Datchary, P.; Myronovych, A.; Karns, R.; Wilson-Pérez, H.E.; Sandoval, D.A.; Kohli, R.; Bäckhed, F.; et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014, 509, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Taras, D.; Schafer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga–Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; et al. Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome. Gastroenterology 2012, 143, 913–916.e7. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [Green Version]
- De Vadder, F.; Kovatcheva-Datchary, P.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016, 24, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef] [PubMed]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2016, 23, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, S.K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2013, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A.M.; Lobley, G.E.; Wallace, R.J.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef]
- Fava, F.; Gitau, R.; Griffin, B.A.; Gibson, G.R.; Tuohy, K.; Lovegrove, J.A. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. 2012, 37, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Caesar, R.; Tremaroli, V.; Kovatcheva-Datchary, P.; Cani, P.D.; Bäckhed, F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015, 22, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Francavilla, R.; Calasso, M.; Calace, L.; Siragusa, S.; Ndagijimana, M.; Vernocchi, P.; Brunetti, L.; Mancino, G.; Tedeschi, G.; Guerzoni, E.; et al. Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2012, 23, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing speciesRoseburia hominisandFaecalibacterium prausnitziidefines dysbiosis in patients with ulcerative colitis. Gut 2013, 63, 1275–1283. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pászti-Gere, E.; Szeker, K.; Csibrik-Nemeth, E.; Csizinszky, R.; Marosi, A.; Palocz, O.; Farkas, O.; Galfi, P. Metabolites of Lactobacillus plantarum 2142 Prevent Oxidative Stress-Induced Overexpression of Proinflammatory Cytokines in IPEC-J2 Cell Line. Inflammation 2012, 35, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Takagi, A.; Ikemura, H.; Matsuguchi, T.; Yokokura, T. Intestinal microflora: Probiotics and autoimmunity. J. Nutr. 2007, 137, 798S–802S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hald, S.; Schioldan, A.G.; Moore, M.E.; Dige, A.; Lærke, H.N.; Agnholt, J.; Knudsen, K.E.B.; Hermansen, K.; Marco, M.L.; Gregersen, S.; et al. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study. PLoS ONE 2016, 11, e0159223. [Google Scholar] [CrossRef] [PubMed]
- Manirarora, J.N.; Parnell, S.A.; Hu, Y.-H.; Kosiewicz, M.M.; Alard, P. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence. Clin. Dev. Immunol. 2011, 2011, 630187. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Hooper, L.; Kay, C.D.; Abdelhamid, A.; Kroon, P.A.; Cohn, J.S.; Rimm, E.B.; Cassidy, A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012, 95, 740–751. [Google Scholar] [CrossRef]
Sr. no. | (Parent)-Class of Compound | Metabolites | Nature of Variation | Source | Associated Pathway |
---|---|---|---|---|---|
1 | Branched-chain-amino acids/Amino acids (BCAA/AA) | N-Acetylaspartate | ↓ | plasma/urine | Alanine and aspartate metabolism |
2 | Phosphocreatine | ↑ | plasma/urine | Creatine biosynthesis and amino acid | |
3 | Creatinine | ↑ | plasma/urine | Metabolism, glycine, serine and threonine | |
4 | Glycine | ↓ | plasma/urine | Metabolism | |
5 | Guanidinoacetate | ↑ | plasma/urine | AA metabolism | |
6 | Butyrylglycine | ↓ | plasma/urine | FA metabolism | |
7 | Caproylglycine | ↓ | plasma/urine | Fatty acid metabolism | |
8 | N-Acetylglutamate | ↑ | plasma/urine | Glutamate pathway (link with urea cycle) | |
9 | Choline | ↑ | plasma/urine | Glycine, serine and threonine metabolism | |
10 | Threonine | ↑ | plasma/urine | AA metabolism | |
11 | Valerylglycine | ↓ | plasma/urine | AA metabolism | |
12 | Alanine | ↑ | plasma/urine | Glycolysis, alanine and aspartate metabolism | |
13 | 2-Oxoadipate | ↑ | plasma/urine | Lysine degradation | |
14 | Lysine | ↑ | plasma/urine | biosynthesis | |
15 | Glutaric acid | ↓ | plasma/urine | Lysine degradation, fatty acid metabolism | |
16 | Methionine | ↑ | plasma/urine | Methionine metabolism | |
17 | Taurine | ↑ | plasma/urine | Taurine and hypotaurine metabolism | |
18 | Tyrosine | ↑ | plasma/urine | Tryptophan metabolism | |
19 | Indoxyl sulfate | ↓ | plasma/serum | Tyrosine metabolism | |
20 | Citrulline | ↑ | plasma/serum | Urea cycle | |
21 | l-Argininosuccinic acid | ↑ | plasma/serum | ||
22 | N-Acetyl citrulline | ↑ | plasma/serum | ||
23 | Ornithine | ↑ | plasma/serum | ||
24 | Isobutyrlglycine | ↓ | plasma/serum | val, leu and ileu degradation | |
25 | Isovalerate | ↓ | plasma/serum | ||
26 | Isovalerylglycine | ↓ | plasma/serum | ||
27 | Methylmalonate | ↓ | plasma/serum | ||
28 | Valine | ↑ | plasma/serum | ||
29 | Glutamylvaline | ↑ | plasma/serum | dipeptide metabolism | |
30 | Gamma-glutamylisoleucine | ↑ | plasma/serum | g-glutamyl metabolism | |
31 | 3-hydroxybutyrate (BHB) | ↑ | plasma/serum | ketone bodies degradation | |
32 | Phenylacetylglutamine | ↑ | plasma/serum | Phenylalanine and tyrosine degradation | |
33 | Phenylalanine | ↑ | plasma/serum | Phenylalanine and tyrosine degradation | |
34 | Homocitrulline | ↑ | plasma/serum | Urea cycle | |
35 | Phenylacetylglutamine | ↑ | plasma/serum | Dipeptide | |
36 | Glutamylvaline | ↑ | plasma/serum | Saturated fatty acids | |
37 | Gamma-glutamylisoleucine | ↑ | plasma/serum | g-glutamyl metabolism | |
38 | N-acetylalanine | ↑ | plasma/serum | BCAA metabolism | |
39 | Cysteine | ↓ | plasma/serum | Amino-sugars metabolism | |
40 | Leucine | ↑ | plasma/serum | AA metabolism | |
41 | 2-ketoisocaproic acid and 2-hydroxybutanoic | ↑ | plasma/serum | Leucine and methionine metabolism | |
42 | cystine | ↑ | plasma/serum | AA metabolism | |
43 | Histidine | ↑ | plasma/serum | AA metabolism | |
44 | Lysine/serine/aspergine | ↓ | plasma/serum | AA metabolism | |
45 | 5-l-Glutamyl-taurine | ↑ | Urine | AA metabolism | |
46 | 4-Oxoproline | ↑ | Urine | AA metabolism | |
47 | l-Valine | ↑ | Urine | AA metabolism | |
48 | N-formylproline | ↑ | Urine | AA metabolism | |
49 | N-(3-hydroxybenzoyl)glycine | ↑ | Urine | AA metabolism | |
50 | 3-Hydroxyphenylacetic acid | ↑ | Urine | AA metabolism | |
51 | Glucuronide compound | ↑ | Urine | AAmetabolism | |
52 | d-Glutamicacid | ↑ | Urine | Amino acids metabolism | |
53 | Glutamine | ↓ | plasma/serum | Amino acids metabolism | |
54 | 2-aminoadipic acid | ↑ | plasma/serum | Tryptophan metabolism | |
55 | (Acyl)carnitines | Total carnitine | ↑ | plasma/serum | Mitochondrial fatty acids metabolism |
56 | Free Carnitine | ↑ | plasma/serum | ||
57 | Acetylcarnitine (C2) | ↓ | plasma | ||
58 | Propionylcarnitine (C3), C14:2 and C18 acylcarnitines | ↓ | plasma | ||
59 | Hexanoylcarnitine (C6), Octanoylcarnitine (C8), Decanoylcarnitine (C10), Myristoylcarnitine (C14) | ↑ | plasma | ||
60 | Malonylcarnitine, Oleoylcarnitine (C18:1) | ||||
61 | Suberoylcarnitine (C8-dicarb) | ↑ | plasma | ||
62 | Summed C10-C14 acylcarnitines | ↑ | plasma | ||
63 | 2-methylbutyroylcarnitine | ↑ | plasma | ||
64 | 3-dehydroxycarnitine | ↑ | plasma | ||
65 | Butyrylcarnitine (C4) | ↓ | plasma | ||
66 | Isobutyrylcarnitine | ↑ | plasma | ||
67 | Valerylcarnitine | ↑ | plasma | ||
68 | Isovalerylcarnitine | ↑ | plasma | ||
69 | 3-Hydroxy-isovalerylcarnitine | ↑ | plasma | ||
70 | 3-Methyl-crotonylcarnitine | ↑ | plasma | ||
71 | Hexanoylcarnitine (C6) | ↑ | plasma | ||
72 | Phenylacetylcarnitine | ↑ | plasma | ||
73 | Phenylpropionylcarnitine | ↑ | plasma | ||
74 | 4-Phenyl-butyrylcarnitine | ↓ | plasma | ||
75 | 4-Methyl-hexanoylcarnitine | ↑ | plasma | ||
76 | Octanoylcarnitine (C8) | ↑ | plasma | ||
77 | cis-3,4-Methylene-heptanoylcarnitine | ↑ | plasma | ||
78 | Decanoylcarnitine (C10) | ↑ | plasma | ||
79 | cis-4-Decenoylcarnitine | ↑ | plasma | ||
80 | cis-3,4-Methylene-nonanoylcarnitine | ↑ | plasma | ||
81 | Lauroylcarnitine (C12) | ↑ | plasma | ||
82 | Myristoylcarnitine (C14) | ↑ | plasma | ||
83 | Linoleoylcarnitine (C18:2) | ↑ | plasma | ||
84 | Adipoylcarnitine (C6-dicarb) | ↑ | plasma | ||
85 | Suberoylcarnitine (C8-dicarb) | ↑ | plasma | ||
86 | C18:2-carnitine | ↑ | plasma | ||
87 | C20-carnitine | ↑ | plasma | ||
88 | C20:4-carnitine | ↑ | plasma | ||
89 | C26-carnitine | ↑ | plasma | ||
90 | Organic acids | Malonate | ↑ | plasma | Fatty acids metabolism |
91 | Lactate | ↑ | plasma | Glycolysis | |
92 | Acetate | ↑ | plasma | Glycolysis, ala and asp metabolism | |
93 | Valeric acid | ↑ | plasma | Glycolysis, fatty acid b-oxidation | |
94 | Formate | ↑ | plasma | Glyoxylate and dicarboxylate | |
95 | N1-Methylnicotinamide | ↑ | plasma | Nicotinate, nicotinamide metabolism | |
96 | N1-Methylnicotinic acid | ↑ | plasma | ||
97 | Nicotinamide-n-oxide | ↑ | plasma | ||
98 | N-Methyl-2-pyridone-5-carboxamide | ↑ | plasma | ||
99 | N-Methyl-4-pyridone-3-carboxamide | ↑ | plasma | ||
100 | 3-Ureidopropanoate | ↑ | plasma | Purine metabolism | |
101 | Orotate | ↑ | plasma | Pyrimidine metabolism | |
102 | Isocaproyl | ↓ | plasma | Steroid and hormone production | |
103 | (s)-Malate | ↓ | plasma/serum | TCA cycle metabolism | |
104 | 2-Oxoglutarate | ↑ | plasma/serum | ||
105 | cis-Aconitate | ↓ | plasma/serum | ||
106 | Citrate | ↑ | plasma/serum | ||
107 | Fumarate | ↑ | plasma/serum | ||
108 | Succinate | ↑ | plasma/serum | ||
109 | m-Hydroxyphenyl propionic acid | ↑ | plasma/serum | Phenyl alanine metabolism (bacterial) | |
110 | m-Hydroxyphenyl propionic acid sulfate | ↑ | plasma/serum | ||
111 | Phenyl sulfate | ↓ | plasma/serum | ||
112 | Hippurate | ↑ | plasma/serum | ||
113 | 5-Hydroxykynurenine | ↑ | plasma | Amino acids metabolism | |
114 | 3-deoxyarabinohexonic acid | ↑ | serum | Fatty acid metabolism | |
115 | Uronic acid | ↑ | plasma/serum | Glucose metabolism | |
116 | Erythronate | ↑ | plasma | Amino-sugars metabolism | |
117 | Gluconic acid | ↑ | plasma | Carbohydrate metabolism | |
118 | Benzoic acid | ↓ | plasma/urine | Phenolic metabolite | |
119 | Acetic acid | ↓ | plasma/urine | Carbohydrate metabolism | |
120 | Propionic acid | ↓ | plasma/urine | Carbohydrate metabolism | |
121 | Butyric acid | ↓ | plasma/urine | Carbohydrate metabolism | |
122 | Isovaleric acid | ↓ | plasma/urine | Carbohydrate metabolism | |
123 | Valeric acid | ↑ | plasma/urine | Carbohydrate metabolism | |
124 | Succinic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
125 | Formic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
126 | Lactic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
127 | Capric acid | ↑ | plasma/urine | Carbohydrate metabolism | |
128 | Caprylic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
129 | Citrate | ↑ | plasma/urine | Carbohydrate metabolism | |
130 | Ethylmalonic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
131 | Fumarate | ↑ | plasma/urine | Carbohydrate metabolism | |
132 | Glutaric acid | ↑ | plasma/urine | Carbohydrate metabolism | |
133 | Glycolic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
134 | β-Hydroxybutyrate | ↑ | plasma/urine | Carbohydrate metabolism | |
135 | α-Hydroxybutyrate | ↑ | plasma/urine | Carbohydrate metabolism | |
136 | 2-Hydroxyisocaproic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
137 | α-Ketoglutarate | ↑ | plasma/urine | Carbohydrate metabolism | |
138 | Lactate | ↑ | plasma/urine | Carbohydrate metabolism | |
139 | Methylmalonic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
140 | Orotic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
141 | Oxalic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
142 | Oxaloacetate | ↑ | plasma/urine | Carbohydrate metabolism | |
143 | Pyroglutamic acid | ↓ | plasma/urine | Carbohydrate metabolism | |
144 | Pyruvate | ↑ | plasma/urine | Carbohydrate metabolism | |
145 | Sebacic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
146 | Suberic acid | ↓ | plasma/urine | Carbohydrate metabolism | |
147 | Succinate | ↑ | plasma/urine | Carbohydrate metabolism | |
148 | Lactate | ↓ | plasma/urine | Carbohydrate metabolism | |
149 | Hippuric acid | ↑ | plasma/urine | Carbohydrate metabolism | |
150 | Indole-3-carboxylic acid | ↑ | plasma/urine | Carbohydrate metabolism | |
151 | Phenyllactic acid | ↑ | urine | Carbohydrate metabolism | |
152 | Glyoxylate | ↑ | urine | Energy metabolism | |
153 | 2-Hydroxybutyrate | ↑ | plasma/urine | Energy metabolism | |
154 | 3-Hydroxybutyrate | ↑ | plasma/urine | Energy metabolism | |
155 | 3-Hydroxy-3-(3-hydroxyphenyl) propanoic acid | ↑ | plasma/urine | Energy metabolism | |
156 | 5-Hydroxymethyl-2-furancarboxylic acid | ↑ | plasma/urine | Energy metabolism | |
157 | Benzoic acid | ↑ | plasma/urine | Energy metabolism | |
158 | Free fatty acids | 2-Hydroxy-N-valerate | ↓ | plasma/serum | Fatty acids metabolism |
159 | Docosanoic acid | ↑ | plasma | Free fatty acid synthesis | |
160 | 2-Hydroxyvaleric acid | ↑ | plasma | Free fatty acid synthesis | |
161 | C12:0 | ↑ | plasma | Lipid metabolism | |
162 | C14:0 | ↑ | plasma | ||
163 | C15:0 | ↑ | plasma | ||
164 | C16:0 | ↑ | plasma | ||
165 | C16:1n-9 | ↑ | plasma | ||
166 | C16:1n-7 | ↑ | plasma | ||
167 | C18:0 | ↑ | plasma | ||
168 | C18:1n-9 | ↑ | plasma | ||
169 | C18:1n-7 | ↑ | plasma | ||
170 | C18:2n-6 | ↑ | plasma | ||
171 | C18:3n-3 | ↑ | plasma | ||
172 | C18:3n-6 | ↑ | plasma | ||
173 | C20:0 | ↑ | plasma | ||
174 | C20:1n-9 | ↑ | plasma | ||
175 | C20:2n-7 | ↑ | plasma | ||
176 | C20:3n-6 | ↑ | plasma | ||
177 | C20:4n-6 | ↑ | plasma | ||
178 | C20:5n-3 | ↓ | plasma | ||
179 | C22:1n-9 | ↑ | plasma | ||
180 | C22:4n-6 | ↑ | plasma | ||
181 | C22:5n-6 | ↓ | plasma | ||
182 | C22:5n-3 | ↑ | plasma | ||
183 | C22:6n-3 | ↑ | plasma | ||
184 | (Phospho)-lipids | LysoPC 16:0, 18:0 | ↑ | plasma | Phospholipid metabolism |
185 | PE C34:2, PE C36:2, PE C38:4, | ↑ | plasma | ||
186 | DG 16:0/22:5, DG 16:0/22:6, DG 16:1/18:0, DG 16:1/18:1, DG 16:0/16:0, DG 18:0/18:1, DG 16:0/18:0, DG 16:0/20:4, DG 14:0/18:1, DG 16:0/20:3, and DG 18:0/18:2 | ↑ | plasma | Phospholipid metabolism | |
187 | LysoPC C17:0, lysoPC C18:1, LysoPC (18:2), LysoPC C20:4, Lyso C 22:6, LysoPC C18:3, LysoPC C20:5, Lyso-PC Lyso-PC C20:C36:3, Lyso-PC C38:5, Lyso-PC 40:1, Lyso-PC C18:2, Lyso-PC C34:3, Lyso-PC C42:5, Lyso-PC C40:6, Lyso-PC C44:5, Lyso-PC C44:4 | ↓ | plasma | Phospholipid metabolism | |
188 | phosphatidylinositol (PI) (PI 38:4, 36:2, 36:3, 34:2) | ↓ | plasma | Phospholipid metabolism | |
189 | phosphatidylethanolamine (PE) (PE 38:6, PE 38:5, PE 38:4 and PE 36:3 | ↓ | plasma | Phospholipid metabolism | |
190 | Cholesteryl-β-d-glucoside | ↑ | plasma | Phospholipid metabolism | |
191 | Cholesteryl-β-d-glucoside fragment | ↑ | plasma | Cholesterol metabolism | |
192 | 1,2 Distearyole phosphatidyle serine | ↑ | plasma | Cholesterol metabolism | |
193 | Lyso PE 18:2, LysoPE (20:0/0:0), LysoPE (20:2/0:0), LysoPE (20:1/0:0) | ↑ | plasma | Phospholipid metabolism | |
194 | TAG 52:1, TAG 50:0, TAG 48:1, TAG 46:1, TAG 44:1 TAG 48:0 | ↑ | plasma | Lipids metabolism | |
195 | PC 34:2, PC 40:1, PC 36:3, and PC 38:5 | ↑ | plasma | ||
196 | SM 22:0 | ↑ | plasma | Phospholipid metabolism | |
197 | TAG 58:10, TAG 56:9, TAG 60:12 | ↓ | plasma | Phospholipid metabolism | |
198 | PC 38:6, 18:2, C34:4 | ↓ | plasma | Phospholipid metabolism | |
199 | TAG 50:0 + TAG 58:10 | ↑ | plasma | Lipids metabolism | |
200 | PC 22:4/dm18:0, PCO-20:0/O-20:0, PCO-18:0/22:5,LysoPCdm16:0 | ↑ | plasma | Phospholipid metabolism | |
201 | LysoPCdm16:0 | ↑ | plasma | Phospholipid metabolism | |
202 | GlcCer (d18:0/18:0) PC (16:0/O-16:0) PC (O-14:0/18:0) | ↓ | plasma | Phospholipid metabolism | |
203 | diacyl-PC36:1, PC32:1, PC40:5, and PC38:3 | ↑ | plasma | Phospholipid metabolism | |
204 | PC (18:2/dm16:0) PC (O-16:0/18:3) PC (O-16:0/18:3) | ↑ | plasma | Phospholipid metabolism | |
205 | PC (P-16:0/18:2) | ↑ | plasma | Phospholipid metabolism | |
206 | glycerophosphorylcholine [M] | ↓ | plasma | Glycerolipids metabolism | |
207 | PC a C20:4 (alt) [B] | ↓ | plasma | Glycerolipids metabolism | |
208 | PC aa (OH, COOH) C28:4 | ↓ | plasma | Glycerolipids metabolism | |
209 | PC aa C34:4 | ↓ | plasma | Glycerolipids metabolism | |
210 | SM C14:0, C16:1, SM C22:2, SM C18:1, dihydroceramides d18:0/C18:0, d18:0/C22:0, ceramide d18:1/C18:0 | ↓ | plasma | Glycerolipids metabolism | |
211 | PE aa C34:2, PE aa C36:2, PE aa C38:4 | ↑ | plasma | Glycerolipids metabolism | |
212 | Gangliosides C16:0 and C18:0 and glucosylceramides (C16:0, C22:0, C24:0 and C24:1) | ↑ | plasma | Lipid/fatty acid metabolism | |
213 | PC aa C34:4, PC 34:4 | ↓ | plasma | Glycerolipids metabolism | |
214 | arachidonate | ↓ | plasma | Polyene metabolism | |
215 | myristate (14:0), palmitate (16:0), oleic acid, heptadecanoic acid, margarate (17:0), stearate (18:0), 10-heptadecenoate (17:1n7), oleate (18:1n9), linoleate (18:2n6), linoleamide (18:2n6), linolenate (18:3n3 or 6), eicosenoate (20:1n9 or 11), dihomo-alpha-linolenate (20:3n3), adrenate (22:4n6), TG 14:1/16:1/18:0, TG 16:1/16:1/16:1 | ↑ | plasma | FA metabolism | |
216 | cholesterol esters (CE) (CE 24:1, and CE 22:0) | ↑ | plasma | FA metabolism | |
217 | 2-hydroxypalmitate | ↑ | plasma | Medium-chain FA metabolism | |
218 | 2-hydroxystearate | ↑ | plasma | SFA metabolism | |
219 | caproate (6:0), heptanoate (7:0), pelargonate (9:0) | ↓ | plasma | ||
220 | 10-undecenoate (11:1n1) | ↓ | plasma | ||
221 | arachidonate (20:4n6) | ↓ | plasma | ||
222 | 3-hydroxybutanoic acid (b-hydroxybutryrate) | ↑ | plasma | Lipid/fatty acid metabolism | |
223 | 20-Hydroxy-leukotriene E4, 5-methoxytryptamine, Endomorphin-1 | ↑ | plasma | Lipid/fatty acid metabolism | |
224 | 2-ketoisocaproic acid | ↑ | serum | Lipid/fatty acid metabolism | |
225 | α-hydroxyisobutyric acid | ↑ | serum | Lipid/fatty acid metabolism | |
226 | β-hydroxybutyric acid | ↑ | serum | Lipid/fatty acid metabolism | |
227 | 1-monopalmitin | ↑ | serum | Lipid/fatty acid metabolism | |
228 | 1-monostearin | ↑ | serum | Lipid/fatty acid metabolism | |
229 | Cholic acid | ↑ | urine | Lipid/fatty acid metabolism | |
230 | Suberic acid | ↓ | urine | Lipid/fatty acid metabolism | |
231 | Glycocholic acid | ↑ | urine | Bile acid metabolism | |
232 | 3,4,5-Trihydroxypentanoic acid | ↑ | plasma/serum | Lipid/fatty acid metabolism | |
233 | Galactonic acid | ↑ | plasma/serum | Lipid/fatty acid metabolism | |
234 | 2-Hydroxyglutaric acid | ↑ | plasma/serum | Lipid/fatty acid metabolism |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.; Mojsak, P.; Buczynska, A.; Suleria, H.A.R.; Kretowski, A.; Ciborowski, M. Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. J. Clin. Med. 2020, 9, 2257. https://doi.org/10.3390/jcm9072257
Hameed A, Mojsak P, Buczynska A, Suleria HAR, Kretowski A, Ciborowski M. Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. Journal of Clinical Medicine. 2020; 9(7):2257. https://doi.org/10.3390/jcm9072257
Chicago/Turabian StyleHameed, Ahsan, Patrycja Mojsak, Angelika Buczynska, Hafiz Ansar Rasul Suleria, Adam Kretowski, and Michal Ciborowski. 2020. "Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM" Journal of Clinical Medicine 9, no. 7: 2257. https://doi.org/10.3390/jcm9072257
APA StyleHameed, A., Mojsak, P., Buczynska, A., Suleria, H. A. R., Kretowski, A., & Ciborowski, M. (2020). Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM. Journal of Clinical Medicine, 9(7), 2257. https://doi.org/10.3390/jcm9072257